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BOUNDED SOLUTIONS FOR ARMA MODEL WITH
VARYING COEFFICIENTS

Abstract. The paper deals with ARMA systems of equations with vary-
ing coefficients. A complete description of bounded solutions to ARMA(1, q)
systems is obtained and their uniqueness is studied. Some special cases are
discussed, including the case of significant interest of systems with periodic
coefficients. The paper generalizes results of [9] and opens a new direction
of study.

1. Introduction. An ARMA(p, q) system is a system of linear equa-
tions

Xn −
p∑

k=1

bk(n)Xn−k =
q−1∑

j=0

aj(n)ξn−j, n ∈ Z,(1)

where (bk(n)), k = 1, . . . , p, and (ak(n)), k = 0, . . . , q − 1, are sequences
of complex numbers, bk(n) 6= 0 for all k = 1, . . . , p and n ∈ Z, and (ξn)
is a sequence of uncorrelated complex random variables with mean zero
and unit variances. In what follows, Z will stand for the set of all integers.
All random variables X are complex of second order and mean zero. The
correlation E(XY

′
) of X and Y is denoted by (X,Y ) and the variance of X

by ‖X‖2. The L2-closed linear space generated by the sequence ξn, n ∈ Z, is
denoted by Mξ. The space Mξ with norm ‖·‖ is a Hilbert space; in particular
the sequence (ξn) is orthonormal in Mξ.

The notation limn→∞Xn = Y , for {Xn} a stochastic sequence and Y a
random variable, will mean limn→∞ ‖Xn − Y ‖2 = 0. Throughout the paper
we use the convention that if s < r then

∏s
k=r ck = 1 and

∑s
k=r ck = 0.
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Any sequence (Xn) in Mξ that satisfies (1) is called a solution. A solu-
tion (Xn) is bounded if supn∈Z ‖Xn‖2 < ∞. We consider first the system
ARMA(1, q) defined as

Xn − bnXn−1 =
q−1∑

p=0

ap(n)ξn−p, n ∈ Z,(2)

where the coefficients and innovations have the same properties as in the
general model. Let

Yn =
q−1∑

p=0

ap(n)ξn−p, Bn
k =

n∏

j=k

bj .

It is obvious that an initial value X0 = X determines a solution (Xn) of (2).
Indeed, iterating the equation (2) k times we find that for all n ∈ Z and
k ≥ 1,

Xn = Bn
n−k+1Xn−k +

k−1∑

s=0

Bn
n+1−sYn−s,(3)

Xn =
Xn+k

Bn+k
n+1

−
k∑

j=1

1

Bn+j
n+1

Yn+j.(4)

If in (3) we let n ≥ 1 and k = n, and in (4) for each n ≤ −1 we let k = −n,
then we obtain

Xn =





Bn
1X0 +

0∑

j=1−n
Bn
n+1+jYn+j if n ≥ 1,

X0

B0
n+1
−
−n∑

j=1

1

Bn+j
n+1

Yn+j if n ≤ −1.

(5)

This formula describes all solutions. In this note we deal with the problem
whether there is a bounded solution among them and when it is unique. Sys-
tems like (2) arise in the time series framework and the uniqueness of solution
and its form are important in the analysis of such models. If (bn) and (ak(n))
do not depend on n, then (2) takes the form Xn−bXn−1 =

∑q−1
p=0 apξn−p, and

is a special case of a stationary ARMA system ([4]). It is well known that
such a system has a unique bounded solution iff |b| 6= 1, the solution is sta-
tionary and has a one-sided moving average representation. Recently ARMA
systems with periodic coefficients (PARMA) became of significant interest
(for example see [1], [2], [3], [8], [11], [14], [16]). Such systems arise in cli-
matology, economics, hydrology, electrical engineering and other disciplines.
They are usually treated by converting them to vector ARMA systems [14],
[16], which yields some conditions for existence of a unique bounded so-
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lution. An alternative method of treatment of such systems was proposed
in [3].

To our knowledge the only system of the form (2) with nonperiodic co-
efficients was studied in [9], where (bn) was assumed to be almost periodic,
q = 1 and a0(n) = 1. Under these assumptions the authors found some suf-
ficient conditions for existence of a unique bounded solution, which turned
out to be almost periodically correlated. They also derived conditions for ex-
istence and uniqueness of a bounded solution to the PAR(1) system without
referring to vector ARMAs.

