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RECURRENCE RELATIONS FOR THE COEFFICIENTS
OF EXPANSIONS IN CLASSICAL ORTHOGONAL

POLYNOMIALS OF A DISCRETE VARIABLE

Abstract. A method is given to find a recurrence relation for the co-
efficients of the series expansion of a function f with respect to classical
orthogonal polynomials of a discrete variable, which follows from a linear
difference equation satisfied by f .

1. Introduction. Let f(x) be a given function which may be written
in the form

f(x) =
∑

k

ak[f ]Pk(x),(1.1)

where {Pk(x)} is a system of classical orthogonal polynomials of a discrete
variable, i.e. Charlier, Meixner, Krawtchouk or Hahn polynomials (see [1],
[6], [13]); in the case of Krawtchouk and Hahn polynomials, which are or-
thogonal on a finite set, we assume that f is a polynomial.

We are looking for the coefficients of the expansion (1.1). Unfortunately,
only in exceptional cases can one give them in explicit form, which often
requires the knowledge of the theory of special functions. It is necessary to
find another, effective way to calculate ak[f ].

The theory given in this paper, described in detail in the author’s Mas-
ter thesis [16], makes it possible to construct a recurrence relation for the
coefficients of expansion (1.1) in the form

r∑

i=0

Ai(k)ak+i[f ] = B(k),(1.2)

where Ai (i = 0, . . . , r) and B are functions of k. The recurrence relation is
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based on a difference equation, satisfied by the function f(x):

P̃ f(x) ≡ P+f(x) + P−f(x) = g(x),(1.3)

where

P±f(x) :=
n±∑

i=0

w±
n±,i(x)(D±)if(x),(1.4)

D+f(x) := f(x+ 1)− f(x), D−f(x) := f(x)− f(x− 1),

the w±
n±,i are polynomials and the coefficients ak[g] exist and are known.

The relation (1.2) may give an explicit formula or, when this is not possible,
it enables finding the numerical values of ak[f ].

To the author’s knowledge, no efficient algorithm has existed to construct
a relation (1.2) from (1.3). A solution proposed in [14] has many restrictions
and often leads to a recurrence relation for ak[f ] of a very high order. Special
variants of this problem were considered in [3] and [9].

The method of this work is based on an idea given in [8] (see also [11]).
The method can be adapted to the case of q-classical orthogonal polynomials
([1], [6], [13]). This was done in [10]. The algorithm from the present paper
can also be found in [12], where the cases of (continuous) classical orthogonal
polynomials and q-classical orthogonal polynomials were also considered.

Many tests show that the proposed solution is optimum in general, which
means that the recurrence relation for ak[f ] is of the lowest possible order.

In §2, we settle the notation; it is taken from [10] and [12]. In the next
section, we recall the properties of orthogonal polynomials of a discrete var-
iable. As a consequence, in §5, we give the recurrence relation. We construct
difference operators T±, L± (acting on the variable k) such that

T±(hkak[P±f ]) = L±(hkak[f ])

(for hk, see §6). Next, we find an operator T with the following property:

T = C+T+ = C−T−

for some operators C+ and C−. Applying T to both sides of

hkak[P+f ] + hkak[P−f ] = hkak[g]

we obtain a recurrence relation for the coefficients ak[f ] of the form

L(hkak[f ]) = T(hkak[g]),

where
L := C+L+ + C−L−.

The algorithm for constructing the recurrence relation was implemented
in Maple V ([4], [5]). The programs can be obtained from http://www.
ii.uni.wroc.pl/~pwo.
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2. Notation. Script letter operators (E,D, . . .) will always act on the
variable k. We define the shift operator Emπ(k) := π(k + m) (m ∈ Z). For
simplicity, we write I := E0 and E := E1.

Bold letter operators (D,U , . . .) will act on the variable x. We set

D+ := E+ − I, D− := I −E−,
where I is the identity operator and E±f(x) := f(x± 1).

We define the Pochhammer symbol (a)k by

(a)k :=

{
1 for k = 0,

a(a+ 1) · · · (a+ k − 1) for k = 1, 2, . . .

The hypergeometric function pFq is given by

pFq

(
a1, . . . , ap

b1, . . . , bq
x

)
:=

∞∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

xk

k!
.

3. Properties of classical orthogonal polynomials of a discrete
variable. Let {Pk(x)} be a system of classical orthogonal polynomials of
a discrete variable, i.e. Charlier polynomials Ck(x; a), Meixner polynom-
ials Mk(x;β, c), Krawtchouk polynomials Kk(x; p,N) or Hahn polynomials
Qk(x;α, β,N) (see §6, Table 6.1). These polynomials have the following
properties ([1], [6], [13]):

1. Orthogonality :
B−1∑

x=0

%(x)Pk(x)Pl(x) = δklhk (k, l = 0, 1, . . .),

where hk > 0 for k = 0, 1, . . . and δkl is the Kronecker delta. Here B is
equal to +∞, +∞, N + 1 and N for Charlier, Meixner, Krawtchouk and
Hahn polynomials, respectively. The weight function % satisfies the Pearson
equation

D+(σ%) = τ%,

where σ and τ are certain polynomials, associated with the system {Pk(x)},
of degree at most two and exactly one, respectively.

