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THREE ADDITIVE SOLUTIONS OF
COOPERATIVE GAMES WITH A PRIORI UNIONS

Abstract. We analyze axiomatic properties of three types of additive
solutions of cooperative games with a priori unions structure. One of these
is the Banzhaf value with a priori unions introduced by G. Owen (1981),
which has not been axiomatically characterized as yet. Generalizing Owen’s
approach and the constructions discussed by J. Deegan and E. W. Packel
(1979) and L. M. Ruiz, F. Valenciano and J. M. Zarzuelo (1996) we define
and study two other solutions. These are the Deegan–Packel value with a
priori unions and the least square prenucleolus with a priori unions.

Each of known cooperative game solutions is usually constructed by
means of different methods with specific assumptions. In this paper we in-
vestigate a modification of three types of such solutions.

The first of these solutions, the Banzhaf value of a player, was introduced
by J. F. Banzhaf III (1965). It describes the average profit for a coalition
after co-opting the player. Numerous applications of this concept are now
known in the social and economic practice, because the relevant formulas
represent a good instrument to investigate the power of participants in col-
lective decision processes. In 1981 G. Owen constructed a modification of
this notion—the Banzhaf value with a priori unions. The main assumption
of this model is a partition of the set of players into nonempty disjoint
subsets called a priori unions or precoalitions. The Banzhaf value with a
priori unions was constructed on the basis of the “normal” Banzhaf value.
E. Lehrer (1988) suggested the first axiomatization of the Banzhaf value. It
is the unique solution with the following properties: dummy player, equal
treatment, amalgamation and additivity. An axiomatization theorem for the
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Banzhaf value with a priori unions has not been formulated yet. In this pa-
per we try to fill this gap. It is worth noting that this solution also satisfies
the balance axiom.

J. Deegan and E. W. Packel (1979) constructed another solution of a
cooperative game. The Deegan–Packel value can be interpreted as the sum
of average values of every coalition (containing a player) per its member.
That is, the larger the Deegan–Packel value of a given player, the greater
the worth of the player in the game. In the above-mentioned article an
axiomatization theorem (similar to the case of the Shapley value (L. S.
Shapley (1953)) was proved. The only difference between these solutions is
the fact that the sum of the Deegan–Packel values of all players is not equal
to the value of the full coalition (i.e. the one which contains all players of
the game). Instead, it has a special property—this sum is equal to the sum
of the characteristic function values of all coalitions of the game.

Recently several types of solutions of cooperative games based on the
excess vector (for example the prenucleolus and nucleolus (A. Sobolev (1975)
and D. Schmeidler (1969) respectively) were constructed. But the basis of
the considerations presented in this article is another solution introduced
by L. M. Ruiz, F. Valenciano and J. M. Zarzuelo (1996) by application of
the notion of excess vector, i.e. the least square prenucleolus. It assigns to
a transfer utility cooperative game some preimputation, which is minimal
with respect to the least square order relation. The authors of the cited
paper have proved that the least square prenucleolus is the unique solution
which satisfies the conditions of efficiency, additivity, inessential game and
average marginal contribution monotonicity. The least square prenucleolus
is also an additive normalization of the Banzhaf value.

In the present article Owen’s construction of the modified Banzhaf value
is extended to any solution of a cooperative game. By means of this idea,
we define a Deegan–Packel value and a least square prenucleolus, both with
a priori unions. We study the fundamental properties of these solutions and
prove their axiomatizations.

I. Definitions and fundamental facts. Let n be a natural number.
An n-person transferable utility cooperative game is uniquely defined by the
set of players N={1, . . . , n} and a function v : 2N→R with v(∅)=0, called
the characteristic function of the game. Therefore we will next write briefly
“n-person game v”. An n-person game v is called additive if v(S ∪ K) =
v(S) + v(K) for any disjoint nonempty sets S,K ⊆ N .

An n-dimensional vector x = (x1, . . . , xn) ∈ Rn is called a preimputation
if

n∑

i=1

xi = v(N).
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The set of all preimputations of v will be denoted by P, and the (2n − 1)-
dimensional vector space of all n-person games will be denoted by GN .

A solution is defined to be a function ϕ : GN → Rn, which assigns to
each game v a vector from Rn.

The common feature of all solutions considered below is additivity:

ϕ(v + w) = ϕ(v) + ϕ(w)

for any two n-person cooperative games v, w, where (v+w)(S) = v(S)+w(S)
for any S ⊆ N .

Define
x(S) =

∑

i∈S
xi for any S ⊆ N.

Denote by S1, S2, . . . , S2n all the subsets ofN . Let x = (x1, . . . , xn) ∈ Rn.
A vector r(v, x) ∈ R2n with coordinates

ri(v, x) = v(Si)− x(Si)

for i = 1, 2, . . . , 2n is called the excess vector.

Definition 1 (J. F. Banzhaf III (1965)). The Banzhaf value of player i
of game v is defined as

Bi(v) =
1

2n−1

∑

S⊆N
[v(S ∪ {i})− v(S)] for any i ∈ N.