In this note we give necessary and sufficient conditions for the system
(2) to have a unique bounded solution and obtain its form, without any
additional assumptions on the coefficients (bn) and (ak(n)). Some simple
cases are also discussed, e.g. the case of constant and periodic coefficients.
In the last section we discuss necessary conditions in general ARMA(p, q)
model to have a bounded solution.

2. ARMA(1, q) system. We will follow the approach from [9] and split
the analysis into three cases:

(C1) sup
n≥1
|Bn

1 | =∞,

(C2) sup
n≤0
|B0

n|−1 =∞,

(C3) sup
n≥1
|Bn

1 | <∞ and sup
n≤0
|B0

n|−1 <∞.

If bn = b = const, they correspond to the cases |b| > 1, |b| < 1, |b| = 1.
The following lemma will be used repeatedly.

Lemma 2.1. Let cj , j ∈ Z, be a sequence of scalars,

Yn =
q−1∑

p=0

ap(n)ξn−p,

and let M < N , M,N ∈ Z. Then

M∑

j=N

cjYn+j =
M+n∑

k=N+n−q+1

(min(M,q−1+k−n)∑

j=max(N,k−n)

cjan+j−k(n+ j)
)
ξk,(6)

∥∥∥
M∑

j=N

cjYn+j

∥∥∥
2

=
M+n∑

k=N+n−q+1

∣∣∣
min(M,q−1+k−n)∑

j=max(N,k−n)

cjan+j−k(n+ j)
∣∣∣
2
.(7)

Proof. Since Yn =
∑q−1

p=0 ap(n)ξn−p, we have

(Yn+j, ξk) =
{
an+j−k(n+ j) if n+ j − q + 1 ≤ k ≤ n+ j,

0 otherwise.
(8)
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It follows that for a fixed k the inner product (Yn+j, ξk) is possibly nonzero
only if k − n ≤ j ≤ q − 1 + k − n. Hence

( M∑

j=N

cjYn+j, ξk

)
=

min(M,q−1+k−n)∑

j=max(N,k−n)

cjan+j−k(n+ j).(9)

The sum above is 0 if k − n > M or q − 1 + k − n < N . Therefore
M∑

j=N

cjYn+j =
M+n∑

k=N+n−q+1

(min(M,q−1+k−n)∑

j=max(N,k−n)

cjan+j−k(n+ j)
)
ξk,

which implies (7) since (ξn) is orthonormal.

Proposition 2.1. Suppose that supn≥1 |Bn
1 | =∞. Then the system (2)

has a bounded solution in Mξ iff

sup
n∈Z

∞∑

s=2−q

∣∣∣∣
q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
∣∣∣∣
2

<∞.(10)

Moreover , if this is the case, then there is a unique bounded solution of (2)
in Mξ and it is given by

Xn = −
∞∑

s=2−q

[ q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
]
ξn+s.(11)

Proof. Suppose first that (Xn) is a bounded solution of (2). Since
supr |Br

1| = ∞ and all bk’s are nonzero, for every n there is a sequence kr
such that limr |Bn+kr

n+1 | =∞. Hence, from (4), we conclude that for every n,

Xn = − lim
r

kr∑

j=1

1

Bn+j
n+1

Yn+j.

From Lemma 2.1 we have
kr∑

j=1

1

Bn+j
n+1

(Yn+j, ξk) =
min(kr ,q−1+k−n)∑

j=max(1,k−n)

1

Bn+j
n+1

an+j−k(n+ j).

Letting r →∞, we obtain

(Xn, ξk) = − lim
r

kr∑

j=1

1

Bn+j
n+1

(Yn+j, ξk) =
q−1+k−n∑

j=max(1,k−n)

1

Bn+j
n+1

an+j−k(n+ j)

if k > 1− q + n, and (Xn, ξk) = 0 if k ≤ 1− q + n. Therefore

Xn = −
∞∑

k=2+n−q

[ q−1+k−n∑

j=max(1,k−n)

1

Bn+j
n+1

an+j−k(n+ j)
]
ξk,
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which after substituting s = k − n gives (11). This also shows that the
solution is unique. The variance of Xn is

‖Xn‖2 =
∞∑

s=2−q

∣∣∣∣
q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
∣∣∣∣
2

,

hence (Xn) is bounded iff (10) holds.
Conversely, suppose that (10) is satisfied. Define

SMn = −
M∑

j=1

1

Bn+j
n+1

Yn+j, n ∈ Z, M ≥ 1.