2. Recurrence relation:

xPk(x) = XPk(x),
where

X := ξ0(k)E−1 + ξ1(k)I + ξ2(k)E.

3. Difference equation:

LkPk(x) ≡ {σ(x)D+D−+ τ(x)D+ +λk}Pk(x) = 0 (k = 0, 1, . . .),(3.1)

where λk := −k(k − 1)σ′′/2− kτ ′.
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4. Structure relation:

σ±(x)D±Pk(x) = λkD
±Pk(x) (k = 0, 1, . . .),(3.2)

where
D± := δ±0 (k)E−1 + δ±1 (k)I + δ±2 (k)E

and σ− := σ, σ+ := σ + τ. The operators D+ and D− obey the identity

D− = D+ + I.(3.3)

5. Difference-recurrence equations:

σ±(x)
x− ζ± Q±

ζ±λ
−1
k D

±Pk(x) = P±
ζ±Pk(x) (k = 0, 1, . . .),(3.4)

where ζ± is any root of the polynomial σ±,

P±
ζ± := I + π±(ζ±; k)E, Q±

ζ± := ϑ±(k)I + ω±(ζ±; k)E

and ϑ±(k) := ξ0(k)/δ±0 (k).

The coefficients ξi, δ±i (i = 0, 1, 2), π±, ω±, weight function %, polyno-
mials σ±, τ and hk, λk are given in §6 (see Tables 6.2 and 6.4).

Using (3.3) we obtain

(D+)i(D−)j = (D−)j(D+)i (i, j ∈ N).(3.5)

4. Fourier coefficients. Assume the function f(x) can be expanded in
a series (1.1). Then the Fourier coefficients ak[f ] of f are given by

ak[f ] =
1
hk

B−1∑

x=0

%(x)Pk(x)f(x).(4.1)

We write, for simplicity of computations,

bk[f ] := hkak[f ].

We define the difference operators

U± := σ±(x)D± + τ(x)I, Z±
ζ± := (x− ζ±)D±,

where ζ+ and ζ− are any roots of the polynomials σ+ and σ−, respectively.

Lemma 4.1 ([9]). The following identities hold for i ∈ N:

bk[pf ] = p(X)bk[f ], where p is a polynomial,

(D±)ibk[(D±)if ] = bk[f ],(4.2)

bk[(U±)if ] = (− λkD∓)ibk[f ].

Lemma 4.2. We have the equality

P±
ζ±bk[Z

±
ζ±f ] = Q±

ζ±bk[f ].(4.3)
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Proof. Using (4.1) for ak[f ] and (3.4), (3.2) and (4.2), we get

P±
ζ±bk[Z

±
ζ±f ] =

B−1∑

x=0

%(x)D±f(x)(x− ζ±)P±
ζ±Pk(x)

= Q±
ζ±λ

−1
k

B−1∑

x=0

%(x)D±f(x)σ±(x)D±Pk(x)

= Q±
ζ±D±

B−1∑

x=0

%(x)D±f(x)Pk(x) = Q±
ζ±D±bk[D±f ]

= Q±
ζ±bk[f ].

Remark 4.1. Notice that [9] contains results implying two (of the four)
identities of the type (4.3) for Hahn polynomials.

5. Results. It is quite easy to deduce a relation (1.2) from equation (1.3)
if {Pk(x)} is a system of Charlier, Meixner or Krawtchouk polynomials.

The next theorem solves this problem. The proof, based on property (3.5)
and Lemma 4.1, may be found in [16].

Theorem 5.1. Let {Pk(x)} be the system of Charlier , Meixner or
Krawtchouk polynomials. Let f be a function (in the case of Krawtchouk
polynomials, we assume that f is a polynomial) which may be expanded in
a series (1.1) and satisfies

P̃ f(x) ≡ P+f(x) + P−f(x) = g(x),

where

P±f(x) :=
n±∑

i=0

Q±i (z±i (x)f(x)),(5.1)

the operators Q±i are of the form

Q±i := (D±)r
±
i (U±)t

±
i (r±i , t

±
i ∈ N; i = 0, 1, . . . , n±)(5.2)

and the z±i are polynomials. Assume that the functions Q±i (zif) and g may
be expanded in series (1.1). Then the coefficients ak[f ] obey the recurrence
relation

L(hkak[f ]) = T(hkak[g]),

where

L := C+L+ + C−L−, T := (D+)r
+

(D−)r
−

and
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C± := (D∓)r
∓
, L± :=

n±∑

i=0

(D±)r
±−r±i (−λkD∓)t

±
i z±i (X).

Here r± := max0≤i≤n± r
±
i .

To apply Theorem 5.1, we have to transform the operators (1.4) to the
special form defined by (5.1) and (5.2). The transformation of P ± to the
special form was described in [16] (see also [12]).

The next case is more complicated: we want to construct a recurrence
relation

r∑

i=0

Ai(k)ak+i[f ] = B(k)

for the coefficients ak[f ] in the representation of a polynomial f of degree ≤
N − 1 (N ∈ N) as a linear combination of Hahn polynomials Q0(x;α, β,N),
Q1(x;α, β,N), . . . , QN−1(x;α, β,N).

