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ON THE CONVERGENCE AND APPLICATION
OF STIRLING’S METHOD

Abstract. We provide new sufficient convergence conditions for the local
and semilocal convergence of Stirling’s method to a locally unique solution
of a nonlinear operator equation in a Banach space setting. In contrast to
earlier results we do not make use of the basic restrictive assumption in [8]
that the norm of the Fréchet derivative of the operator involved is strictly
bounded above by 1. The study concludes with a numerical example where
our results compare favorably with earlier ones.

1. Introduction. In this study, we are concerned with the problem of
approximating a locally unique fixed point x∗ of the equation

(1) F (x) = x,

where F is a Fréchet differentiable operator defined on an open convex subset
of a Banach space X with values in X.

Stirling’s method [10]

(2) xn+1 = xn − A−1
n (xn − F (xn)), An = I − F ′(F (xn)) (n ≥ 0)

has been used to generate a sequence converging to x∗ [1]–[4], [8]. In partic-
ular elegant local and semilocal convergence results have been given in [8]
under the restrictive assumption that ‖F ′(x)‖ is strictly bounded above by 1.
Moreover in the same study a favorable comparison between Stirling’s and
Newton’s methods was given including examples where Stirling’s method
converges but Newton’s fails to do so. Note that both methods require al-
most the same computational cost: the evaluation of F , F ′ and the solution
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of a linear equation at each step. Here we provide a new local and semilocal
convergence analysis for method (2) without making use of ‖F ′(x)‖ < 1.

Finally we provide a numerical example where our results compare fa-
vorably with earlier ones [7], [8], [10].

2. Semilocal analysis of Stirling’s method. We provide the follow-
ing result on majorizing sequences for Stirling’s method (2).

Theorem 1. Assume that there exist parameters L0 ≥ 0, L ≥ 0 with
L0 ≤ L, η ≥ 0, and δ ∈ [0, 1] such that

(3) (δL0 + L)η ≤ δ.

Then the iteration {tn} (n ≥ 0) given by

(4)
t0 = 0, t1 = η,

tn+2 = tn+1 +
L(tn+1 − tn)2

2(1− L0tn+1)
(n ≥ 0)

is non-decreasing , bounded above by t∗∗ = 2η/(2− δ), and converges to some
t∗ such that

(5) 0 ≤ t∗ ≤ t∗∗.

Moreover , the following error bounds hold for all n ≥ 0:

(6) 0 ≤ tn+2 − tn+1 ≤
δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η.

Proof. The result clearly holds if δ = 0 or L = 0 or η = 0. Assume δ 6= 0,
L 6= 0 and η 6= 0. We must show that for all k ≥ 0,

(7)
L(tk+1 − tk) + δL0tk+1 ≤ δ,
tk+1 − tk ≥ 0, −L0tk+1 > 0.

Estimate (6) then follows immediately from (4) and (7). We use induction
on k. For k = 0 we have

L(t1 − t0) + δL0t1 = Lη + δL0η ≤ δ,
t1 ≥ t0, 1− L0η > 0 (by (3)).

But then (4) gives

0 ≤ t2 − t1 ≤
δ

2
(t1 − t0).
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Assume (6) and (7) holds for all k ≤ n+ 1. Then

(8) L(tk+2 − tk+1) + δL0tk+2

≤ Lη
(
δ

2

)k+1

+ δL0

[
t1 +

δ

2
(t1 − t0) +

(
δ

2

)2

(t1 − t0)

+ . . .+
(
δ

2

)k+1

(t1 − t0)
]

≤ Lη
(
δ

2

)k+1

+ δL0η
1− (δ/2)k+2

1− δ/2

≤ Lη
(
δ

2

)k+1

+
2δL0η

2− δ

[
1−

(
δ

2

)k+2]

=
{
L

(
δ

2

)k+1

+
2L0δ

2− δ

[
1−

(
δ

2

)k+2]}
η.