Definition 2 (E. Lehrer (1988)). Amalgamation of any two different
players a, b of an n-person game v is a transformation from game v into
game v(ab) with the set of players (N \ {a, b}) ∪ {p}, where p denotes a
player representing the coalition {a, b}. The characteristic function of this
game is defined to be

v(ab)(K) =
{
v(K) if p 6∈ K,
v((K \ {p}) ∪ {a, b}) if p ∈ K,

for any set K ⊆ (N \ {a, b}) ∪ {p}.
Here is the first axiomatization of the Banzhaf value, given in 1988.

Theorem 1 (E. Lehrer (1988)). The solution

ϕ(v) = B(v) = (B1(v), . . . , Bn(v))

is the unique solution on GN which satisfies the following conditions:

(i) If i ∈ N and v(S ∪ {i}) = v(S) + v({i}) for any S ⊆ N \ {i} then
ϕi(v) = v({i}) (dummy player axiom).

(ii) If i, j ∈ N , i 6= j and v(S ∪{i}) = v(S ∪{j}) for any S ⊆ N \ {i, j}
then ϕi(v) = ϕj(v) (equal treatment property).
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(iii) For any two different players i, j ∈ N ,

ϕp(v(ij)) = ϕi(v) + ϕj(v)

(amalgamation axiom).
(iv) Additivity.

Definition 3. The Deegan–Packel value of any player i ∈ N of game v
is defined by the formula

DPi(v) =
∑

K⊆N
i∈K

v(K)
k

where k = card(K) for any K ⊆ N .

Let σ be a permutation of the set N . Then we define σv(σK) = v(K)
for any K ⊆ N , where σ(K) = {σ(i) : i ∈ K}. A player i ∈ N is called a
zero-player if for any K ⊆ N , v(K) = 0 whenever i ∈ K. Below we give an
axiomatization of solution described in Definition 3.

Theorem 2 (J. Deegan and E. W. Packel (1979)). The solution ϕ(v) =
DP(v) = (DP1(v), . . . ,DPn(v)) is the unique solution on GN which satisfies
the following conditions:

(i) ϕi(v) = 0⇔ i is a zero-player (zero-player axiom).
(ii) For any permutation σ of the set N and every i ∈ N we have

ϕσ(i)(σv) = ϕi(v) (symmetry).
(iii)

∑
i∈N ϕi(v) =

∑
S⊆N v(S).

(iv) Additivity.

Definition 4 (L. M. Ruiz, F. Valenciano and J. M. Zarzuelo (1996)).
The least square prenucleolus of game v is a preimputation x of this game
such that

2n∑

i=1

(ri(v, x)− r(v, x))2 = min
y∈P

2n∑

i=1

(ri(v, y)− r(v, y))2

where r(v, x) denotes the arithmetic mean of the coordinates of r(v, x). The
ith coordinate of this solution is said to be the least square prenucleolity
value and is denoted by Li(v), i = 1, . . . , n.

L. M. Ruiz et al. (1996) proved that for any n-person game v and any
player i ∈ N the least square prenucleolus can be expressed by the formula

(1) Li(v) =
v(N)
n

+
1

n2n−2

(
ngi(v)−

∑

d∈N
gd(v)

)
,



Games with a priori unions 73

where gi(v) =
∑
K⊆N, i∈K v(K), or equivalently

(1a) Li(v) =
v(N)
n

+
1

n2n−2

( ∑

K⊆N
i∈K

(n− k)v(K)−
∑

K⊆N
i6∈K

kv(K)
)

as well as

Li(v) = Bi(v) +
v(N)−∑n

d=1 Bd(v)
n

.

This last equality shows that the least square prenucleolity value is an
additive normalization of the Banzhaf value.

In L. M. Ruiz, F. Valenciano and J. M. Zarzuelo (1996) the following
axiomatic theorem was proved:

Theorem 3. The solution ϕ(v) = L(v) = (L1(v), . . . , Ln(v)) is the
unique solution on GN which satisfies the following axioms:

(i) ϕ(v) is a preimputation of the game v (efficiency).
(ii) Additivity.
(iii) For any additive game v and any player i of this game, ϕi(v) =

v({i}) (inessential game property).
(iv) For any players i, j of a game v, gi(v) ≤ gj(v) implies ϕi(v) ≤ ϕj(v)

(average marginal contribution monotonicity).

Now we will present a generalization of the construction of solution with
a priori unions proposed by G. Owen (1977 and 1981) and applied to define
the Shapley and the Banzhaf values with a priori unions, respectively. But
first we define the a priori unions structure.

Definition 5. Let m be a natural number not greater than n. A system
of m subsets of N , T = (T1, . . . , Tm), is called an a priori unions structure
if it is a division of the set N , i.e. ∅ 6= Ti ⊆ N for any i ∈ M = {1, . . . ,m},
Ti ∩ Tj = ∅ whenever i 6= j, i, j ∈ M and

⋃m
j=1 Tj = N . The sets Ti, i =

1, . . . ,m, are said to be a priori unions.

Definition 6. The division game based on the cooperative game v is
a game v∗ whose players are the a priori unions Ti of the structure T (or,
equivalently, elements i ∈M), and its characteristic function is given as

v∗(S) = v
( ⋃

c∈S
Tc

)
for any S ⊆M.