Suppose that f satisfies the difference equation

P̃ f(x) ≡ P+f(x) + P−f(x) = g(x),

where

P±f(x) :=
n±∑

i=0

Q±i (z±i (x)f(x)),(5.3)

the z±i are polynomials and

Q±i := (D±)ri(Z±
ζ±i

)si(U±)ti (ri, si, ti ∈ N; σ±(ζ±i ) = 0)(5.4)

for i = 0, 1, . . . , n±.
In the first step we will construct operators Q±i , A±i such that

Q±i bk[Q
±
i f ] = A±i bk[f ].

Next, we will find operators T± such that

T± = C±i Q±i(5.5)

for some operators C±i . This will make it possible to define operators L±

such that
T±bk[P±f ] = L±bk[f ].(5.6)

In the last phase we will construct operators T, C± which satisfy

T = C+T+ = C−T−.(5.7)

Now, applying the operator T to both sides of the equation

bk[P+f ] + bk[P−f ] = bk[g](5.8)

we obtain a recurrence relation for the coefficients bk[f ] of the form

{C+L+ + C−L−}bk[f ] = Tbk[g].(5.9)
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We will describe the construction of these operators in the “plus” version.
For simplicity of notation, we will omit the upper index + whenever possible.

We need to generalize Lemma 4.2. Given any root ζ of the polynomial
σ+, we introduce the sequences of operators {P(i)

ζ }i∈N, {Q(i)
ζ }i∈N by

P
(i)
ζ := I + πi(ζ; k)E, Q

(i)
ζ := ϑ(k)I + ωi(ζ; k)E,

where the coefficients πi, ωi are such that

P
(0)
ζ = Pζ , Q

(0)
ζ = Qζ ,(5.10)

P
(i)
ζ Q

(i−1)
ζ = Q

(i)
ζ P

(i−1)
ζ (i = 1, 2, . . .).(5.11)

We have

π0(ζ; k) = π(ζ; k), ω0(ζ; k) = ω(ζ; k),

πi(ζ; k) =
ωi−1(ζ; k)− ϑ(k)πi−1(ζ; k)

ωi−1(ζ; k + 1)− ϑ(k + 1)πi−1(ζ; k + 1)
πi−1(ζ; k + 1),

ωi(ζ; k) = πi(ζ; k)
ωi−1(ζ; k + 1)
πi−1(ζ; k + 1)

(i = 1, 2, . . .).

The explicit forms for πi and ωi are given in Table 6.3 (see §6).
Set

S
(i,j)
ζ :=

{
I (i < j),

P
(i)
ζ P

(i−1)
ζ . . .P

(j)
ζ (i ≥ j ≥ 0),

Z
(i)
ζ := S

(i−1,0)
ζ (i ≥ 0),

U
(0)
ζ := I,

U
(i)
ζ := Q

(i−1)
ζ Q

(i−2)
ζ . . .Q

(0)
ζ (i ≥ 1).

Now, we can prove a lemma which generalizes property (4.3).

Lemma 5.2. For any natural number i we have the identity

Z
(i)
ζ bk[Z

i
ζf ] = U

(i)
ζ bk[f ].

Proof. Using (5.11) repeatedly, we find that

S
(i−1,1)
ζ Q

(0)
ζ = Q

(i−1)
ζ Z

(i−1)
ζ (i ≥ 1).(5.12)

Applying Lemma 4.2 and (5.12) i times, we get

Z
(i)
ζ bk[Z

i
ζf ] = S

(i−1,1)
ζ Q

(0)
ζ bk[Z

i−1
ζ f ] = Q

(i−1)
ζ Z

(i−1)
ζ bk[Z

i−1
ζ f ] = . . . =

= Q
(i−1)
ζ . . .Q

(1)
ζ P

(0)
ζ bk[Zζf ] = U

(i)
ζ bk[f ].

From Lemmas 4.1 and 5.2, it follows that

Qbk[Qf ] = Abk[f ],
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where Q is the “plus” operator of the type (5.4) and

Q := DrZ
(s)
ζ , A := (−λkD−)tU(s)

ζ .

To find the operator T+ (see (5.5)), we define a sequence of operators
{R(i)

ζ }i∈N, where ζ is defined above and

R
(i)
ζ := δ0(k)E−1 + ρi(ζ; k)I,

ρ0(ζ; k) :=
δ2(k)
π0(ζ; k)

,

ρi(ζ; k) :=
πi−1(ζ; k)
πi(ζ; k)

ρi−1(ζ; k + 1) (i ≥ 1).

The coefficients ρi are given in §6.

Lemma 5.3. The following identities hold :

R
(0)
ζ P

(0)
ζ = D,(5.13)

R
(i)
ζ P

(i)
ζ = P

(i−1)
ζ R

(i−1)
ζ (i = 1, 2, . . .).(5.14)

We define

M
(i,j)
ζ :=

{
I (i > j),

R
(i)
ζ R

(i+1)
ζ . . .R

(j)
ζ (0 ≤ i ≤ j),

N
(i)
ζ := M

(0,i−1)
ζ (i ≥ 0).

