MICHAŁ OLECH (Wrocław)

NONUNIQUENESS OF STEADY STATES IN ANNULAR DOMAINS FOR STREATER EQUATIONS

Abstract. Models introduced by R. F. Streater describe the evolution of the density and temperature of a cloud of self-gravitating particles. We study nonuniqueness of steady states in annular domains in \mathbb{R}^d , $d \geq 2$.

1. History of the problem and physical motivation. The system we will deal with is of the form

(1)
$$u_{t} = -\nabla \cdot \mathbf{j},$$

$$(u\theta)_{t} = \nabla \cdot (\lambda \nabla \theta) - \nabla \cdot (\theta \mathbf{j}) - \nabla (\phi + \phi_{0}) \cdot \mathbf{j},$$

$$\Delta \phi = u,$$

where $\mathbf{j} = -\kappa \left(\nabla u + \frac{u}{\theta}(\nabla \phi + \nabla \phi_0)\right)$. We will supplement this system with the following boundary conditions for u and θ :

(2)
$$\frac{\partial u}{\partial \nu} + \frac{u}{\theta} (\partial_{\nu} \phi + \partial_{\nu} \phi_0) = 0,$$

(3)
$$\frac{\partial \theta}{\partial \nu} = 0,$$

and we will consider two kinds of boundary conditions for ϕ :

(4) either the Dirichlet condition:
$$\phi = 0$$
 on $\partial \Omega$,

(5) or the "free" condition:
$$\phi = E_d * u_{\Omega}$$
,

where $u_{\Omega}(x) = u(x)$ in Ω and vanishes outside Ω , and (f * g)(x) means the convolution $\int_{\Omega} f(x-y)g(y) dy$ (E_d denotes the fundamental solution of the Laplacian in \mathbb{R}^d). We call (1) with (2)–(4) the Dirichlet problem, and (2), (3), (5) the "free" problem.

These systems describe the evolution of the density $u(x,t) \geq 0$ and the temperature $\theta(x,t) > 0$ in a cloud of self-gravitating particles under the

²⁰⁰⁰ Mathematics Subject Classification: 35Q, 35J60, 82C21.

Key words and phrases: Streater's models, existence and uniqueness of stationary solutions, Poisson–Boltzmann–Emden equation, phase plane method.

external potential $\phi_0(x)$ with self-induced potential ϕ . The coefficients κ and λ are nonnegative functions of x, u, θ and ϕ . Furthermore, they can vanish only when $\theta = 0$.

In [9] this system has been derived by Streater from the Smoluchowski equation (see [8]). This was generalized in [2] to the case of gravitational and electric self-interactions.

Some results on existence and uniqueness of solutions for (1) can be found e.g. in [3] and in the references therein.

2. Steady states equation. Following [1] we begin by recalling basic properties of solutions to (1)–(5).

PROPOSITION 2.1. For sufficiently smooth solutions of the Dirichlet and the "free" problem we have:

- (i) the mass $M = \int_{\Omega} u \, dx$ and the energy $E = \int_{\Omega} u \left(\theta + \phi_0 + \frac{1}{2}\phi\right) dx$ of the system are constant in time,
- (ii) the entropy

$$W = \int_{\Omega} u \log \left(\frac{u}{\theta}\right) dx$$

does not increase in time.

Proof. The first assertion follows easily from the boundary conditions, the Gauss–Green theorem and (1). For the entropy, a direct calculation shows that

(6)
$$\frac{dW}{dt} = \frac{d}{dt} \int_{\Omega} u \log \frac{u}{\theta} \, dx = \int_{\Omega} u_t \log \frac{u}{\theta} \, dx + \int_{\Omega} \left(\frac{u}{\theta}\right)_t \cdot \frac{\theta}{u} \, dx$$
$$= -\int_{\Omega} \frac{1}{\theta} \nabla \cdot (\lambda \nabla \theta) \, dx - \int_{\Omega} \left(\frac{\nabla u}{u} + \frac{1}{\theta} (\nabla \phi + \nabla \phi_0) \cdot \mathbf{j}\right) \, dx$$
$$= -\int_{\Omega} \lambda \frac{|\nabla \theta|^2}{\theta^2} \, dx - \int_{\Omega} \kappa u \left|\frac{\nabla u}{u} + \frac{1}{\theta} (\nabla \phi + \nabla \phi_0)\right|^2 \, dx \le 0,$$

which completes the proof.