Construction 1. Let ϕ be a solution on GN for any natural number n.
Suppose that for the n-person cooperative game v an a priori unions struc-
ture T is defined. A solution ϕ(v, T ) with a priori unions can be constructed
in two steps:
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Step 1. Let j ∈M , let K be a subset of Tj , and set K ′ = Tj\K. Consider
the game vT,K whose players are the a priori unions of T and

vT,K(S) = v
( ⋃

c∈S
Tc \K ′

)
for any S ⊆M.

Let vj be a game with the set of players Tj such that vj(K) = ϕj(vT,K)
for any set K ⊆ Tj .

Step 2. We construct a solution ϕ(vj) of the game vj .
The solution ϕ(v, T ) = (ϕ1(v, T ), . . . , ϕn(v, T )), where ϕi(v, T ) = ϕi(vj)

for every i ∈ Tj and j ∈M , is called the solution ϕ with a priori unions.
Note that if ϕ(v) is a preimputation of any n-person game v, then ϕ(v, T )

is also a preimputation of this game. Indeed, in this case, ϕ(vj) is a preim-
putation of vj for any j ∈M and hence

∑

i∈Tj
ϕi(v, T ) =

∑

i∈Tj
ϕi(vj) = vj(Tj) = ϕj(vT,Tj ) = ϕj(v∗).

Thus
n∑

i=1

ϕi(v, T ) =
∑

j∈M

∑

i∈Tj
ϕi(v, T ) =

∑

j∈M
ϕj(v∗) = v∗(M) = v(N).

Definition 7 (G. Owen (1981)). The ith coordinate of the solution with
a priori unions (see Construction 1) for

ϕ(v) = B(v) = (B1(v), . . . , Bn(v))

is said to be the Banzhaf value with a priori unions of player i ∈ Tj of
game v. It is denoted by Bi(v, T ) and can be expressed by the formula

(2) Bi(v, T ) =
1

2m−1

1
2tj−1

∑

S⊆M

∑

K⊆Tj
[v(QS ∪K ∪ {i})− v(QS ∪K)]

where QS =
⋃
c∈S Tc for any S ⊆M .

Definition 8. The ith coordinate of the solution with a priori unions
for ϕ(v) = DP(v) = (DP1(v), . . . ,DPn(v)) is said to be the Deegan–Packel
value with a priori unions of player i ∈ Tj of game v and is denoted by
DPi(v, T ).

Definition 9. The ith coordinate of the solution with a priori unions
for ϕ(v) = L(v) = (L1(v), . . . , Ln(v)), i.e. for the least square prenucleolus,
is said to be the least square prenucleolity value with a priori unions of
player i ∈ Tj of game v and is denoted by Li(v, T ). The vector L(v, T ) =
(L1(v, T ), . . . , Ln(v, T )) is called the least square prenucleolus with a priori
unions of game v.
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II. An axiomatization of the Banzhaf value with a priori unions.
By application of the axioms in Theorem 1 (after some modification) and
introduction of a new important balance property one can formulate a con-
sistent system of axioms which characterizes the Banzhaf value with a priori
unions.

In the case of the solution with a priori unions the additivity axiom is
formulated as follows:

Additivity with a priori unions:

ϕ(v, T ) + ϕ(w, T ) = ϕ(v + w, T )

for any n-person games v, w with the same a priori unions structure T .
Set T(i) = (T1, . . . , Tj−1, Tj \ {i}, Tj+1, . . . , Tm, {i}) for every i ∈ Tj and

j ∈M .

Theorem 4. The solution ϕ with a priori unions on GN with given
structure T = (T1, . . . , Tm) satisfies

ϕ(v, T ) = B(v, T ) = (B1(v, T ), . . . , Bn(v, T ))

if and only if the following conditions hold for any v ∈ GN :

(i) If i ∈ N and v(S ∪ {i}) = v(S) + v({i}) for any S ⊆ N \ {i} then
ϕi(v, T ) = v({i}).

(ii) If j ∈M = {1, . . . ,m}, a, b ∈ Tj , a 6= b and v(S∪{a}) = v(S∪{b})
for every S ⊆ N \ {a, b} then ϕa(v, T ) = ϕb(v, T ).

(iii) For any j ∈M and a, b ∈ Tj ,
ϕa(v, T )− ϕa(v, T(b)) = ϕb(v, T )− ϕb(v, T(a)).

(iv) For any j ∈M and two different players a, b ∈ Tj ,
ϕp(v(ab), T[ab]) = ϕa(v, T ) + ϕb(v, T ),

where T[ab] = (T1, . . . , Tj−1, Tj[ab], Tj+1, . . . , Tm), Tj[ab] = Tj \ {a, b} ∪
{{a, b}}.

(v) Additivity with a priori unions.

Axiom (i) (dummy player axiom) is identical as in the case of the “nor-
mal” Banzhaf value (see Theorem 2); equal treatment and amalgamation
properties ((ii) and (iv)) are here restricted to the members of the same a
priori union. A new condition is (iii), called the balance property. This ax-
iom reflects the fact that breaking up cooperation between two individuals
should affect both individuals equally.