It is easy to verify that

(5.15) Di = N
(i)
ζ Z

(i)
ζ ,

(5.16) Z
(i)
ζ R

(0)
ζ = R

(i)
ζ S

(i,1)
ζ ,

(5.17) Z
(i)
ζ Dj = M

(i,i+j−1)
ζ Z

(i+j)
ζ (i, j = 0, 1, . . .).

Now, we can prove the following lemma:

Lemma 5.4. Define

Q1 := Z
(s1)
ζ Dr1 , Q2 := Z

(s2)
ζ Dr2 ,(5.18)

where si, ri ∈ N (i = 1, 2), and set

r := max(r1, r2) s := max(s1 + r1, s2 + r2)− r.(5.19)

Then the operator T := Z
(s)
ζ Dr satisfies

T = C1Q1 = C2Q2,

where
Ci := M

(s,s+r−ri−1)
ζ S

(s+r−ri−1,si)
ζ (i = 1, 2).(5.20)
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Proof. From (5.17), it follows that

CiQi = M
(s,s+r−ri−1)
ζ S

(s+r−ri−1,si)
ζ Z

(si)
ζ Dri

= M
(s,s+r−ri−1)
ζ Z

(s+r−ri)
ζ Dri = Z

(s)
ζ Dr−riDri = Z

(s)
ζ Dr.

Reasoning as in the proof of Lemma 5.4 and making use of equality (5.15)
we obtain

Lemma 5.5. Let ζ and ζ∗ be different roots of the polynomial σ+. Let
si, ri ∈ N (i = 1, 2) be such that s1 + r1 ≥ s2 + r2. Define

Q1 := Z
(s1)
ζ Dr1 , Q2 := Z

(s2)
ζ∗ Dr2 ,(5.21)

and set
r := max(r1, s2 + r2), s := s1 + r1 − r.

Then the operator T := Z
(s)
ζ Dr has the decomposition T = C1Q1 = C2Q2

where
C1 := M

(s,s1−1)
ζ , C2 := Z

(s)
ζ N

(r−r2)
ζ∗ S

(r−r2−1,s2)
ζ∗ .(5.22)

Thus, to construct the operator T+ for given Q1, . . . ,Qn, it is enough to
use the above two lemmas repeatedly. This may be done efficiently. Notice
that if we group the operators Qi with respect to the parameter ζ, then we
will use Lemma 5.5 no more than once. This is described below in detail.

Lemma 5.6. Let the operator P , acting on a polynomial f , be given by

P f(x) :=
n∑

i=0

Qi(zi(x)f(x)),(5.23)

where the zi are polynomials and the Qi are “plus” operators of the type
(5.4). Define

Ω := {0, 1, . . . , n}, Ωη := {i ∈ Ω : ζi = η} (η ∈ {ζ, ζ∗}),
where ζ and ζ∗ are different roots of the polynomial σ+. Let

rη := max
i∈Ωη

ri, sη := max
i∈Ωη

(si + ri)− rη (η ∈ {ζ, ζ∗}).(5.24)

Let

(5.25) (ω, ω∗) :=

{
(ζ, ζ∗) if sζ + rζ ≥ sζ∗ + rζ∗ ,

(ζ∗, ζ) if sζ + rζ < sζ∗ + rζ∗ ,

(5.26) r := max(rω, sω∗ + rω∗), s := sω + rω − r.
Define

T+: = Z(s)
ω (D−)r,

Ai: = U
(si)
ζi

(−λkD−)ti (i ∈ Ω),

Bi: = M
(sη ,sη+rη−ri−1)
η S

(sη+rη−ri−1,si)
η (i ∈ Ωη; η ∈ {ζ, ζ∗}),
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Jω: = M(s,sω−1)
ω , Jω∗ := Z(s)

ω N(r−rω∗)
ω∗ S(r−rω∗−1,sω∗)

ω∗ ,

C0: = T, Ci :=

{
JωBi (i ∈ Ωω),

Jω∗Bi (i ∈ Ωω∗),
L :=

n∑

i=0

CiAizi(X).

Then
T+bk[P f ] = Lbk[f ].

Remark 5.1. All the operators defined above and all lemmas have their
“minus” analogues.

Below, we will give a method of constructing operators T, C± such that

T = C+T+ = C−T−,

where T+ and T− are as in Lemma 5.6 and in its “minus” version.
For ζ+, ζ− being any roots of σ+ and σ− respectively, we introduce the

sequences of operators {F±(i)
ζ+,ζ−}i∈N by

F
±(i)
ζ+,ζ− := ϕ±(ζ+, ζ−; k)E−1 + ϕ±i (ζ+, ζ−; k)I,

where

ϕ±(ζ+, ζ−; k) :=
δ∓0 (k)

k ± ζ∓∗ ∓ ζ± − 1
, ϕ±0 (ζ+, ζ−; k) :=

ρ∓0 (ζ∓; k)
k ± ζ∓∗ ∓ ζ±

,

ϕ±i (ζ+, ζ−; k) :=
π±i−1(ζ±; k)

π±i (ζ±; k)
ϕ±i−1(ζ+, ζ−; k + 1) (i ≥ 1).

