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GAMMA MINIMAX NONPARAMETRIC ESTIMATION

Abstract. Let Y be a random vector taking its values in a measurable
space and let z be a vector-valued function defined on that space. We con-
sider gamma minimax estimation of the unknown expected value p of the
random vector z(Y ). We assume a weighted squared error loss function.

1. Introduction. Let Y be a random variable (or vector) taking its val-
ues in a measurable space (Y,B), whose unknown distribution P is assumed
to be an element of the set

P = {all probability measures on (Y,B)}.
Further, let Y n = (Y1, . . . , Yn) be a random sample of size n from P and let
z = (z1, . . . , zk)T be a bounded, measurable function on (Y,B) with values
in (Rk,BRk). Consider estimation of the unknown vector p defined as the
expected value of the random vector Z = z(Y ), i.e.

p = EPZ.

We assume that the loss function, which describes the loss to the statistician
if he estimates p by d, has the form

L(d, P ) = (d− p)TC(d− p),(1)

where the k× k matrix C = [cij] is symmetric and nonnegative definite. To
choose a reasonable decision rule d ∈ D, where

D = {all estimators d = d(Y n) of the unknown vector p},
we can use different principles. If we have no prior information on the un-
known probability P then we can use the minimax principle. Let R(d, P )
be the risk function of an estimator d ∈ D, i.e.

R(d, P ) = EP [L(d(Y n), P )].
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Then a decision rule d0 is said to be minimax if it minimizes the maximum
expected loss, i.e.

sup
P∈P

R(d0, P ) = inf
d∈D

sup
P∈P

R(d, P ).

In Wilczyński (1992) it was proved that the minimax estimator of p under
the loss function (1) has the form

d0(Y n) =
Xn +

√
np0

n+
√
n

, where Xn =
n∑

j=1

z(Yj).

For the definition of the vector p0 see Wilczyński (1992). Note that d0 is
affine (inhomogeneous linear) with respect to Xn and thus easy to evaluate
and handle analytically.

If we know, on the other hand, that P is a random probability measure
chosen according to a known prior distribution π ∈ Π, where

Π = {all priors on the space of all probability mesures on (Y,B)},
we can use the (nonparametric) Bayes principle. Let r(d, π) be the π-Bayes
risk of an estimator d, i.e. the expected value of the risk function R(d, P )
with respect to the prior π:

r(d, π) = EπR(d, P ).

Then a decision rule dπ is said to be π-Bayes if it minimizes the π-Bayes
risk, i.e.

r(dπ, π) = inf
d∈D

r(d, π).

Unfortunately, finding a workable prior distribution π defined on the space
of all probability measures on a given sample space is not an easy task.
Ferguson (1973) stated that there are two desirable, but antagonistic, prop-
erties of a prior distribution for nonparametric problems: its support should
be large and the posterior distribution given a sample of observations from
the true probability distribution should be manageable analytically. The
simplest priors which have the latter property are the Dirichlet processes
introduced by Ferguson (1973). There are a large number of such processes,
one for each finite nonnull measure on (Y,B). Suppose that π is the Dirichlet
process corresponding to a measure AQ, where A is a positive number and
Q ∈ P. Then, from Ferguson (1973) (example b), the π-Bayes nonparametric
estimator of p has the form

dπ(Y n) =
Xn + Aq

n+ A
,

where q = EQZ.
There is an intermediate approach between the Bayes and the minimax

principles, the Γ -minimax principle, which is appropriate in the following
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situation. Suppose that P is a random probability measure chosen accord-
ing to an unknown prior distribution π which belongs to a given subset Γ
of Π. Then a decision rule dΓ is said to be Γ -minimax if it minimizes the
maximum Bayes risk with respect to the elements of Γ , i.e.

sup
π∈Γ

r(dΓ , π) = inf
d∈D

sup
π∈Γ

r(d, π).(2)

In this paper we consider Γ -minimax estimation of an unknown vector
p under the loss function (1). We assume that the set Γ has the form

Γ = {π ∈ Π : (ν1(π), ν2(π)) ∈ G},
where G is a given convex subset of Rk+1 and ν1(π) and ν2(π) denote the
first moments of EPZ and EPZ

TCZ with respect to the prior π ∈ Π, i.e.