The balance axiom was formulated by M. Vázquez-Brage, A. van den
Nouweland and I. Garćıa-Jurado (1997), who used it to axiomatize the Shap-
ley value in “airport” games (a special case of cooperative games).
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Proof of Theorem 4. Let v be any n-person cooperative game with the a
priori unions structure T . The solution B(v, T ) = (B1(v, T ), . . . , Bn(v, T ))
satisfies axioms (i)–(v). The proof of the dummy player, equilibrium, balance
and additivity properties follows directly from formula (2).

Suppose that j ∈M and two different players a, b ∈ Tj have been amal-
gamated. Then from Theorem 1 and the construction of the Banzhaf value
with a priori unions we obtain

Ba(v, T ) +Bb(v, T ) = Ba(vj) +Bb(vj) = Bp(vj(ab)).

Note that Bp(vj(ab)) = Bp(v(ab)j), because the characteristic functions
of both games are identical. Thus

Ba(v, T ) +Bb(v, T ) = Bp(vj(ab)) = Bp(v(ab)j) = Bp(v(ab), T[ab]).

In this way we proved that the amalgamation axiom is satisfied by the
Banzhaf value with a priori unions.

Now we must prove the sufficiency of properties (i)–(v). Let T0 and T#

be the trivial a priori unions structures, i.e. T0 consists only of one-player
a priori unions and in T# the only a priori union is the set of all players.
Then γ(v, T0) = γ(v, T#) = γ(v) for any solution γ of an n-person game v
with a priori unions structure T .

Suppose that two different solutions ϕ(1)(v, T ) and ϕ(2)(v, T ) of game v
with structure T satisfy axioms (i)–(v). Backward induction on the number
of a priori unions (i.e. on m) and the forward induction on the number of
members of the given a priori union Tj ∈ T (i.e. on tj) will be used. From
properties (i), (ii), (iv), (v) and Theorem 1 it follows that ϕ(1)(v, T0) =
ϕ(2)(v, T0) = B(v, T0) = B(v).

Suppose that for any a priori unions structure T with m+ 1 unions we
have the equality ϕ(1)(v, T ) = ϕ(2)(v, T ). We will prove that if the number
of a priori unions is m then the solutions ϕ(1)(v, T ) and ϕ(2)(v, T ) are also
identical.

Let Tj be an a priori union chosen from T for some j ∈ M . Two cases
are possible:

1) card(Tj) = tj = 1. From the above it follows that ϕ(1)(v, T ) =
ϕ(1)(v∗, T0) = ϕ(2)(v∗, T0) = ϕ(2)(v, T ).

2) tj ≥ 2. Let a, b be any two different players of Tj . Then by property
(iii) for k = 1, 2 we have

ϕ(k)
a (v, T )− ϕ(k)

a (v, T(b)) = ϕ
(k)
b (v, T )− ϕ(k)

b (v, T(a)).

By the induction hypothesis,

ϕ(1)
a (v, T )− ϕ(2)

a (v, T ) = ϕ
(1)
b (v, T )− ϕ(2)

b (v, T ).
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This means that there exists a constant λ such that for any a ∈ Tj ,
(3) ϕ(1)

a (v, T )− ϕ(2)
a (v, T ) = λ.

Now we argue by induction on tj . When tj = 2, then as a result of
amalgamation of players a, b we obtain

ϕ(1)
p (v(ab), T[ab]) = ϕ

(1)
j (v∗(ab), T0) = ϕ

(2)
j (v∗(ab), T0) = ϕ(2)

p (v(ab), T[ab]);

and by (ii),

ϕ(1)
a (v, T )− ϕ(2)

a (v, T ) + ϕ
(1)
b (v, T )− ϕ(2)

b (v, T ) = 0,

hence λ = 0. It follows that in this case ϕ(1)(v, T ) = ϕ(2)(v, T ).
3) If the cardinality of Tj is tj − 1, then for any a ∈ Tj ,

ϕ(1)
a (v, T ) = ϕ(2)

a (v, T ).

Suppose that card(Tj) = tj ≥ 3 and a, b, c are three different players
which belong to Tj . Thus, by (iii) (and for any k = 1, 2),

ϕ(k)
p (v(ab), T[ab])−ϕ(k)

p (v(ab), T[ab](c)) = ϕ(k)
c (v(ab), T[ab])−ϕ(k)

c (v(ab), T[ab](p)).

Therefore, by the induction hypothesis,

ϕ(1)
p (v(ab), T[ab])− ϕ(2)

p (v(ab), T[ab]) = ϕ(1)
c (v(ab), T[ab])− ϕ(2)

c (v(ab), T[ab]).

Hence there exists a constant µ such that for every player c in Tj\{a, b}∪{p}
we have

ϕ(1)
c (v(ab), T[ab])− ϕ(2)

c (v(ab), T[ab]) = µ.

The induction hypothesis implies that µ = 0. Hence and from (iv) we have

ϕ(1)
a (v, T ) + ϕ

(1)
b (v, T ) = ϕ(1)

p (v(ab), T[ab]) = ϕ(2)
p (v(ab), T[ab])

= ϕ(2)
a (v, T ) + ϕ

(2)
b (v, T )

and hence λ = 0 by (3). Finally, ϕ(1)(v, T ) = ϕ(2)(v, T ). Thus there ex-
ists a unique solution of game v with the a priori unions structure T ,
which satisfies conditions (i)–(v). By the beginning of this proof this so-
lution is represented by the n-dimensional vector whose coordinates are the
Banzhaf values with a priori unions of the particular players of game v, i.e.
ϕ(1)(v, T ) = ϕ(2)(v, T ) = B(v, T ). In this way the proof of Theorem 4 is
complete.