From Lemma 2.1 it follows that

SMn = −
M+n∑

k=2+n−q

(min(M,q−1+k−n)∑

j=max(1,k−n)

1

Bn+j
n+1

an+j−k(n+ j)
)
ξk.

Therefore (10) implies that for each fixed n, the limit Xn = limM→∞ SMn
exists and is given by (11). From the latter and (10) it follows that Xn ∈Mξ

and supn∈Z ‖Xn‖ <∞. Note that

SMn − bnSMn−1 = Yn −
1

Bn+M
n+1

Yn+M .(12)

The last term in (12) equals SMn − SM−1
n and hence it converges to zero.

Therefore, letting M →∞, we conclude that

Xn − bnXn−1 = Yn − lim
M

(
1

Bn+M
n+1

Yn+M

)
= Yn,

that is, (Xn) satisfies (2).

Note that in fact we have proved that if the series (11) converges, then
(Xn) is a solution (possibly unbounded) of the system, even if supn≥1 |Bn

1 |
<∞.

Proposition 2.2. Suppose that supn≤−1 |B0
n|−1 = ∞. Then the system

(2) has a bounded solution in Mξ iff

sup
n∈Z

∞∑

s=0

∣∣∣
min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

∣∣∣
2
<∞.(13)

Moreover , if this is the case, then (2) has a unique bounded solution in Mξ

which is given by

Xn =
∞∑

s=0

[min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

]
ξn−s.(14)
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Proof. The proof is similar to the proof of Proposition 2.1, so we only
sketch it. If supr |B1

r |−1 =∞, then for every n there is a sequence kr→∞
such that limr |Bn+1

n−kr+1| = 0. Suppose first that (Xn) is a bounded solution
of (2). Then from (3) it follows that

Xn = lim
r

0∑

j=1−kr
Bn+1
n+j+1Yn+j.

Using Lemma 2.1 we conclude that

Xn =
∞∑

s=0

[min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

]
ξn−s,

which also yields (13).
Conversely, suppose that (13) is satisfied; let SMn =

∑0
j=1−M Bn+1

n+j+1Yn+j.

From Lemma 2.1 it follows that SMn converges, as M →∞, to

Xn =
∞∑

s=0

[min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

]
ξn−s.

By (13) the sequence (Xn) is bounded. As SMn −bnSMn−1 = Yn−Bn
n+1−MYn−M

and Bn
n+1−MYn−M = SM+1

n − SMn , the sequence (Xn) satisfies (2).

Note again that in fact we have proved that for (Xn) to be a solution
(possibly unbounded) of the system it is enough that the series (14) con-
verges.

Proposition 2.3. Suppose that supr |Br
1| < ∞ and supr |B0

r |−1 < ∞.
Then (2) has a bounded solution iff

sup
n≥1

n+q−2∑

s=0

∣∣∣
min(0,q−1−s)∑

j=max(1−n,−s)
Bn
n+1+jaj+s(n+ j)

∣∣∣
2
<∞,(15)

sup
n≤−1

−n∑

s=2−q

∣∣∣∣
min(0−n,q−1+s)∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)

∣∣∣∣
2

<∞.(16)

In this case (2) has infinitely many bounded solutions given by (5).

Proof. Since the sequences |Bn
1 |, n ≥ 1, and |1/B0

n+1|, n ≤ −1, are
bounded, the sequence (Xn) in (5) is bounded iff

sup
n≥1

∥∥∥
0∑

j=1−n
Bn
n+1+jYn+j

∥∥∥
2
<∞, sup

n≤−1

∥∥∥∥
−n∑

j=1

1

Bn+j
n+1

Yn+j

∥∥∥∥
2

<∞.(17)
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Using Lemma 2.1 we obtain

∥∥∥
0∑

j=1−n
Bn
n+1+jYn+j

∥∥∥
2

=
n∑

k=2−q

∣∣∣
min(0,q−1+k−n)∑

j=max(1−n,k−n)

Bn
n+1+jan+j−k(n+ j)

∣∣∣
2
,

which implies (15). A similar computation shows that the second condition
in (17) is equivalent to (16).