Equations for the above coefficients are given in §6.

Lemma 5.7. The following identities are true:

F
+(0)
ζ+,ζ−P

+(0)
ζ+ = F

−(0)
ζ+
∗ ,ζ
−
∗

P
−(0)
ζ−∗

,(5.27)

F
±(i)
ζ+,ζ−P

±(i)
ζ± = P

±(i−1)
ζ± F

±(i−1)
ζ+,ζ− (i = 1, 2, . . .),(5.28)

where ζ+
∗ 6= ζ+ and ζ−∗ 6= ζ− are roots of σ+ and σ−, respectively.

We introduce the notations

W
±(i,j)
ζ+,ζ− :=

{
I (i > j),

F
±(i)
ζ+,ζ−F

±(i+1)
ζ+,ζ− . . .F

±(j)
ζ+,ζ− (0 ≤ i ≤ j),

Y
±(i)
ζ+,ζ− := W

±(0,i−1)
ζ+,ζ− (i ≥ 0),

K±
ζ+,ζ− := F

±(0)
ζ+,ζ−P

±(0)
ζ± .

It follows from (5.27) that

(K+
ζ+,ζ−)i = (K−

ζ+
∗ ,ζ
−
∗

)i (i ∈ N).(5.29)
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From (5.28) we see that for any natural numbers i, j,

S
±(i,j)
ζ± F

±(j)
ζ+,ζ− = F

±(i+1)
ζ+,ζ− S

±(i+1,j+1)
ζ± .(5.30)

Using this for j = 0, one can prove that

(K±
ζ+,ζ−)i = Y

±(i)
ζ+,ζ−Z

±(i)
ζ± .(5.31)

From (3.3), from the decomposition of the operator D± (which results from
(5.13)), and from identity (5.16) or its “minus” version, we have

Z
±(i)
ζ± (D∓)j = Z

±(i)
ζ± (D± ± I)(D± ± I)j−1(5.32)

= Z
±(i)
ζ± (R±(0)

ζ± P
±(0)
ζ± ± I)(D± ± I)j−1

= (R±(i)
ζ± S

±(i,1)
ζ± P

±(0)
ζ± ± Z

±(i)
ζ± )(D± ± I)j−1

= (R±(i)
ζ± P

±(i)
ζ± ± I)Z±(i)

ζ± (D± ± I)j−1 = . . .

= (R±(i)
ζ± P

±(i)
ζ± ± I)jZ±(i)

ζ± .

Now, we can prove the following lemma:

Lemma 5.8. Let ζ± and ζ±∗ be as defined above. Set

T+ := Z
+(s+)
ζ+ (D+)r

+
, T− := Z

−(s−)
ζ− (D−)r

−
(s±, r± ∈ N).(5.33)

Then the operator

T := Z(K+
ζ+,ζ−∗

)s(D−)r
−

(D+)r
+
,(5.34)

where s := min(s+, s−) and

Z :=

{
Z

+(s+−s−)
ζ+ (s+ ≥ s−),

Z
−(s−−s+)
ζ− (s+ < s−),

has the decomposition T = C+T+ = C−T−, where

C+ :=





W
+(s+−s−,s+−1)
ζ+,ζ−∗

(R+(s+)
ζ+ P

+(s+)
ζ+ + I)r

−
(s+ ≥ s−),

ZY
+(s+)
ζ+,ζ−∗

(R+(s+)
ζ+ P

+(s+)
ζ+ + I)r

−
(s+ < s−),

(5.35)

C− :=





ZY
−(s−)
ζ+
∗ ,ζ−

(R−(s−)
ζ− P

−(s−)
ζ− − I)r

+
(s+ ≥ s−),

W
−(s−−s+,s−−1)
ζ+
∗ ,ζ−

(R−(s−)
ζ− P

−(s−)
ζ− − I)r

+
(s+ < s−).

(5.36)

Proof. Using (5.30) repeatedly, we can prove

Z
±(i)
ζ± Y

±(j)
ζ+,ζ− = W

±(i,i+j−1)
ζ+,ζ− S

±(i+j−1,j)
ζ± (i, j ≥ 0).(5.37)

Let s±, r± ∈ N with s+ ≥ s− (if s+ < s− then the proof is similar). Set

Z := Z
+(s+−s−)
ζ+ . Since D+ and D− commute (see (3.5)), from (5.29) we find
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that

T = Z(K+
ζ+,ζ−∗

)s
−

(D−)r
−

(D+)r
+

= Z(K−
ζ+
∗ ,ζ−

)s
−

(D+)r
+

(D−)r
−
.

From (5.31), we get

T = Z
+(s+−s−)
ζ+ Y

+(s−)
ζ+,ζ−∗

Z
+(s−)
ζ+ (D−)r

−
(D+)r

+

= Z
+(s+−s−)
ζ+ Y

−(s−)
ζ+
∗ ,ζ−

Z
−(s−)
ζ− (D+)r

+
(D−)r

−
.