III. Properties of the Deegan–Packel value with a priori unions.
We adopt the convention that the cardinality of a set is denoted by the
corresponding lower case letter, e.g. card(K) = k etc.

According to Construction 1, the Deegan–Packel value with a priori
unions of any player i which belongs to the a priori union Tj , j ∈ M ,
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can be expressed by the formula

DPi(v, T ) = DPi(vj) =
∑

K⊆Tj
i∈K

vj(K)
k

=
∑

K⊆Tj
i∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K)
ks

.

In our axiomatization of this solution (similarly to the case of the Shapley
value with a priori unions, cf. G. Owen (1977)) symmetry axioms of two
types are formulated: symmetry under permutation of the players of N and
under permutation of the a priori unions structure.

Theorem 5. A solution ϕ with a priori unions on GN with given struc-
ture T = (T1, . . . , Tm) satisfies

ϕ(v, T ) = DP(v, T ) = (DP1(v, T ), . . . ,DPn(v, T ))

if and only if the following conditions hold for any v ∈ GN :

(i) If i ∈ N is a zero-player then ϕi(v, T ) = 0 (zero-player axiom).
(ii) For every constant c ∈ R and for any i ∈ N , ϕi(cv, T ) = cϕi(v, T ),

where (cv)(K) = cv(K) for any K ⊆ N .
(iii) For every permutation σ of N and for any i ∈ N , ϕi(v, T ) =

ϕσ(i)(σv, σT ), where σT = (σT1, . . . , σTm) (symmetry with respect to play-
ers).

(iv) For every permutation % of M and for any i ∈ N , ϕi(v, T ) =
ϕi(v, T%), where T% = (T%(1), . . . , T%(m)) (symmetry with respect to a pri-
ori unions).

(v) If ω is a game with the set of players N such that ω(QS \Tj ∪K) =
sk · v(QS \ Tj ∪K) for all ∅ 6= S ⊆M , ∅ 6= K ⊆ Tj , and j ∈M then

ϕi(ω, T ) =
∑

S⊆M
j∈S

∑

K⊆Tj
i∈K

v(QS \ Tj ∪K) for every i ∈ Tj .

(vi) Additivity with a priori unions.

This system of axioms is similar to the set of axioms for the Shapley value
with a priori unions (cf. G. Owen (1977)). The main difference is axiom (iv).
Because in Construction 1 the coalitions of non-trivial subsets of different a
priori unions (i.e. P1 ∪ . . . ∪ Pm, where Pj  Tj , j = 1, . . . ,m, and at least
two sets of P1, . . . , Pm are non-empty) are ignored, the Deegan–Packel value
with a priori unions for all players must also depend only on the worth of
the sets QS \K ′, S ⊆M , K ⊆ Tj , j ∈M . Axiom (v) also shows that in the
game in which the worth of a coalition depends only on its cardinality, the
analyzed solution depends only on the real value of each player and the a
priori union which includes him.

Proof of Theorem 5. The solution DP(v, T ) satisfies all the above-men-
tioned axioms. Conversely, suppose that ϕ(v, T ) is a solution of an n-person



Games with a priori unions 79

game v with a priori unions structure T which satisfies axioms (i)–(v). Note
(cf. G. Owen (1977)) that any game v can be uniquely represented as a
linear combination of the n-person games wR (R ⊆ N) with the same a
priori unions structure T and the characteristic function defined as

wR(K) =
{

1 if K = R,
0 if K 6= R,

for any K ⊆ N.

We can restrict ourselves to those games wR in which R = QS \ Tj ∪K
for any ∅ 6= S ⊆ M , ∅ 6= K ⊆ Tj , and j ∈ M . In other cases we have
ϕi(wR, T ) = 0 for any i ∈ N , by (i)–(iv).

So, let j ∈ S and R = QS \Tj ∪K for any fixed ∅ 6= S ⊆M , ∅ 6= K ⊆ Tj ,
and j ∈ M (if j 6∈ S then R = QS∪{j} \ Tj ∪K). Then by (i), (iii) and (iv)
there exist constants αK , βS such that

ϕi(wR, T ) =
{
αKβS if i ∈ K,
0 if i 6∈ K,

for any i ∈ Tj ,

and ϕi(wR, T ) = 0 for any i ∈ N \ Tj .
Consider a game ω with the set of players N and with the a priori unions

structure T , whose characteristic function is defined as follows:

ω(U) =
{
z · p ·wR(U) if U = QZ \ Tj ∪ P, ∅ 6= Z ⊆M, j ∈ Z, P ⊆ Tj ,
0 otherwise.

By (v),

ϕi(ω, T ) =
∑

Z⊆M
j∈Z

∑

P⊆Tj
i∈P

wR(QZ \ Tj ∪ P ) = 1.