For a steady state $(u_{\infty}, \theta_{\infty})$ (i.e. a solution independent of time), the entropy of the system is constant. From this trivial fact and from (6) we deduce that

$$\nabla u_{\infty} + \frac{u_{\infty}}{\theta_{\infty}} \nabla (\phi_{\infty} + \phi_0)$$

vanishes a.e. in Ω , and the temperature is constant: $\theta_{\infty} = \text{const.}$ Multiplying by the nonzero factor $e^{(\phi_{\infty} + \phi_0)/\theta_{\infty}}$ and integrating, we obtain the equation

for steady states

(7)
$$u_{\infty} = \frac{Me^{-(\phi_{\infty} + \phi_0)/\theta_{\infty}}}{\int_{\Omega} e^{-(\phi_{\infty} + \phi_0)/\theta_{\infty}} dx}.$$

For simplicity of notation we write $\phi_{\infty} := \phi$, $\theta_{\infty} := \theta$, $u_{\infty} := u$, and we will consider only the case $\phi_0 \equiv 0$.

As shown in [1], if we put $\phi = \theta \psi$ in (7), the energy relation becomes

$$E = \int_{\Omega} u \left(\theta + \frac{1}{2} \phi \right) dx = \theta \int_{\Omega} u \, dx + \frac{\theta^2}{2} \int_{\Omega} u \psi \, dx = \theta M + \frac{\theta^2}{2} \int_{\Omega} \psi \Delta \psi \, dx.$$

Then we can replace the problem of determination of steady states with prescribed mass M > 0 and energy E by the problem

$$\left(\frac{E}{M^2}\right)m^2 = m - \frac{1}{2}\int_{\Omega} \psi \Delta \psi \, dx = \mathcal{E}(m, \psi),$$

where $m = M/\theta$ and ψ solves the Poisson-Boltzmann-Emden equation

(8)
$$\Delta \psi = m \frac{e^{-\psi}}{\int_{\Omega} e^{-\psi} dx} \quad \text{in } \Omega,$$

$$\psi = 0 \quad \text{on } \partial \Omega$$

for the Dirichlet problem, and

(9)
$$\psi = \frac{m}{\int_{\Omega} e^{-\psi} dx} E_d * e^{-\psi}$$

for the "free" problem.

3. k-symmetric solutions for the Dirichlet problem. In this section we will deal with the two-dimensional Dirichlet problem (8) in an annular domain. Recall that the existence of radial solutions for all values of m > 0 was proved in [4]. Here we show the existence of nonradial solutions. Moreover, we show nonuniqueness of solutions and we study their exact shape.

To do this we take advantage of a reasoning from [7], concerning the existence, for $\lambda \geq 0$, of solutions of the problem

(10)
$$\Delta v + \lambda e^{v} = 0 \quad \text{in } \Omega,$$
$$v = 0 \quad \text{on } \partial \Omega.$$

Without loss of generality, we set $\Omega = \{x \in \mathbb{R}^2 : 0 < a < |x| < 1\}$. Let $T_k x$ be the rotation of point x about the origin through $2\pi/k$, where $k = 1, 2, 3, \ldots$, and let

$$V_k = \{ v \in H_0^1(\Omega) : v(T_k x) = v(x) \text{ a.e. in } \Omega \},$$

$$V_{\infty} = \{ v \in H_0^1(\Omega) : v \text{ is radial } \}.$$

Then V_k and V_{∞} are closed subspaces of $H_0^1(\Omega)$.

It is evident that for $v \in V_k$ $(k = \infty, 1, 2, 3, ...)$ and $\lambda \in \mathbb{R}$, if w solves

$$\Delta w + \lambda e^v = 0$$
 in Ω ,
 $w = 0$ on $\partial \Omega$,

then w also belongs to V_k .

Next we introduce two functionals

(11)
$$\Phi(v) = \int_{\Omega} e^{v(x)} dx,$$

(12)
$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v(x)|^2 dx,$$

and define for every $k \in \mathbb{N}$ a subset of V_k by

$$K_{k,\mu} = \{ v \in V_k : \Phi(v) = \mu \} \quad \text{ for } \mu \in \mathbb{R}.$$

Let $j_k[\mu] = \inf_{v \in K_{k,\mu}} J(v)$ whenever $K_{k,\mu} \neq \emptyset$. We will say that v is k-symmetric when $v \in V_k$ and $v \notin V_l$ for any l > k.

Our goal is to prove

THEOREM 3.1. For every $k \in \mathbb{N}$ there exists a k-symmetric solution of the Dirichlet problem (8) for some m > 0.