From (5.37), we obtain

T = Z
+(s+−s−)
ζ+ Y

+(s−)
ζ+,ζ−∗

Z
+(s−)
ζ+ (D−)r

−
(D+)r

+

= W
+(s+−s−,s+−1)
ζ+,ζ−∗

S
+(s+−1,s−)
ζ+ Z

+(s−)
ζ+ (D−)r

−
(D+)r

+

= W
+(s+−s−,s+−1)
ζ+,ζ−∗

Z
+(s+)
ζ+ (D−)r

−
(D+)r

+
.

Then (5.32) implies

T = W
+(s+−s−,s+−1)
ζ+,ζ−∗

Z
+(s+)
ζ+ (D−)r

−
(D+)r

+

= W
+(s+−s−,s+−1)
ζ+,ζ−∗

(R+(s+)
ζ+ P

+(s+)
ζ+ + I)r

−
Z

+(s+)
ζ+ (D+)r

+
= C+T+

and

T = Z
+(s+−s−)
ζ+ Y

−(s−)
ζ+
∗ ,ζ−

Z
−(s−)
ζ− (D+)r

+
(D−)r

−

= Z
+(s+−s−)
ζ+ Y

−(s−)
ζ+
∗ ,ζ−

(R−(s−)
ζ− P

−(s−)
ζ− − I)r

+
Z
−(s−)
ζ− (D−)r

−
= C−T−.

Now, we can prove the main theorem of this section.

Theorem 5.9. Let {Pk(x)} be the system of Hahn polynomials. Let f be
a polynomial which satisfies the difference equation

P f(x) ≡ P+f(x) + P−f(x) = g(x),

where

P±f(x) :=
n±∑

i=0

(D±)ri(Z±
ζ±i

)si(U±)ti(z±i (x)f(x)),(5.38)

the z±i are polynomials, ri, si, ti ∈ N, and σ±(ζ±i ) = 0 for i = 0, 1, . . . , n±.
Let T± and L± be as defined in Lemma 5.6 and its “minus” version applied
to P±. Let C± be as defined in Lemma 5.8 and its “minus” version applied
to T±. Then the coefficients ak[f ] obey the recurrence relation

L(hkak[f ]) = T(hkak[f ]), where L := C+L+ + C−L−.

Proof. Using Lemma 5.6 we find operators T±, L± such that

T±bk[P
±f ] = L±bk[f ].
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Applying Lemma 5.8 to T±, we construct operators T and C± such that
T = C+T+ = C−T−. Applying T to both sides of

bk[P f ] = bk[g]

we get

Tbk[P f ] = C+T+bk[P+f ] + C−T−bk[P−f ] = {C+L+ + C−T−}bk[f ] = Tbk[g].

Finally, because bk[f ] = hkak[f ], we have

{C+L+ + C−L−}(hkak[f ]) = T(hkak[g]).

To apply Theorem 5.9, we have to transform the operators P± defined
by (1.4) to the form (5.38). This process was described in [16] (see also [12]).

Example 5.1. Let coefficients cnk be such that

Qn(x; η, ζ,N) =
n∑

k=0

cnkQk(x;α, β,N),

where Qn is the nth Hahn polynomial. For f(x) ≡ Qn(x; η, ζ,N), equa-
tion (3.1) has the form

(5.39) x(N + η − x)D+D−f(x)

+ [(ζ + 1)(N − 1)− (ϑ+ 1)x]D+f(x) + n(n+ ϑ)f(x) = 0,

where ϑ := η + ζ + 1. Using D+D− = D+ −D− we obtain

−(x+ ζ + 1)(x−N + 1)D+f(x) +n(n+ϑ)f(x) +x(x− η−N)D−f(x) = 0.

Let
P+f(x) := − (x+ ζ + 1)(x−N + 1)D+f(x) + n(n+ ϑ)f(x),

P−f(x) := x(x− η −N)D−f(x).

1. General case. We can find a special form of the operators P±,

P+f(x) = Z+
N−1(z+

1 (x)f(x)) + z+
0 (x)f(x),

P−f(x) = Z−0 (z−1 (x)f(x)) + z−0 (x)f(x),

where

z+
1 (x) := −x− ζ, z+

0 (x) := x+ n(n+ ϑ)−N + 1,

z−1 (x) := x− η −N + 1, z−0 (x) := −x.
Hence

T+ = Z
+(1)
N−1, T− = Z

−(1)
0 ,

L+ = U
+(1)
N−1z

+
1 (X) + Z

+(1)
N−1z

+
0 (X), L− = U

−(1)
0 z−1 (X) + Z

−(1)
0 z−0 (X),

T = K+
N−1,N+α, C+ = Y

+(1)
N−1,N+α, C− = Y

−(1)
−β−1,0.