On the other hand, we have ω(U) = sk ·wR(U) for any U ⊆ N and by (ii),

ϕi(ω, T ) = ϕi(sk · wR, T ) = sk · ϕi(wR, T ) = sk · αKβS
for any i ∈ Tj , j ∈M . Therefore

αKβS =
1
sk

and for any constant c and game cwR, where

cwR(U) =
{
c if U = R,
0 if U 6= R,

for any U ⊆ N,

we have

ϕi(cwR, T ) =
{
c/(sk) if i ∈ K and j ∈ S,
0 if i 6∈ K or j 6∈ S,

for any i ∈ Tj ,

ϕi(cwR, T ) = 0 for any i ∈ N \ Tj .
In the other cases ϕi(cwR, T ) = 0 for any i ∈ N .
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By the additivity axiom (vi) we obtain finally

ϕi(v, T ) = ϕi

( ∑

R⊆N
v(R)wR, T

)

=
∑

S⊆M
j∈S

∑

K⊆Tj
i∈K

v(QS \ Tj ∪K)ϕi(wQS\Tj∪K , T )

=
∑

S⊆M
j∈S

∑

K⊆Tj
i∈K

v(QS \ Tj ∪K)
sk

= DPi(v, T )

for any i ∈ Tj and j ∈M .

On the basis of the above-mentioned results we can formulate two re-
marks. First, the solution DP(v, T ) satisfies the balance axiom. Namely, for
any a, b ∈ Tj and j ∈M we have

DPa(v, T )−DPa(v, T(b))

=
∑

K⊆Tj
a∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K)
sk

−
∑

K⊆Tj\{b}
a∈K

∑

S⊆M•
j∈S

v(QS \ (Tj \ {b}) ∪K)
sk

=
∑

K⊆Tj
a,b∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K)
sk

−
∑

K⊆Tj
a,b∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K)
(s+ 1)(k − 1)

=
∑

K⊆Tj
a,b∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K) ·
(

1
sk
− 1

(s+ 1)(k − 1)

)

=
∑

K⊆Tj
b∈K

∑

S⊆M
j∈S

v(QS \ Tj ∪K)
sk

−
∑

K⊆Tj\{a}
b∈K

∑

S⊆M•
j∈S

v(QS \ (Tj \ {a}) ∪K)
sk

= DPb(v, T )−DPb(v, T(a)),

where T(i) = (T1, . . . , Tj−1, Tj(i), Tj+1, . . . , Tm, Tm+1), Tj(i) = Tj \{i}, Tm+1

= {i}, i = a, b, M• = {1, . . . ,m+ 1}.
In the case of the “normal” Deegan–Packel value axiom (iv) is equivalent

to the following property: if ϑ is a game with the set of players N such that
ϑ(S) = s · v(S) for any S ⊆ N , then

ϕi(ϑ) =
∑

S⊆N
i∈S

v(S) for any i ∈ N.
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This property seems weaker than axiom (iii) of Theorem 2, because it
concerns only some specifically defined type of games.

IV. An axiomatic characterization of the least square prenu-
cleolus with a priori unions. Now we will present the most important
properties of the least square prenucleolus with a priori unions, which are
necessary to formulate the axiomatic theorem regarding this solution.

Lemma 1. For any a priori union Tj which belongs to the structure T
and any i ∈ Tj the least prenucleolity value of player i can be expressed as:

(4) Li(v, T ) =
v(N)
mtj

+
1

mtj2m−2

[
mgj(v∗)−

∑

c∈M
gc(v∗)

]

+
1

tj2tj−2

×
[
tj
∑

K⊆Tj
i∈K

(
v(N \ Tj ∪K)

m
+

1
m2m−2

(
mgj(vT,K)−

∑

c∈M
gc(vT,K)

))

−
∑

i∈Tj

∑

K⊆Tj
i∈K

(
v(N \ Tj ∪K)

m
+

1
m2m−2

(
mgj(vT,K)−

∑

c∈M
gc(vT,K)

))]

where tj = card(Tj) for any j ∈M .

Proof. The above formula can be obtained from formula (1) applied to
game vj :

Li(vj) =
vj(Tj)
tj

+
1

tj2tj−2

(
tjgi(vj)−

∑

i∈Tj
gi(vj)

)
,

where
gi(vj) =

∑

K⊆Tj
i∈K

vj(K).

Next we replace the values vj(K) for any K ⊆ Tj with the formula
calculated also on the basis of (1):

Lj(vT,K) =
vT,K(M)

m
+

1
m2m−2

(
mgj(vT,K)−

∑

j∈M
gj(vT,K)

)
.

This is the least square prenucleolity value of player j of game vT,K .

Lemma 2. For any player i ∈ N of an additive game v with a priori
unions structure T , Li(v, T ) = v({i}).
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Proof. If v is an additive game, then so is vT,K (for any K ⊆ Tj and
any j ∈ M). Hence from Theorem 3, Lj(vT,K) = vT,K({j}) = v(K). Thus
vj(K) = v(K), and vj is also an additive game. Finally, it follows that
Li(v, T ) = vj({i}) = v({i}).