In [7] the following is proved:

Theorem 3.2. For every $k = \infty, 1, 2, 3, \ldots$ such that $K_{k,\mu} \subset V_k$ is not empty there exists $v_{\mu} \in K_{k,\mu}$ which minimizes (12) (i.e. $j_k[\mu] = J(v_{\mu})$). Moreover, the minimizer v_{μ} solves

$$\Delta v_{\mu} + \lambda_{\mu} e^{v_{\mu}} = 0 \quad \text{in } \Omega,$$

$$v_{\mu} = 0 \quad \text{on } \partial\Omega,$$

for some parameter $\lambda_{\mu} \in \mathbb{R}$.

We also need two technical lemmas (for details see [7, Lemmas 3.3 and 3.4]).

Lemma 3.3. For every $k \in \mathbb{N}$ and sufficiently large μ we have

$$j_k[\mu] < j_{\infty}[\mu].$$

Lemma 3.4. For every $k \in \mathbb{N}$ we have

$$j_1[\mu] \le j_2[\mu] \le \cdots \le j_k[\mu] \le \cdots \le j_\infty[\mu].$$

Moreover, $j_k[\mu] < j_{\infty}[\mu]$ implies

$$j_1[\mu] < j_2[\mu] < \dots < j_k[\mu].$$

Notice that for $\mu > |\Omega|$ we have $\lambda > 0$ and the solution $v \in K_{k,\mu}$ of the minimization problem also solves (10). Indeed, suppose, on the contrary,

that $\lambda < 0$. From the maximum principle for elliptic problems we have $v \leq 0$ in Ω . Then

$$\mu = \int_{\Omega} e^{v} dx \le \int_{\Omega} 1 dx = |\Omega|,$$

which contradicts the assumption $\mu > |\Omega|$.

Now we recall the main theorem from [7, Th. 3.5] with its proof.

THEOREM 3.5. For all $k \in \mathbb{N}$ there exists μ_k such that for all $\mu > \mu_k$ the problem (10) has a k-symmetric solution. This solution satisfies

$$\int_{\Omega} e^{v} dx = \mu.$$

Proof. By Lemma 3.3 and Theorem 3.2 there exists $v = v_{k,\mu} \in V_k$ such that $J(v) = j_k[\mu] < j_{\infty}[\mu]$ for some μ sufficiently large. It suffices to show that v is k-symmetric.

Suppose, contrary to our claim, that there exists a natural number l > k such that $v \in V_l$. Then

$$j_l[\mu] \le J(v) = j_k[\mu] < j_{\infty}[\mu],$$

which contradicts Lemma 3.4.

Now let us put $v \mapsto -v$ in (10). Then we obtain

$$\Delta v = \lambda e^{-v} \quad \text{in } \Omega,$$

$$v = 0 \quad \text{on } \partial \Omega,$$

 $\Phi(-v) = \Phi_1(v) = \int_{\varOmega} e^{-v} dx$, and (8) takes the form

$$\Delta v = \frac{m}{\Phi_1(v)} e^{-v}$$
 in Ω ,
 $v = 0$ on $\partial \Omega$

Proof of Theorem 3.1. From Theorem 3.5 we have a k-symmetric solution to the problem (10) for sufficiently large values of $\mu = \Phi_1(v)$. This solution solves (8) with $m = \lambda \mu$.

Since (8) has radial solutions for all m > 0 (see [4]), the following corollary is obvious:

COROLLARY 3.6. There is nonuniqueness of solutions for the problem (8) in a two-dimensional annulus for some values of m > 0.

4. Radial solutions for the "free" problem. Now we will analyze (9) using dynamical systems methods. An example of use of this method is in [3].

Existence results for solutions to the problem (9) can be found in [3] and the references therein.

Our main goal in this section is to prove

THEOREM 4.1. For any a and some values of A and m, the "free" problem (9) has at least two radial solutions in $\Omega_a^A = \{x \in \mathbb{R}^d : 0 < a < |x| < A < \infty \}$ for $3 \le d \le 9$.

Assume that ψ is radial. Abusing the notation, we set $\psi(x) = \psi(|x|) = \psi(r)$. Then ψ solves

(13)
$$\psi = \frac{m}{\int_{\mathcal{O}} e^{-\psi} dx} E_d * e^{-\psi}$$

in the annulus Ω_a^A .