Also, the coefficients cnk satisfy the recurrence relation

L(hkcnk) = 0,(5.40)
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where L := C+L+ + C−L−. Writing (5.40) in explicit form we have

A−1(k)cn,k−1 + A0(k)cnk +A1(k)cn,k+1 = 0,(5.41)

where

A−1(k) := (2k + γ − 1)4(2k + γ + 1)(n− k + 1)(k + n+ ϑ− 1),(5.42)

A0(k) := k(k −N)(2k + γ)3{(β − α+ 2η − 2ζ)k(k + γ)(5.43)

+ n(β − α)(ϑ+ n) + (γ + 1)(ηβ − ζα)},
A1(k) := (k)2(N − k − 1)2(k + α+ 1)(k + β + 1)(5.44)

× (2k + γ − 1)(k + n+ γ + 1)(k − n+ γ − ϑ+ 1)

and γ := α+ β + 1, cnn = 1, cn,n+1 = 0.

2. Case η = α. We transform P+ and P− to the form

P+f(x) = Z+
N−1(z+

1 (x)f(x)) + z+
0 (x)f(x),

P−f(x) = U−(z−1 (x)f(x)) + z−0 (x)f(x),

where
z+

1 (x) := − x− ζ, z+
0 (x) := x+ n(n+ α+ ζ + 1)−N + 1,

z−1 (x) := − 1, z−0 (x) := (β + 1)(N − 1)− (γ + 1)x

and γ := α+ β + 1. We find that

T+ = Z+
N−1, T− = I,

L+ = U
+(1)
N−1z

+
1 (X) + Z

+(1)
N−1z

+
0 (X), L− = −λkD+z−1 (X) + z−0 (X),

T = T+, C+ = I, C− = T+.

Thus, the following recurrence relation for cnk holds:

{C+L+ + C−L−}(hkcnk) = 0.

The scalar form is

(n− k + 1)(k + n+ α+ ζ)(2k + γ − 1)2cn,k−1

+ k(k + α)(k −N)(k + n+ γ)(k − n+ β − ζ)cnk = 0.

We can find an explicit equation for cnk (k = 0, 1, . . . , n); because cnn = 1,
we get

cnk = (−1)n−k
(
n

k

)
(ζ−β)n−k(N−n)n−k(k+α+1)n−k(n+k+γ+1)n−k

(k + n+ ζ + α+ 1)n−k(2k + γ + 1)2n−2k
.

3. Case ζ = β. We have

P+f(x) = U+(z+
1 (x)f(x)) + z+

0 (x)f(x),

P−f(x) = Z−0 (z−1 (x)f(x)) + z−0 (x)f(x),
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z+
1 (x) := 1, z+

0 (x) := n(n+ γ)− (β + 1)(N − 1) + (γ + 1)x,

z−1 (x) := x− η −N + 1, z−0 (x) := −x,
where γ := α+ β + 1 and

T+ = I, T− = Z
−(1)
0 ,

L+ = λkD
−z+

1 (X) + z+
0 (X), L− = U

−(1)
0 z−1 (X) + Z

−(1)
0 z−0 (X),

T = T−, C+ = T−, C− = I.

Finally, the coefficients cnk obey

L(hkcnk) = 0,(5.45)

where L := C+L+ + C−L−. Making simplifications and writing (5.45) in
scalar form, we obtain

(n− k + 1)(k + n+ β + η)(2k + γ − 1)2cn,k−1

+ k(N − k)(k + β)(k + n+ γ)(k − n+ α− η)cnk = 0.

We know that cnn = 1. Therefore, for k = 0, 1, . . . , n, we have

cnk =
(
n

k

)
(η − α)n−k(N − n)n−k(k + β + 1)n−k(n+ k + γ + 1)n−k

(k + n+ η + β + 1)n−k(2k + γ + 1)2n−2k
.

Remark 5.2. Notice the following facts:

1. This problem in the general case was solved earlier in [9], where equa-
tion (5.40) was obtained. The analogues of (5.42)–(5.44) given there include
inaccuracies.

2. In [2] and [15], it was proved, that—in any case—the coefficients cnk
satisfy recurrences of order 4 and 8, respectively.

It is possible to estimate the order of the recurrence relation for the
coefficients ak[f ] which follows from the difference equation (1.3).

Theorem 5.10. Let operators T and L be such that

Tbk[P̃ f ] = Lbk[f ],

where P̃ is defined by (1.3) and (1.4). Then

ord(L) ≤ ord(T) + 2 max(M+,M−),

where
M± := max

0≤i≤n±, w±
n±,i 6≡0

(∂w±
n±,i − i)

and ∂w denotes the degree of the polynomial w.