Theorem 6. The least square prenucleolus with a priori unions is the
unique solution ϕ with a priori unions on GN with given structure T =
(T1, . . . , Tm) which satisfies the following conditions for every v ∈ GN :

(i) ϕ(v, T ) is a preimputation of game v (efficiency).
(ii) Additivity with a priori unions.
(iii) For any permutation σ of N and all i ∈ N , ϕi(v, T ) = ϕσ(i)(σv, σT ).
(iv) For any permutation % of M and for any i ∈ N , ϕi(v, T ) = ϕi(v, T%).
(v) If v is an additive game then ϕi(v, T ) = v({i}) for any i ∈ N .

Proof. The least square prenucleolus with a priori unions satisfies axioms
(i)–(v). This is a consequence of the relevant properties of the “normal” least
square prenucleolus as well as of Construction 1 and Lemmas 1 and 2.

Suppose that a solution ϕ(v, T ) satisfies (i)–(v). Define

ψj =
∑

i∈Tj
ϕi(v, T ) for any j ∈M.

Because by (i), ψ = (ψ1, . . . , ψm) is a preimputation of v∗, it can be under-
stood as a solution of game v∗, and denoted by ψ(v∗)=(ψ1(v∗), . . . , ψm(v∗)).

For any R ⊆ N consider the n-person game wR with a priori unions
structure T whose characteristic function is defined as follows:

wR(K) =
{

1 if R = K,
0 if R 6= K,

for any K ⊆ N.

As mentioned in the proof of Theorem 5, every n-person game v with a priori
unions structure T can be uniquely represented as a linear combination of
the games wR.

In our case the considerations can be restricted to those games wR for
which R = QS \ Tj ∪ K, K ⊆ Tj and S ⊆ M = {1, . . . ,m} (in the other
cases, from (i), (iii) and (iv) we obtain ϕi(wR, T ) = 0 for any i ∈ N). Note
that for any R ⊆ N and any i ∈ N \ Tj we have ϕi(wR, T ) = 0.

Thus from (i) and (iv) it follows that there exists a non-negative constant
ξS such that if R 6= N then

ψj((wR)∗) =





ξS
s

if j ∈ S,

−ξS
m− s if j 6∈ S,

and ψj((wN )∗) = 1/m for any j ∈M . Note that ξS = 0 if S = ∅. Therefore
from the additivity axiom we conclude that for any two disjoint subsets S1
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and S2 of M we have the equality

ψj((wQS1 )∗ + (wQS2 )∗) = ψj((wQS1 )∗) + ψj((wQS2 )∗)

=





ξS1

s1
− ξS2

m− s2
if i ∈ S1,

ξS2

s2
− ξS1

m− s1
if i ∈ S2.

By symmetry we have ψj1((wQS1 )∗+(wQS2 )∗) = ψj2((wQS1 )∗+(wQS2 )∗)
for all jp ∈ Sp, p = 1, 2, so that ξS1/s1−ξS2/(m−s2) = ξS2/s2−ξS1/(m−s1)
and

(5) ξS1/(s1(n− s1)) = ξS2/(s2(m− s2)).

This relation holds for any two nonempty coalitions different from M . If
S1∩S2 6= ∅ and S1∪S2 6= M then (5) applies to S1 and M \(S1∪S2) as well
as to S2 and M \ (S1 ∪ S2), and hence to S1, S2. In the case of S1 ∩ S2 6= ∅
and S1 ∪ S2 = M , the relation (5) applies to disjoint sets S1 and M \ S1 as
well as to S2 and M \ S2, and therefore to M \ S1 and M \ S2, as well as to
S1 and S2. Define ξ = ξS/(s(m− s)). Thus

ψj(v∗) = ψj

( ∑

S⊆M
v∗(S) · (wS)∗

)
=
∑

S⊆M
v∗(S)ψj((wS)∗)

= v∗(M)ψj((wN )∗) +
∑

S⊂M
j∈S

ξS
s
v∗(S)−

∑

S⊂M
j 6∈S

ξS
m− s v

∗(S)

=
v∗(M)
m

+ ξ
( ∑

S⊂M
j∈S

(m− s) · v∗(S)−
∑

S⊂M
j 6∈S

s · v∗(S)
)
.

Consider the additive game v∗. Then from (v) we conclude that ξ =
1/(m2m−2) and

(6)
∑

i∈Tj
ϕi(v, T ) = Lj(v∗) for every j ∈M.

From (ii) and (iii) it follows that there exist positive constants αK , βS
such that if S,K 6= ∅, S 6= M , K 6= Tj then

ϕi(wR, T ) =





αK
k

βS
s

if i ∈ K, j ∈ S,

−αK
tj − k

βS
s

if i 6∈ K, j ∈ S.
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In particular, if K 6= ∅, Tj and S = M then

ϕi(wR, T ) =





αK
mtj

if i ∈ K,

−αK
m(tj − k)

if i 6∈ K.

If K = ∅ and S \ {j} 6= ∅ or if K = Tj and S 6= M then

(7) ϕi(wR, T ) =





βS
stj

if j ∈ S, K = Tj ,

βS∪{j}
(s+ 1)tj

if j 6∈ S, K = Tj ,

−βS
(m− s)tj

if j 6∈ S, K = ∅,

−βS\{j}
(m− s− 1)tj

if j ∈ S, K = ∅.

Note moreover that if S = M and K = Tj then ϕi(wR, T ) = 1/(mtj).
Of course, we have ϕi(wR, T ) = 0 if R = ∅.