By (3) and (8) it suffices to show

L

(
δ

2

)k+1

+
2L0δ

2− δ

[
1−

(
δ

2

)k+2]
≤ L+ δL0

or

δL0

{
2

2− δ

(
1−

(
δ

2

)k+2)
− 1
}
≤ L

[
1−

(
δ

2

)k+1]

or

2δ
2− δ

[
1−

(
δ

2

)k+2]
− δ ≤ 1−

(
δ

2

)k+1

or

(δ − 1)(δ + 2)
2− δ ≤ (δ − 1)(δ + 2)

2− δ

(
δ

2

)k+1

,

which is true by the choice of δ. Hence, the first estimate in (7) holds for all
n ≥ 0. We must also show that

(9) tk ≤ t∗∗.

For k = 0, 1, 2 we have

t0 = 0 ≤ t∗∗, t1 = η ≤ t∗∗, t2 ≤ η +
δ

2
η =

2 + δ

2
η ≤ t∗∗.
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Assume (9) holds for all k ≤ n+ 1. It follows from (6) that

(10) tk+2 ≤ tk+1 +
δ

2
(tk+1 − tk) ≤ tk +

δ

2
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ . . . ≤ t1 +
δ

2
(t1 − t0) + . . .+

δ

2
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ η +
δ

2
η +

(
δ

2

)2

η + . . .+
(
δ

2

)k+1

η

=
[
1 +

δ

2
+
(
δ

2

)2

+ . . .+
(
δ

2

)k+1]
η

=
1− (δ/2)k+2

1− δ/2 η <
2

2− δ η = t∗∗.

Moreover, we have

L0tk+2 <
2L0η

2− δ < 1 (by (3)).

Hence, the sequence {tn} (n ≥ 0) is bounded above by t∗∗. It also follows
from (4) that {tn} (n ≥ 0) is non-decreasing, and hence it converges to some
t∗ satisfying (5).

That completes the proof of Theorem 1.

Below we show the main semilocal convergence theorem for Stirling’s
method (2).

Theorem 2. Let F :D ⊆ X → X be a Fréchet differentiable operator.
Assume there exist a point x0 ∈ D and parameters η ≥ 0, ` ≥ 0, `0 ≥ 0,
b ≥ 0, a0 ∈ [0, 1), δ ∈ [0, 1] such that :

(11) A−1
0 ∈ L(X,X),

(12) ‖A−1
0 (x0 − F (x0))‖ ≤ η,

(13) ‖F (x)− F (x0)‖ ≤ a0‖x− x0‖ (a0 < 1),

(14) ‖F ′(F (x))‖ ≤ b,
(15) ‖A−1

0 [F ′(F (x0))− F ′(F (x))]‖ ≤ `0‖F (x0)− F (x)‖,
(16) ‖A−1

0 (F ′(x)− F ′(y))‖ ≤ `‖x− y‖ for all x, y, F (x0), F (x) ∈ D,
(17) (L+ δL0)η ≤ δ for L = (3 + 2b)`, L0 = a0`0,

(18) U(x0, t
∗) = {x ∈ X | ‖x− x0‖ ≤ t∗} ⊆ D,

(19) t∗ ≥ ‖x0 − F (x0)‖
1− a0

,

where t∗ is given in Theorem 1. Then {xn} (n ≥ 0) generated by Stirling’s
method (2) is well defined , remains in U(x0, t

∗) for all n ≥ 0, and converges
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to a fixed point x∗ ∈ U(x0, t
∗) of the operator F . Moreover , the following

error bounds hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤
L

2(1− L0‖xn+1 − x0‖)
‖xn+1 − xn‖2 ≤ tn+2 − tn+1,(20)

‖xn − x∗‖ ≤ t∗ − tn,(21)

where the sequence {tn} (n ≥ 0) is generated by (4). If there exists R > t∗

such that

U(x0, R) ⊆ D,(22)

`(1 + b)η + aR+ 2`0a0t
∗ ≤ 2,(23)

‖F (x)− F (y)‖ ≤ a‖x− y‖ for all x, y ∈ D and some a ≥ 0,(24)

then the fixed point x∗ of the operator F is unique in U(x0, R). Furthermore
if R = t∗ and strict inequality holds in (23), then x∗ is unique in U(x0, t

∗).