Since cases (C1)–(C3) cover all possible situations, we obtain the follow-
ing theorem.

Theorem 2.1. The system (2) has a bounded solution iff at least one of
the following three conditions is satisfied :

I. sup
n∈Z

∞∑

s=2−q

∣∣∣∣
q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)

∣∣∣∣
2

<∞,

II. sup
n∈Z

∞∑

s=0

∣∣∣
min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

∣∣∣
2
<∞,

III. (i) sup
n≥1

n+q−2∑

s=0

∣∣∣
min(0,q−1−s)∑

j=max(1−n,−s)
Bn
n+1+jaj+s(n+ j)

∣∣∣
2
<∞,

(ii) sup
n≤−1

−n∑

s=2−q

∣∣∣∣
min(0−n,q−1+s)∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)

∣∣∣∣
2

<∞.

Conditions I–III are not disjoint and none of them implies uniqueness of a
bounded solution. To see this, it is enough to take ak(n) ≡ 0, k = 0, . . . , q−1.

The following theorem gives sufficient and necessary conditions for exis-
tence of a unique bounded solution of (2). The theorem follows immediately
from Propositions 2.1–2.3.

Theorem 2.2. The system (2) has a unique bounded solution iff either

I. (i) sup
n≥1
|Bn

1 | =∞,

(ii) sup
n∈Z

∞∑

s=2−q

∣∣∣∣
q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
∣∣∣∣
2

<∞, or

II. (i) sup
n≤−1

|B0
n|−1 =∞,

(ii) sup
n∈Z

∞∑

s=0

∣∣∣
min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

∣∣∣
2
<∞.
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If I is satisfied then the solution has the form

Xn = −
∞∑

s=2−q

[ q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
]
ξn+s.

If II is satisfied then the solution is given by

Xn =
∞∑

s=0

[min (0,q−1−s)∑

j=−s
Bn
n+j+1as+j(n+ j)

]
ξn−s.

Conditions I and II are not disjoint. It is possible that both supn≥1 |Bn
1 |

and supn≤−1 |B0
n|−1 are infinite. If this is the case and the system has a

bounded solution, then one can show that the coefficients (bn) and (ak(n))
must satisfy

q−1+k−n∑

j=k−n
Bk+q−1
n+j+1aj+k−n(n+ j) = 0 for all n, k.

In particular, if q = 1 then conditions I and II are satisfied simultaneously
only if the system is homogeneous, that is, if a0(n) ≡ 0.

3. Examples. In this section we examine some special systems. Most
of the results derived here are known or may be obtained in a more straight-
forward way. Our purpose is to illustrate Theorems 2.1 and 2.2 and their
consistency with known results.

3.1. Homogeneous system. Let q = 1 and a0(n) ≡ 0, so the system (2)
takes the form

Xn − bnXn−1 = 0, n ∈ Z.(18)

Then conditions I–III of Theorem 2.1 and conditions I(ii) and II(ii) of The-
orem 2.2 are trivially satisfied. Since Xn = 0 satisfies (18), from Theo-
rem 2.2 we conclude that the system (18) has a nonzero bounded solution
iff supn≥1 |Bn

1 | <∞ and supn≤−1 |B0
n|−1 <∞.