Consider two sets: R1 = QS \ Tj ∪K1, R2 = QS \ Tj ∪K2, where S 6= ∅,
Ki 6= ∅, i = 1, 2, K1 ∩K2 = ∅. Thus, by additivity with a priori unions,

ϕi(wR1 + wR2 , T ) = ϕi(wR1 , T ) + ϕi(wR2 , T ) for any i ∈ Tj
and hence

ϕi(wR1 + wR2 , T ) =





αK1βS
k1s

+
−αK2βS
(tj − k2)s

if i ∈ K1, j ∈ S,

−αK1βS
(tj − k1)s

+
αK2βS
k2s

if i ∈ K2, j ∈ S.

From (ii) and (iii) it follows that

(8) ϕi1(wR1 + wR2 , T ) = ϕi2(wR1 + wR2 , T ) for ip ∈ Kp, p = 1, 2.

From (6) and (7) we conclude that

βS =
1

m2m−2 s(m− s) for any S ⊆M.

In this way

(9) βS1/(s1(m− s1)) = βS2/(s2(m− s2)) for any S1, S2 ⊆M.

Note that from (8) and (9) we have

βS
s

(
αK1

k1
+

αK1

tj − k1

)
− βS

s

(
αK2

tj − k2
+
αK2

k2

)
= 0 for j ∈ S.
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We know from (9) that βS/(s(m−s)) is independent of the set S. Define
β = βS/(s(m− s)). Since β = βS/(s(m− s)), we obtain

βm

(
αK1

k1
+

αK1

tj − k1

)
= βm

(
αK2

tj − k2
+
αK2

k2

)

and therefore

(10) αK1/(k1(tj − k1))=αK2/(k2(tj − k2)) for any disjoint K1,K2⊆Tj .
Hence, (10) holds for any subsets K1, K2 of Tj . Indeed, if K1 ∩K2 6= ∅

and K1 ∪K2 6= Tj then (10) applies to K1 and Tj \ (K1 ∪K2), to K2 and
Tj \ (K1 ∪ K2), and hence to K1, K2. In the case of K1 ∩ K2 6= ∅ and
K1 ∪K2 = Tj , the relation (10) holds for the disjoint sets K1 and Tj \K1

as well as for K2 and Tj \K2, and hence for Tj \K1 and Tj \K2, and for
K1 and K2. Set α = αK/(k(tj − k)).

One can easily check that ϕ(cwR, T ) = cϕ(wR, T ) for any constant c.
Finally,

ϕi(v, T ) = ϕi

( ∑

R⊆N
v(R)wR, T

)
=
∑

R⊆N
v(R)ϕi(wR, T )(11)

=
v(N)
tjm

+
1
tj
β
( ∑

S⊆M
j∈S

(m− s)v(QS)−
∑

S⊆M
j 6∈S

sv(QS)
)

+ α

[ ∑

K⊆Tj
i∈K

(tj − k)
(
v(N \ Tj ∪K)

m

+ β
( ∑

S⊆M
j∈S

(m− s)v(QS \K ′)−
∑

S⊆M
j 6∈S

sv(QS \K ′)
))

−
∑

K⊆Tj
i6∈K

k

(
v(N \ Tj ∪K)

m

+ β
( ∑

S⊆M
j∈S

(m− s)v(QS \K ′)−
∑

S⊆M
j 6∈S

sv(QS \K ′)
))]

for any i ∈ Tj and j ∈M . We know that (cf. (6) and (9))

(12) β =
1

m2m−2 .

According to (11), (12) and condition (v) we can calculate that

α =
1

tj2tj−2 .
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The proof of sufficiency of the conditions of the theorem is complete,
because from (1a) it follows that for these coefficients α, β, (11) is equivalent
to (4).

Conditions (iii) and (iv) can be easily replaced with the following two
axioms connected with axiom (iv) of Theorem 3 (i.e. with average marginal
contribution monotonicity):

1) gi1(v, T ) ≥ gi2(v, T ) implies

ϕi1(v, T ) ≥ ϕi2(v, T ) for any i1, i2 ∈ Tj and for any j ∈M,

2) gj1(v∗) ≥ gj2(v∗) implies
∑

i∈Tj1

ϕi(v, T ) ≥
∑

i∈Tj2

ϕi(v, T ) for any j1, j2 ∈M.

G. Owen (1977) proved that Sh(v, T ) = (Sh1(v, T ), . . . ,Shn(v, T )) where
Shi(v, T ) is the Shapley value with a priori unions constructed by Construc-
tion 1 for ϕ(v) = Sh(v) = (Sh1(v), . . . ,Shn(v)) and

Shi(v) =
∑

K⊆N

k!(n− k − 1)!
n!

(v(K ∪ {i})− v(K)) for any i ∈ N

is the unique solution which satisfies axioms (i)–(iv) in Theorem 6 and the
dummy player axiom ((i) in Theorem 1). Hence we can conclude that the
main difference between the Shapley value with a priori unions and the least
square prenucleolus with a priori unions is that the former solution satisfies a
more general dummy player axiom. Therefore, the least square prenucleolus
with a priori unions is determined by a system of weaker conditions.

Acknowledgements. I thank the anonymous referee for useful com-
ments.
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