ν1(π) = Eπ(EPZ), ν2(π) = Eπ(EPZTCZ).

We prove that the Γ -minimax estimator dΓ is an affine transformation of
the random vector Xn.

As is well known, a decision rule which is Γ -minimax for Γ = Π has
another optimal property—it is also minimax. Thus, we generalize our pre-
vious result concerning minimax nonparametric estimation (cf. Wilczyński
(1992)), because Γ = Π when G = Rk+1.

The problem of Γ -minimax estimation has been considered by many
authors. In particular, the case where Γ consists of all distributions whose
first two moments are within some given bounds has been described by
Jackson et al. (1970), Robbins (1964), Eichenauer et al. (1988) and Chen and
Eichenauer-Hermann (1990). A similar set of priors has been chosen by Chen
et al. (1991) who have explicitly determined the Γ -minimax estimator for the
unknown parameter θ of a one-parameter exponential family. This general
result has been obtained under the assumption that there exists an unbiased
statistic for θ with variance which is quadratic in the parameter. Next, this
result has been strengthened by Eichenauer (1991) who has assumed that
the set Γ of priors consists of all distributions whose first two moments are
within some given convex compact set G. A set Γ determined by certain
moment-type conditions has also been considered in the paper of Magiera
(2001), where the aim is to estimate unknown parameters of Markov-additive
processes from the data observed up to a random stopping time.

In all the references given above the problem of estimation is parametric
and the observed random variable (or vector) Y has a distribution which
depends on the unknown parameter θ, which takes its values in a finite-
dimensional Euclidean space. In contrast, we consider the nonparametric
version of the problem of Γ -minimax estimation. We assume that the un-
known distribution of Y can be described by any probability measure P
defined on the measurable space (Y,B) in which Y takes its values.
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2. Gamma minimax estimate. Since the vector-valued function z
is assumed to be bounded there exists a positive number M such that
supy∈Y ‖z(y)‖ ≤ M , where ‖ ‖ denotes the standard norm in Rk. This
implies that the random vector Z := z(Y ) is bounded and takes its values
in the convex compact subset M of Rk defined by

M = {x ∈ Rk : ‖x‖ ≤M}.
We denote by (πj) a sequence of priors from Γ for which

lim
j→∞

(ν2(πj)− νT1 (πj)Cν1(πj)) = sup
π∈Γ

(ν2(π)− νT1 (π)Cν1(π)).(3)

Since Z ∈ M, the corresponding sequence

(ν1(πj)) = (Eπj (EPZ))(4)

takes its values in M and therefore has a cluster point pΓ ∈ M. The fol-
lowing theorem is the main result of the paper:

Theorem 1. The Γ -minimax estimator of the unknown vector p under
the loss function (1) has the form

dΓ (Y n) =
Xn +

√
npΓ

n+
√
n

,(5)

and its Γ -minimax risk equals

sup
π∈Γ

r(dΓ , π) = sup
π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 .(6)

Proof. We will use a method analogous to that in Wilczyński (1992).
First we will show that dΓ (Y n) is Γ -minimax if the class of estimators is
restricted to a subset D0 ⊂ D defined by

D0 =
{
db ∈ D : db(Y n) =

Xn +
√
n b

n+
√
n

, b ∈ M
}
.