3.2. Constant coefficients. Suppose that bn = b and aj(n) = aj , j =
0, . . . , q − 1, do not depend on n, that is,

Xn − bXn−1 =
q−1∑

p=0

apξn−p, n ∈ Z.(19)

Then Br
s = bs−r+1 for s ≥ r, supn≥1 |Bn

1 | =∞ iff |b| > 1, and supn≤−1 |B0
n|−1

=∞ iff |b| < 1. If |b| > 1 then the sum in (10) equals
0∑

s=2−q

∣∣∣∣
q−1+s∑

j=1

aj−s
bj

∣∣∣∣
2

+
∞∑

s=1

1
|b|s
∣∣∣∣
q−1∑

k=0

ak
bk

∣∣∣∣
2

,
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which is finite and does not depend on n. Hence if |b| > 1 then I(ii) of
Theorem 2.2 holds true. Similarly, if |b| < 1, then II(ii) is satisfied. Therefore
from Theorem 2.2 we obtain

If |b| 6= 1 then the system (19) has a unique bounded solution
given by

Xn =





−
∞∑

s=2−q

[ q−1+s∑

j=max(1,s)

aj−s
bj

]
ξn+s if |b| > 1,

∞∑

s=0

[ s∑

j=max(0,s−q+1)

bjas−j
]
ξn−s if |b| < 1.

Clearly (Xn) is stationary , that is, (Xn,Xm) depends only on
n−m.

If |b| = 1 then the assumptions of Proposition 2.3 are satisfied, and so the
system (19) has a bounded solution iff z = 1/b is a zero of a polynomial∑q−1

k=0 akz
k (see [4]).

3.3. ARMA(1, 1). Suppose now that q = 1. Then the system (2) takes
the form

Xn − bnXn−1 = a0(n)ξn, n ∈ Z.(20)

By Theorem 2.2, the system (20) has a unique bounded solution iff either

I. (i) sup
n≥1
|Bn

1 | =∞ and (ii) sup
n∈Z

∞∑

s=1

|a0(n+ s)/Bn+s
n+1|2 <∞,

or

II. (i) sup
n≤−1

|B0
n|−1 =∞ and (ii) sup

n∈Z

∞∑

s=0

|Bn
n−s+1a0(n− s)|2 <∞.

If a0(n) = const 6= 0 then condition I(ii) above implies I(i), and II(ii) implies
II(i). In particular, if a0(n) ≡ 1 our conditions are consistent with those
obtained in [9].

3.4. Homogeneous variance system. Consider a system

Xn − bnXn−1 = ηn + ηn−1 + · · ·+ ηn−q+1, n ∈ Z,(21)

where bn 6= 0, n ∈ Z, and (ηn) is a sequence of uncorrelated complex random
variables with mean zero and possibly varying variances ‖ηn‖2 = |an|2. The
system above was introduced and studied in [17]. Writing ηn = anξn, n ∈ Z,
we see that (21) is of the form (2) with ak(n) = an−k, k = 0, . . . , q−1, n ∈ Z.
From Theorem 2.2 and the discussion thereafter we conclude that the system
(21) has a unique bounded solution iff at least one of the following two sets
of conditions is satisfied:
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I. (i) sup
n≥1
|Bn

1 | =∞,

(ii) sup
n∈Z

[ 0∑

s=2−q

∣∣∣∣
q−1+s∑

j=1

1

Bn+j
n+1

∣∣∣∣
2

|an+s|2+
∞∑

s=1

∣∣∣∣
q−1+s∑

j=s

1

Bn+j
n+1

∣∣∣∣
2

|an+s|2
]
<∞;

II. (i) sup
n≤−1

|B0
n|−1 =∞,

(ii) sup
n∈Z

[ q−2∑

s=0

∣∣∣
0∑

j=−s
Bn
n+j+1

∣∣∣
2
|an−s|2+

∞∑

s=q−1

∣∣∣
q−1−s∑

j=−s
Bn
n+j+1

∣∣∣
2
|an−s|2

]
<∞.

3.5. Periodic coefficients. Suppose all the sequences (bn) and (ak(n)),
k = 0, . . . , q − 1, are periodic in n with the same period T > 1. Then
supk,n |ak(n)| < ∞. Since bn’s are nonzero, also infn |bn| < ∞. Define P =
b1 · · · bT . Then supn≥1 |Bn

1 | = ∞ iff |P | > 1 and supn≤−1 |B0
n|−1 = ∞ iff

|P | < 1.
Suppose first |P | > 1. Then

∞∑

s=2−q

∣∣∣∣
q−1+s∑

j=max(1,s)