Proof. Let us prove that

‖xk+1 − xk‖ ≤ tk+1 − tk,(25)

U(xk+1, t
∗ − tk+1) ⊆ U(xk, t∗ − tk),(26)

for all k ≥ 0. For every z ∈ U(x1, t
∗ − t1),

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0
implies z ∈ U(x0, t

∗ − t0). Since also

‖x1 − x0‖ = ‖A−1
0 (x0 − F (x0))‖ ≤ η = t1 − t0,

(25) and (26) hold for k = 0. Suppose they hold for n = 0, 1, . . . , k. Then

‖xk+1 − x0‖ ≤
k+1∑

i=1

‖xi − xi−1‖ ≤
k+1∑

i=1

(ti − ti−1) = tk+1 − t0 = tk+1

and

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) < t∗, θ ∈ [0, 1].

Note also that for x ∈ U(x0, t
∗),

‖x0 − F (x)‖ ≤ ‖x0 − F (x0)‖+ ‖F (x0)− F (x)‖
≤ ‖x0 − F (x0)‖+ a0‖x0 − x‖
≤ ‖x0 − F (x0)‖+ a0t

∗ ≤ t∗ (by (19)).

That is, F (x) ∈ U(x0, t
∗).

Using (13) and (15) for x ∈ U(x0, t
∗), we get

‖A−1
0 [A0 − (I − F ′(F (x)))]‖ ≤ ‖A−1

0 (F ′(F (x0))− F ′(F (x)))‖(27)

≤ `0‖F (x0)− F (x)‖ ≤ `0a0‖x0 − x‖
≤ `0a0t

∗ < 1,
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by the choice of t∗. It follows from (27) and the Banach Lemma on invertible
operators [7] that A(x) = I − F ′(F (x)) is invertible with

(28) ‖A(x)−1A0‖ ≤ [1− `0a0‖x0 − x‖]−1.

By (2) we get

xk+1 − F (xk+1) = xk − A−1
k (xk − F (xk))− F (xk+1)

= A−1
k [Ak(xk − F (xk+1))− (xk − F (xk))]

= A−1
k [F (xk)− F (xk+1)− F ′(F (xk))(xk − xk+1)

− F ′(F (xk))(xk+1 − F (xk+1))],

so

xk+1 − F (xk+1) +A−1
k F ′(F (xk))(xk+1 − F (xk+1))

= A−1
k [F (xk)− F (xk+1)− F ′(F (xk))(xk − xk+1)],

hence

{I + A−1
k F ′(F (xk))}(xk+1 − F (xk+1))

= A−1
k [F (xk)− F (xk+1)− F ′(F (xk))(xk − xk+1)],

and therefore

(29) xk+1 − F (xk+1) = F (xk)− F (xk+1)− F ′(F (xk))(xk − xk+1)

=
1�

0

[F ′(θxk + (1− θ)xk+1)− F ′(θF (xk) + (1− θ)F (xk))](xk − xk+1) dθ.

By composing both sides of (29) with A−1
0 and using (14), (16), we get

(30) ‖A−1
0 (xk+1 − F (xk+1))‖

≤ `

2
[‖xk − F (xk)‖+ ‖xk+1 − F (xk)‖]‖xk+1 − xk‖,

(31) ‖xk − F (xk)‖ ≤ ‖I + F ′(F (xk))‖ · ‖xk+1 − xk‖
≤ (1 + b)‖xk+1 − xk‖,

(32) ‖xk+1 − F (xk)‖ ≤ ‖xk+1 − xk‖+ ‖xk − F (xk)‖
≤ ‖xk+1 − xk‖+ (1 + b)‖xk+1 − xk‖
= (2 + b)‖xk+1 − xk‖.

Moreover by (2), (28)–(32), we get

‖xk+2 − xk+1‖ ≤ ‖A−1
k+1A0‖ · ‖A−1

0 (xk+1 − F (xk+1))‖(33)

≤ `

2
3 + 2b

1− `0a0‖xk+1 − x0‖
‖xk+1 − xk‖2

≤ L

2(1− L0tk+1)
(tk+1 − tk)2 = tk+2 − tk+1.
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Thus for every z ∈ U(xk+2, t
∗ − tk+1) we have

‖z − xk+1‖ ≤ ‖z − xk+2‖+ ‖xk+2 − xk+1‖
≤ t∗ − tk+2 + tk+2 − tk+1 = t∗ − tk+1.