Then, using some implications of this fact, we will find the least upper bound
for the Bayes risk of dΓ (Y n). Finally, we will construct a sequence (π∗j ) of
priors from Γ and a sequence of π∗j -Bayes estimators (dπ∗j ) for which the
corresponding sequence of Bayes risks (r(dπ∗j , π

∗
j )) approaches that upper

bound. This will complete the proof of the theorem.
We first calculate the risk function for an estimator db ∈ D0. We note

that z(Y1), . . . ,z(Yn) are i.i.d. random vectors distributed as Z = z(Y ).
Therefore,

EP (Xn − np)TC(Xn − np) =
n∑

j=1

EP (z(Yj)− p)TC(z(Yj)− p)

= nEP (Z − p)TC(Z − p) = n(EPZTCZ − pTCp).
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This implies that the risk function of an estimator db from D0 has the form

R(db, P ) =
n(EPZTCZ − pTCp) + (

√
n)2(b− p)TC(b− p)

(n+
√
n)2

=
(EPZTCZ − pTCp) + (b− p)TC(b− p)

(
√
n+ 1)2

=
EPZ

TCZ − 2bTCp+ bTCb
(
√
n+ 1)2 .

Moreover, for any prior π ∈ Π the π-Bayes risk of db is

r(db, π) =
EπEPZ

TCZ − 2bTCEπp+ bTCb
(
√
n+ 1)2(7)

=
ν2(π)− 2bTCν1(π) + bTCb

(
√
n+ 1)2 .

Let the function r1 :M× Γ → [0,∞) be defined by

r1(b, π) := r(db, π).

Note that M and Γ are convex sets and M is compact. Moreover, for each
fixed π ∈ Γ , r1(b, π) is convex, continuous with respect to b ∈ M, and for
each fixed b ∈ M, r1(b, π) is concave (linear) with respect π ∈ Γ . This
means that all the assumptions of the Nikaido theorem (see Aubin (1980),
p. 217) are fulfilled and thus there exists a point b for which

sup
π∈Γ

r1(b, π) = inf
b∈M

sup
π∈Γ

r1(b, π) = sup
π∈Γ

inf
b∈M

r1(b, π).

The last equality implies that the Γ -minimax risk in D0 equals

inf
b∈M

sup
π∈Γ

r1(b, π) = sup
π∈Γ

inf
b∈M

r1(b, π) = sup
π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 ,(8)

because, for a fixed distribution π ∈ Γ , the convex function r1(b, π) of the
variable b attains its global minimum over M at the point b(π) = ν1(π).
Now it remains to prove that b = pΓ . Set, for simplicity,

r2(π) = ν2(π)− νT1 (π)Cν1(π).(9)

Let (πj) be a sequence of priors satisfying (3). Since the functions ν1(π)
and ν2(π) are linear in π, an easy calculation shows that for any π ∈ Γ and
0 < β < 1,

sup
π∈Γ

r2(π) ≥ r2(βπ + (1− β)πj) = βr2(π) + (1− β)r2(πj)

+ β(1− β)(ν1(πj)− ν1(π))TC(ν1(πj)− ν1(π)).

This implies that

sup
π∈Γ

r2(π) ≥ βr2(π)+(1−β) sup
π∈Γ

r2(π)+β(1−β)(pΓ−ν1(π))TC(pΓ−ν1(π)),
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because pΓ is a cluster point of the sequence (ν1(πj)), and limj→∞ r2(πj)
= supπ∈Γ r2(π) by (3). Therefore,

β sup
π∈Γ

r2(π) ≥ βr2(π) + β(1− β)(pΓ − ν1(π))TC(pΓ − ν1(π)),

and since β is positive,

sup
π∈Γ

r2(π) ≥ r2(π) + (1− β)(pΓ − ν1(π))TC(pΓ − ν1(π)).

Letting β → 0+, we can see by (9) that

sup
π∈Γ

r2(π) ≥ r2(π) + (pΓ − ν1(π))TC(pΓ − ν1(π))

= ν2(π)− 2pTΓCν1(π) + pTΓCpΓ ,

which implies by (7) that

sup
π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 ≥ ν2(π)− 2pTΓCν1(π) + pTΓCpΓ

(
√
n+ 1)2 = r(dΓ , π).