1

Bn+j
n+1

aj−s(n+ j)
∣∣∣∣
2

≤ C+
∞∑

s=1

∣∣∣∣
q−1+s∑

j=s

1

Bn+j
n+1

aj−s(n+ j)
∣∣∣∣
2

≤ C +
∞∑

s=1

∣∣∣∣
q−1∑

w=0

1
Bn+w+s
n+1

aw(n+ w + s)
∣∣∣∣
2

≤ C +
∞∑

N=0

T∑

k=1

∣∣∣∣
q−1∑

w=0

1

Bn+w+NT+k
n+1

aw(n+ w +NT + k)
∣∣∣∣
2

≤ C +
∞∑

N=0

T∑

k=1

∣∣∣∣
q−1∑

w=0

1

PNBn+w+k
n+1

aw(n+ w + k)

∣∣∣∣
2

≤ C +
∞∑

N=0

|P |−2N
T∑

k=1

∣∣∣∣
q−1∑

w=0

1

Bn+w+k
n+1

aw(n+ w + k)

∣∣∣∣
2

<∞,

and hence condition I(ii) of Theorem 2.2 is satisfied. A similar computation
shows that if |P | < 1, then condition II(ii) of Theorem 2.2 is satisfied. Thus
we have proved the following theorem.

Theorem 3.1. If (bn) and (ak(n)), k = 0, 1, . . . , q− 1, are periodic with
the same period T and P = b1 · · · bT , then the system (2) has a unique
bounded solution iff |P | 6= 1. Moreover , the solution is given by (11) if
|P | > 1, and by (14) if |P | < 1.

The form of the solution shows that it is periodically correlated, that
is, the correlation (Xn,Xn+k) is T -periodic in n for every k (see [6], [7],
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[12], [17]). We point out that having a one-sided series representation of the
solution is important in the problem of prediction of such processes ([13]).

4. ARMA(p, q) system. In the last section we consider the general case
of ARMA(p, q) system. Following [3] define

Bn =




b1(n) b2(n) . . . bp−1(n) bp(n)

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



,(22)

Bn
k = BnBn−1 · · ·Bk, n ≥ k.(23)

Let Yn = [Yn, 0, . . . , 0]′ and Xn = [Xn,Xn−1, . . . ,Xn−p+1]′, where Yn =∑q−1
p=0 ap(n)ξn−p and [. . .]′ denotes the column vector. Then (see [3])

Xn = BnXn−1 + Yn.(24)

Consequently,

Xn = Bn
n−k+1Xn−k +

k−1∑

s=0

Bn
n+1−sYn−s, k > 0,(25)

where Bn
j = I if j > n. Since all matrices Bn

j are invertible, also

Xn = (Bn+k
n+1)−1Xn+k −

k∑

j=1

(Bn+j
n+1)−1Yn+j, k > 0.(26)

The formulas above are almost exact copies of (3) and (4) respectively,
which were the starting points in our analysis, and some partial results can
be derived from them.

Let aj(n) be the p× p matrix defined as

aj(n) =




aj(n) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



.

The following proposition which gives a condition for bounded and unique
solution of the ARMA(p, q) system is a generalization of Proposition 2.1:
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Proposition 4.1. Suppose that supn≥1 ‖(Bn
1 )−1‖ = 0. Then the system

(24) has a bounded solution in Mξ iff

sup
n∈Z

∞∑

s=2−q

∥∥∥
q−1+s∑

j=max(1,s)

(Bn+j
n+1)−1aj−s(n+ j)

∥∥∥
2
<∞.(27)

Moreover , if this is the case, then there is a unique bounded solution of (24)
in Mξ and it is given by

Xn = −
∞∑

s=2−q

[ q−1+s∑

j=max(1,s)

(Bn+j
n+1)−1aj−s(n+ j)

]
Ξn+s,(28)

where Ξn is the column p-vector [ξn, 0, . . . , 0]′.

Unfortunately, in the general case conditions for bounded solution of an
ARMA(p, q) system are more complex. Notice that the matrix formula (27)
is difficult to verify. We hope that simpler conditions can be derived by
other methods. For example a promising reference is [5, Th. 2.3], where the
sufficient conditions are considered in the framework of locally stationary
processes. However, the resulting conditions are also difficult to verify in a
practical situation.
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