Acknowledgements. I would like to thank Professor S. Lewanowicz
for many valuable pieces of advice and comments.
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6. Tables

Table 6.1. Hypergeometric series representation of the classical monic
orthogonal polynomials of the discrete variable [1], [6], [13]

Family Hypergeometric series

Hahn

Qk(x;α, β,N) =
(β + 1)k(1−N)k
(k + α+ β + 1)k

× 3F2

(−k, −x, k + α+ β + 1
β + 1, 1−N

∣∣∣ 1
)

Meixner Mk(x;β, c) = (β)k

(
c

c− 1

)k
2F1

(−k, −x
β

∣∣∣ 1− 1
c

)

Krawtchouk Kk(x; p,N) = (−N)kp
k
(
N

k

)
2F1

(−k, −x
−N

∣∣∣−1
p

)

Charlier Ck(x; a) = (−a)k 2F0

(−k, −x
—

∣∣∣−1
a

)

Table 6.2. Data for the monic Hahn polynomial [1], [6], [13]

Qk(x;α, β,N)

α, β > −1, N ∈ N

σ(x) ≡ σ−(x) x(N + α− x)

τ(x) (β + 1)(N − 1)− (γ + 1)x

σ+(x) (x+ β + 1)(N − 1− x)

%(x)
Γ (N + α− x)Γ (x+ β + 1)

Γ (x+ 1)Γ (N − x)
λk k(k + γ)

hk
k!Γ (k + α+ 1)Γ (k + β + 1)(2k + γ + 1)N−k−1

(k + γ)k(N − k − 1)!

ξ0(k)
k(N − k)(k + α)(k + β)(k + γ − 1)(k + γ +N − 1)

(2k + γ − 2)2(2k + γ − 1)2

ξ1(k)
α− β + 2N − 2

4
+

(β2 − α2)(γ + 2N − 1)
4(2k + γ − 1)(2k + γ + 1)

ξ2(k) 1

δ+
0 (k) = δ−0 (k)

(N − k)(k + α)(k + β)(k + γ − 1)(k + γ +N − 1)
(2k + γ − 2)2(2k + γ − 1)2

δ+
1 (k) = δ−1 (k)− 1

N(α− β)− 2k(k + γ)− (γ − α)(γ − 1)
(2k + γ − 1)(2k + γ + 1)

δ+
2 (k) = δ−2 (k) − 1

k + γ
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Table 6.2 (cont.)

Qk(x;α, β,N)

α, β > −1, N ∈ N

ω±(ζ±; k)
δ±1 (k)ξ0(k)/δ±0 (k) + ζ± − ξ1(k)

ξ0(k + 1)δ±2 (k + 1)/ξ2(k + 1)− δ±0 (k + 1)

π±(ζ±; k) δ±2 (k + 1)ω±(ζ±; k)/ξ2(k + 1)

Notes: 1. γ := α+ β + 1; σ+(ζ+) = 0; σ−(ζ−) = 0.
2. The formulae for ω±, π± are valid also for the

other three families of polynomials.

Table 6.3. Hahn polynomials: Explicit forms of the coefficients π±i (ζ±; k), ω±i (ζ±; k),

ρ±i (ζ±; k) and ϕ±i (ζ+, ζ−; k)

π+
i (ζ+; k)

(2k + γ)2(2k + γ + 1)2

(2k + γ + i+ 1)2(k + γ)(k + γ + ζ+ + 1)(k − ζ+
∗ )

π−i (ζ−; k) − (2k + γ)2(2k + γ + 1)2

(2k + γ + i+ 1)2(k + γ)(k + α− ζ− + 1)(k + β + ζ−∗ + 1)

ω±i (ζ±; k) −π±i (ζ±; k)(k + γ + i+ 1)

ρ+
i (ζ+; k) − (k + γ + i+ ζ+ + 1)(k + i− ζ+

∗ )
(2k + γ + i)2

ρ−i (ζ−; k)
(k + γ + i+N − ζ−)(k + i−N + ζ−∗ + 1)

(2k + γ + i)2

ϕ±i (ζ+, ζ−; k) ±k + γ + i+ ζ+ − ζ− + 1
(2k + γ + i)2

Note: γ := α+ β + 1; σ±(ζ±) = σ±(ζ±∗ ) = 0; ζ± 6= ζ±∗ .

Table 6.4. Data for the monic Charlier, Meixner and Krawtchouk polynomials

[1], [6], [13]

Ck(x; a) Mk(x;β, c) Kk(x; p,N)

a > 0 0 < c < 1, β > 0 0 < p < 1, N ∈ N

σ(x) ≡ σ−(x) x x x

τ(x) a− x βc+ (c− 1)x (1− p)−1(Np− x)

σ+(x) a c(x+ β) p(1− p)−1(N − x)

%(x)
e−aax

Γ (x+ 1)
cxΓ (β + x)
Γ (x+ 1)Γ (β)

N !px(1− p)N−x
Γ (x+ 1)Γ (N + 1− x)

λk k (1− c)k (1− p)−1k
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Table 6.4 (cont.)

Ck(x; a) Mk(x;β, c) Kk(x; p,N)

a > 0 0 < c < 1, β > 0 0 < p < 1, N ∈ N

hk k!ak
k!(β)kc

k

(1− c)β+2k
N !k!

(N − k)!
pk(1− p)k

ξ0(k) ak
ck(k + β − 1)

(1− c)2 p(1− p)k(N − k + 1)

ξ1(k) k + a
(c+ 1)k + βc

1− c k + p(N − 2k)

ξ2(k) 1 1 1

δ+
0 (k) = δ−0 (k) a

c(k + β − 1)
(1− c)2 p(1− p)(N − k + 1)

δ+
1 (k) = δ−1 (k)− 1 0

c

1− c −p
δ+
2 (k) = δ−2 (k) 0 0 0
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