It is obvious that ψ also solves

$$\Delta \psi = m \frac{e^{-\psi}}{\int_{\Omega} e^{-\psi} dx} \quad \text{in } \Omega.$$

We set $Q(r) = \int_{\Omega_r^r} \Delta \psi(x) dx$. Since ψ is radial,

$$Q(r) = \int_{\Omega_a^r} \Delta \psi(x) dx = \int_{\Omega_a^r} \left(\psi''(|x|) - \frac{d-1}{|x|} \psi'(|x|) \right) dx$$
$$= \int_a^r \int_{S(s)} \left(\psi''(s) + \frac{d-1}{s} \psi'(s) \right) dS ds$$
$$= \sigma_d r^{d-1} \psi'(r) - \sigma_d a^{d-1} \psi'(a).$$

But $\psi'(a) = 0$, and furthermore, from the right hand side of (13),

$$Q(r) = \frac{m}{\int_{\Omega_a^r} e^{-\psi(x)} \, dx} \int_{a}^r \int_{S(s)} e^{-\psi(s)} \, dS \, ds = \lambda \int_a^r \sigma_d s^{d-1} e^{-\psi(s)} \, ds,$$

which gives

(14)
$$Q'(r) = \frac{d}{dr} \left(\lambda \int_{0}^{r} \sigma_d s^{d-1} e^{-\psi(s)} ds \right) = \lambda \sigma_d r^{d-1} e^{-\psi(r)}.$$

Multiplying both sides of (14) by r^{1-d} and differentiating with respect to r we obtain

(15)
$$(1-d)r^{-d}Q'(r) + r^{d-1}Q''(r) = -\lambda \psi'(r)\sigma_d e^{-\psi(r)}.$$

Using $\sigma_d r^{d-1} \psi'(r) = Q(r)$ and multiplying (15) by r^d , we deduce from (14) and (15) the equation

(16)
$$Q''(r) + (1-d)\frac{1}{r}Q'(r) + \frac{1}{\sigma_d}r^{1-d}Q'(r)Q(r) = 0.$$

Moreover, this equation is supplemented by the boundary conditions

(17)
$$Q(a) = \int_{\Omega_a^a} \Delta \Psi(x) \, dx = 0,$$

$$Q(A) = \int_{\Omega_a^A} \Delta \Psi(x) \, dx = \frac{m}{\int_{\Omega_a^A} e^{-\psi(x)} \, dx} \int_{\Omega_a^A} e^{-\psi(x)} \, dx = m.$$

Notice that this procedure reduces our nonlocal problem to a local one. Now, we can set

$$s = \log r,$$

$$v(s) = \sigma_d^{-1} r^{3-d} Q'(r),$$

$$w(s) = \sigma_d^{-1} r^{2-d} Q(r).$$

Then (16) will take the form of the dynamical system

(18)
$$\begin{cases} v'(s) = (2-w)v, \\ w'(s) = (2-d)w + v, \end{cases}$$

with the initial conditions

(19)
$$w(\log a) = \sigma_d^{-1} a^{2-d} Q(a) = 0,$$

$$w(\log A) = \sigma_d^{-1} A^{2-d} Q(A) = \sigma_d^{-1} A^{2-d} m,$$

resulting from (17).

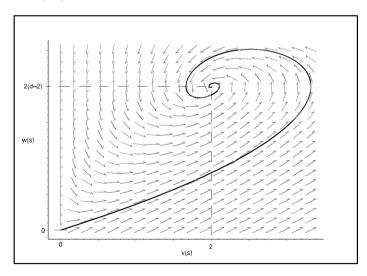


Fig. 1

Figure 1 shows the phase portrait of (18) in the first quadrant for d=3. In the general case $(3 \le d \le 9)$ the image is similar. We have two stationary points $P_1 = \binom{0}{0}$ i $P_2 = \binom{2(d-2)}{2}$. The first one is of source type, and the second

one is a focus. These and other properties of this system can be found for example in [5].

Let us state two simple lemmas:

Lemma 4.2. The vector field generated by the system (18) is continuous, and transforms every interval $\{(x,0): 0 < \delta < x\}$ to some curve homeomorphic to this interval.

LEMMA 4.3. For every number $q_0 < l < q_1$ and every point $(w_0, 0)$ there exists Δt such that the trajectory of the system (18), starting at time t_0 from $(w_0, 0)$, intersects the line w = l at least k times for every fixed $k \in \mathbb{N}$ in the time interval $[t_0, t_0 + \Delta t]$.

Lemma 4.3 may be easily deduced from Figure 1 and the Lyapunov function for the system (18),

$$L = \frac{1}{2}(w-2)^2 + (v-2(d-2)) - 2(d-2)\log\left(\frac{v}{2(d-2)}\right).$$

Proof of Theorem 4.1. Since P_1 is a stationary point and the vector field is continuous, for any t_0 , $\Delta t > 0$ and $\varepsilon_1 > 0$ we can find $0 < \varepsilon_2 \ll 1$ such that the trajectory starting from the point $(\varepsilon_2, 0)$ at time t_0 will remain in the ball $B((0,0), \varepsilon_1)$ in the time interval $[t_0, t_0 + \Delta t]$.