That is,

(34) z ∈ U(xk+1, t
∗ − tk+1).

Estimates (33) and (34) imply that (25) and (26) hold for n = k + 1.
Theorem 1 implies that {tn} (n ≥ 0) is a Cauchy sequence. From (25)

and (26) {xn} (n ≥ 0) is also a Cauchy sequence, and so it converges to
some x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a closed set) such that

(35) ‖x∗ − xk‖ ≤ t∗ − tk.
The combination of (33) and (34) yields F (x∗) = x∗.

To show uniqueness let y∗ be a fixed point of F in U(x0, R). By (2) we
obtain the approximation

xk+1 − y∗ = xk − y∗ − A−1
k (xk − F (xk))(36)

= A−1
k {F (xk)− F (y∗)− F ′(F (xk))(xk − y∗)}

= [A−1
k A0]A−1

0

{ 1�

0

[F ′(θxk + (1− θ)y∗)

− F ′(θF (xk) + (1− θ)F (xk))](xk − y∗) dθ
}
.

Hence, by (36) and (13)–(16), (24) we obtain

‖xk+1 − y∗‖ ≤
`

2
‖xk − F (xk)‖+ ‖F (xk)− F (y∗)‖

1− `0a0‖xk − x0‖
‖xk − y∗‖(37)

≤ `

2
(1 + b)‖xk+1 − xk‖+ a‖xk − y∗‖

1− `0a0‖xk − x0‖
‖xk − y∗‖

<
`

2
(1 + b)η + aR

1− `0a0t∗
‖xk − y∗‖ < ‖xk − y∗‖,

which shows limk→∞ xk = y∗. But we already showed limk→∞ xk = x∗.
That is,

x∗ = y∗.

Finally the uniqueness in U(x0, t
∗) follows from (37) and (23) (holding as

strict inequality).
That completes the proof of Theorem 2.

Remark 1. Condition (23) can be dropped. We can replace it by

(38) `(1 + b)η + a0(t∗ +R) + 2`0a0t
∗ ≤ 2.
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Indeed, we have

(39) ‖xk+1 − y∗‖

≤ `

2
(1 + b)‖xk+1 − xk‖+ ‖F (xk)− F (x0) + F (x0)− F (y∗)‖

1− `0a0‖xk − x0‖
‖xk − y∗‖

≤ `

2
‖xk+1 − xk‖+ a0(‖x0 − xk‖+ ‖x0 − y∗‖)

1− `0a0‖xk − x0‖
‖xk − y∗‖

<
`

2
(1 + b)η + a0(t∗ + η)

1− `0a0t∗
‖xk − y∗‖,

which also shows limk→∞ xk = y∗. Hence, again we get x∗ = y∗.

3. Local analysis of Stirling’s method. Below we show the main
local convergence theorem for Stirling’s method (2).

Theorem 2. Let F : D ⊆ X → X be a Fréchet differentiable operator.
Assume that there exist a fixed point x∗ of the operator F such that

(40) A∗ = I − F ′(F (x∗))

is invertible, and parameters α ≥ 0, β ∈ [0, 1], γ ≥ 0 such that

‖A−1
∗ [F ′(F (x∗))− F ′(F (x))]‖ ≤ α‖F (x∗)− F (x)‖,(41)

‖F (x∗)− F (x)‖ ≤ β‖x∗ − x‖,(42)

‖A−1
∗ (F ′(x)− F ′(y))‖ ≤ γ‖x− y‖(43)

for all x, y, F (x) ∈ D, and

(44) U(x∗, r∗) ⊆ D,
where

r∗ =
2

p+ 2q
,(45)

p = γ(1 + 2β), q = αβ.(46)

Then {xn} (n ≥ 0) generated by Stirling’s method (2) is well defined ,
remains in U(x∗, r∗) for all n ≥ 0, and converges to x∗ provided that
x0 ∈ U(x∗, r∗). Moreover the following error bounds hold for all n ≥ 0:

(47) ‖xn+1 − x∗‖ ≤
p

2
1

1− q‖xn − x∗‖
‖xn − x∗‖2.