Because this is true for all π ∈ Γ , it follows from (8) that

sup
π∈Γ

r(dΓ , π) ≤ sup
π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 = inf

b∈M
sup
π∈Γ

r1(b, π)(10)

= inf
b∈M

sup
π∈Γ

r(db, π) = inf
d∈D0

sup
π∈Γ

r(d, π).

This implies that dΓ (Y n) is Γ -minimax if the class of estimators is restricted
to D0 of D.

To complete the proof we will construct a sequence (π∗j ) of priors from
Γ and a sequence (dπ∗j ) of π∗j -Bayes estimators for which

lim
j→∞

r(dπ∗j , π
∗
j ) = sup

π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 = sup

π∈Γ
r(dΓ , π).

Let (πj) be a sequence of priors from Γ satisfying (3) and let (Pj) be a
sequence of probability measures on (Y,B) such that

∧

A∈B
Pj(A) = Eπj (P (A)).

For each j ≥ 1 we denote by π∗j a Dirichlet prior process on (Y,B) with
parameter βj =

√
nPj . To prove that π∗j ∈ Γ we note first that by Ferguson

(1973) (Theorems 3 and 4),

Eπ∗j [EPZTCZ] = EPjZ
TCZ, Eπ∗j p = Eπ∗j [EPZ] = EPjZ.

Since by the definition of the probability measure Pj ,

EPjZ = Eπj [EPZ] = ν1(πj), EPjZ
TCZ = Eπj [EPZ

TCZ] = ν2(πj),
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we deduce that

ν1(π∗j ) = Eπ∗j [EPZ] = ν1(πj), ν2(π∗j ) = Eπ∗j [EPZTCZ] = ν2(πj).

This obviously implies that π∗j ∈ Γ , because πj ∈ Γ . Moreover, from Fergu-
son (1973) (example b), the π∗j -Bayes nonparametric estimator of p = EPZ
has the form

dπ∗j (Y n) =
√
n

n+
√
n
EPjZ +

n

n+
√
n

1
n

n∑

j=1

z(Yj) =
Xn +

√
nν1(πj)

n+
√
n

,

because EPjZ = ν1(πj). To calculate the π∗j -Bayes risk r(dπ∗j , π
∗
j ) we note

that dπ∗j (Y n) = db(Y n) ∈ D0 with b = ν1(πj). Thus, by (7),

r(dπ∗j , π
∗
j ) =

ν2(π∗j )− 2νT1 (πj)Cν1(π∗j ) + ν1
T (πj)Cν1(πj)

(
√
n+ 1)2

=
ν2(πj)− νT1 (πj)Cν1(πj)

(
√
n+ 1)2 ,

because ν1(π∗j ) = ν1(πj) and ν2(π∗j ) = ν2(πj). Therefore, by (10),

inf
d∈D

sup
π∈Γ

r(d, π) ≥ lim
j→∞

r(dπ∗j , π
∗
j ) = lim

j→∞
ν2(πj)− νT1 (πj)Cν1(πj)

(
√
n+ 1)2

= sup
π∈Γ

ν2(π)− νT1 (π)Cν1(π)
(
√
n+ 1)2 ≥ sup

π∈Γ
r(dΓ , π) ≥ inf

d∈D
sup
π∈Γ

r(d, π),

which implies that the estimator dΓ (Y n) is Γ -minimax and its Γ -minimax
risk is given by (6). This completes the proof of Theorem 1.

3. Generalization. In this section we present a slight generalization
of Theorem 1. Instead of assuming that the function z is bounded on Y,
we suppose that a weaker condition is fulfilled: supy∈Y ‖C1/2z(y)‖ < ∞,
where C1/2 is the square root of the matrix C, i.e. C1/2C1/2 = C. Then
the random vector

Z∗ := C1/2z(Y ) = C1/2Z

is bounded, which implies that for each affine estimator db ∈ D0 its risk
function R(db, P ) is bounded for P ∈ P. Let ν∗1(π) and ν∗2(π) denote the
first moments of EPZ∗ and EP (Z∗)TZ∗ = EP ‖Z∗‖2 with respect to a prior
π ∈ Π, i.e.