For simplicity, let us fix the inner radius a of our annulus to be 1. Then from (19) we have $t_0 = 0$. Now, we choose a point $(x_0, 0)$ on the v-axis and some positive number l_0 such that the line $w = l_0$ crosses the separatrix in at least two points. Next, we set the outer radius A of our annulus such that trajectory starting from $(x_0, 0)$ for $t_0 = 0$ intersects the line $w = l_0$ twice in the time interval $[0, \Delta t]$, where $\Delta t = \log A$. Finally, we determine the parameter m_0 such that $\sigma_d^{-1}A^{2-d}m_0 = l_0$.

As mentioned before we can now choose $(\varepsilon,0)$ such that the trajectory starting from $(\varepsilon,0)$ at time t_0 will not cross the line $w=l_0$ before time $t_0+\Delta t$. Now by Lemma 4.2 the interval $I=\{(x,0):\varepsilon< x< x_0\}$ is transformed by the dynamical system (18) to a curve Γ , homeomorphic to this interval. This means that there exist at least two points $\mathcal{K}_1=(x_1^k,l_0)$, $\mathcal{K}_2=(x_2^k,l_0)$ such that Γ crosses the line $w=l_0$ at \mathcal{K}_1 , \mathcal{K}_2 . Hence we can find two points $\mathcal{N}_1=(x_1^n,0)$, $\mathcal{N}_2=(x_2^n,0)$ in I such that the trajectories starting from \mathcal{N}_1 , \mathcal{N}_2 will, after time $t_0+\Delta t$, stop at line $w=l_0$. These are the trajectories we are looking for. They represent two different solutions of (9) on the annulus Ω_a^A with parameter $m=m_0$.

COROLLARY 4.4. Taking a, A, m in the proof of Theorem 4.1 more carefully, we can construct exactly k different radial solutions for the problem (9) in Ω_a^A and any fixed $k \in \mathbb{N}$.

Remark 4.5. By applying this approach, for a fixed m, it is not difficult to show uniqueness of radial solutions when A/a > 0 is sufficiently small and nonexistence of such solutions for $A/a \gg 1$.

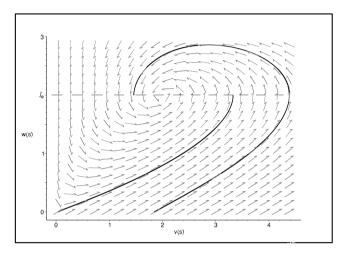


Fig. 2

Examples of such solutions can be found below. We put r=1, $R=e^3$, m=504.8424623. After a suitable change of variables we find two trajectories such that for $t_0=0$, $t_1=3$ we have $w(t_0)=0$ and $w(t_1)=2.00015$ (we used the Fehlberg fourth-fifth order Runge–Kutta method). In Figure 2 we have both trajectories (w,v). The left one starts from (0.04026,0), and the right one from (1.77,0). Figure 3 shows the section of the graph of the density function along some ray starting from (0,0).

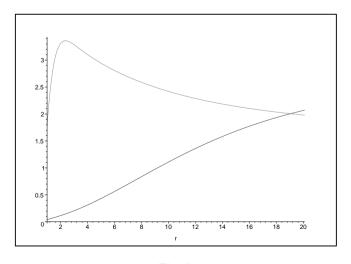


Fig. 3

References

- [1] P. Biler, J. Dolbeault, M. J. Esteban, P. Markowich and T. Nadzieja, Steady states for Streater's energy-transport models of self-gravitating particles, in: Transport in Transition Regimes, N. Ben Abdallah et al. (eds.), Springer IMA Vol. Math. Appl. 135, Springer, 2003, 37-56.
- [2] P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamics processes, Rep. Math. Phys. 42 (1998), 359–372.
- [3] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles I, Colloq. Math. 64 (1994), 319-334.
- [4] E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description I, Comm. Math. Phys. 143 (1992), 501–525.
- [5] I. M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc. Transl. 29 (1963), 295–381.
- [6] T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac. 40 (1997), 411-433.
- [7] K. Nagasaki and T. Suzuki, Radial and nonlinear eigenvalue problem $\Delta u + \lambda e^u = 0$ on annuli in \mathbb{R}^2 , J. Differential Equations 87 (1990), 144–168.
- [8] M. Smoluchowski, Drei Vorträge über Diffusion, Brownische Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z. 17 (1916), 557–571, 585–599.
- [9] R. F. Streater, Dynamics of Brownian particles in a potential, J. Math. Phys. 38 (1997), 4570-4575.

Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail: olech@math.uni.wroc.pl

Received on 13.4.2004

(1738)