Proof. Let x ∈ U(x∗, r∗). Using (41), (42) we get

‖A−1
∗ [A∗ − (I − F ′(F (x)))]‖ ≤ α‖F (x∗)− F (x)‖ ≤ αβ‖x− x∗‖(48)

< αβr∗ < 1 (by the choice of r∗),

and F (x) ∈ U(x∗, r∗), since

(49) ‖F (x)− x∗‖ = ‖F (x)− F (x∗)‖ ≤ β‖x− x∗‖ < βr∗ ≤ r∗.
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Hence, by (48) and the Banach Lemma on invertible operators, I−F ′(F (x))
is invertible, and

(50) ‖(I − F ′(F (x)))−1A∗‖ ≤
1

1− q‖x− x∗‖ .

By hypothesis x0 ∈ U(x∗, r∗). Assume xk ∈ U(x∗, r∗), k = 0, 1, . . . , n.
As in (36) we obtain the approximation

xk+1 − x∗ = [A−1
k A∗]A−1

∗
{ 1�

0

[F ′(θxk + (1− θ)x∗)(51)

− F ′(θF (xk) + (1− θ)F (xk))]
}

(xk − x∗) dθ.

By (51), (41)–(43) we get

‖xk+1 − x∗‖ ≤
γ

2
‖xk − F (xk)‖+ ‖F (xk)− F (x∗)‖

1− q‖xk − x∗‖
‖xk − x∗‖,(52)

‖xk − F (xk)‖ ≤ ‖xk − x∗‖+ ‖F (x∗)− F (xk)‖ ≤ (1 + β)‖xk − x∗‖.(53)

Therefore we obtain

‖xk+1 − x∗‖ ≤
γ

2
(1 + β)‖xk − x∗‖+ β‖xk − x∗‖

1− αβ‖xk − x∗‖
‖xk − x∗‖ < ‖xk − x∗‖,

which shows xk+1 ∈ U(x∗, r∗) and limk→∞ xk = x∗.
That completes the proof of Theorem 3.

Remark 2. As noted in [3]–[6], [11] the local results obtained here can
be used for projection methods such as Arnoldi’s, the generalized minimum
residual method (GMRES), the generalized conjugate method (GCR), for
combined Stirling’s finite difference projection methods and in connection
with the mesh independence principle in order to develop the cheapest and
most efficient mesh refinement strategies [4], [6].

Remark 3. The local results obtained here can also be used to solve
(1), where F ′ satisfies the autonomous differential equation [3], [4], [7]

(54) F ′(x) = T (F (x)),

where T : X → X is a known continuous operator. Since F ′(F (x∗)) =
T (F (F (x∗))) = T (F (0)), we can apply the results obtained here without
actually knowing the fixed point x∗ of F .

We finally complete this study with a numerical example:

Example 1. Let X = D = U(0, 1) and define F on D by

(55) F (x) = ex − x− 1.
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Using (40)–(43), (45), (46) and (55) we obtain (for x∗ = 0)

α = e− 1, β = e− 2, γ = e

and
r∗ = .219981153.

The results obtained in [8] require

(56) ‖F ′(x)‖ < 1 for all x ∈ D.
But (55) gives

(57) ‖F ′(x)‖ ≤ a = e− 1 > 1.

Hence, these results cannot be used here. Note that Theorem 2 does not
require a ∈ [0, 1) but a0 ∈ [0, 1) where a0 ≤ a (in general) and a/a0 can be
arbitrarily large [3], [4], [7]. Using

(58) ‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ w‖x− y‖,
Rheinboldt [9] showed that the convergence radius for Newton’s method

(59) xn+1 = xn − F ′(xn)−1F (xn) (x0 ∈ D, n ≥ 0)

is given by

(60) r =
2

3w
.

However w cannot be computed here since F ′(x∗) is not invertible.
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