ν∗1(π) = Eπ(EPZ∗), ν∗2(π) = Eπ(EP ‖Z∗‖2),

and let (πj) be a sequence of priors from Γ for which
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lim
j→∞

(ν∗2(πj)− ‖ν∗1(πj)‖2) = sup
π∈Γ

(ν∗2(π)− ‖ν∗1(π)‖2).

Then, by the same arguments as in the previous section, the sequence
(ν∗1(πj)), where

ν∗1(πj) = Eπj (EPZ
∗), j ≥ 1,(11)

has a cluster point p∗Γ . Since p∗Γ belongs to the linear space generated by
the columns of the matrix C1/2, there exists a vector pΓ for which

C1/2pΓ = p∗Γ .(12)

The following theorem generalizes the results of the previous section.

Theorem 2. Suppose that supy∈Y ‖C1/2z(y)‖ < ∞. Then the Γ -mini-
max estimator of the unknown vector p under the loss function (1) has the
form

dΓ (Y n) =
Xn +

√
npΓ

n+
√
n

,(13)

where pΓ is any solution of (12). Moreover , the Γ -minimax risk for dΓ is

sup
π∈Γ

r(dΓ , π) = sup
π∈Γ

ν∗2(π)− ‖ν∗1(π)‖2
(
√
n+ 1)2 .(14)

Proof. Let the random vector X∗n be defined by

X∗n := C1/2Xn =
n∑

j=1

z∗(Yj).

As can easily be seen, it suffices to show that the decision rule d∗Γ (Y n) =
C1/2dΓ (Y n), which by (13) and (12) has the form

d∗Γ (Y n) =
X∗n +

√
np∗Γ

n+
√
n

,

is the Γ -minimax estimator of the vector p∗ = C1/2p = EPZ
∗ under the

loss function

L∗(d∗, P ) = (d∗ − p∗)T (d∗ − p∗) = ‖d∗ − p∗‖2.
This, however, can be easily deduced from Theorem 1. Moreover, since

∧

P∈P
L∗(d∗Γ , P ) = L(dΓ , P ),

the estimators d∗Γ and dΓ have the same risk functions, and (6) yields (14).

4. Example. Finding analytically the cluster point pΓ is not an easy
task. However, in the following example this can easily be done.
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Example. Suppose that the set Y is centrosymmetric about 0 and that

z(y) = −z(−y), y ∈ Y, (ν1, ν2) ∈ G ⇔ (−ν1, ν2) ∈ G.(15)

Let P− stand for the distribution of the random vector −Y , whenever Y
is distributed according to P . For any prior π ∈ Π we denote by π− its
modified version in which each probability distribution P chosen by π is
replaced by P−. The assumption (15) implies that π ∈ Γ ⇔ π− ∈ Γ ,
because

ν2(π−) = ν2(π), ν1(π−) = −ν1(π).

Now, let (πj) be a sequence of priors from Γ satisfying (3). Then for each
j ≥ 1, the prior πj = 1

2(πj + π−j ) belongs to Γ , because πj ∈ Γ , π−j ∈ Γ
and the set Γ is convex. Moreover, since ν2(πj) = ν2(πj) and ν1(πj) = 0,
we conclude that

ν2(πj)− νT1 (πj)Cν1(πj) = ν2(πj) ≥ ν2(πj)− νT1 (πj)Cν1(πj).

This implies that the sequence (πj) also satisfies (3). Therefore, the estima-
tor

dΓ (Y n) =
Xn

n+
√
n

is Γ -minimax, because pΓ = limj→∞ ν1(πj) = 0.
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