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NONUNIQUENESS OF STEADY STATES
IN ANNULAR DOMAINS FOR STREATER EQUATIONS

Abstract. Models introduced by R. F. Streater describe the evolution of
the density and temperature of a cloud of self-gravitating particles. We study
nonuniqueness of steady states in annular domains in R%, d > 2.

1. History of the problem and physical motivation. The system
we will deal with is of the form

up = —V-j,
(1) (ud)y = V- (AVO) = V- (6j) — V(¢ + ¢o) - J,
Ap = u,

where j = —k(Vu + %(V¢ + Vyo)). We will supplement this system with
the following boundary conditions for u and 6:

% U

2 - =
e L+ 206+ D) = 0,
00

3 — =0

( ) 8V )
and we will consider two kinds of boundary conditions for ¢:
(4) either the Dirichlet condition: ¢ =0 on 02,
(5) or the “free” condition: ¢ = Eg*ugp,

where ug(z) = u(x) in 2 and vanishes outside (2, and (f * g)(z) means the
convolution {, f(z —y)g(y) dy (Eq denotes the fundamental solution of the
Laplacian in R%). We call (1) with (2)-(4) the Dirichlet problem, and (2),
(3), (5) the “free” problem.
These systems describe the evolution of the density u(z,t) > 0 and the
temperature 6(x,t) > 0 in a cloud of self-gravitating particles under the
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external potential ¢o(z) with self-induced potential ¢. The coefficients x and
A are nonnegative functions of x,u, 0 and ¢. Furthermore, they can vanish
only when 6 = 0.

In [9] this system has been derived by Streater from the Smoluchowski
equation (see [8]). This was generalized in [2]| to the case of gravitational and
electric self-interactions.

Some results on existence and uniqueness of solutions for (1) can be found
e.g. in [3] and in the references therein.

2. Steady states equation. Following [1] we begin by recalling basic
properties of solutions to (1)—(5).

PROPOSITION 2.1. For sufficiently smooth solutions of the Dirichlet and
the “free” problem we have:

(i) the mass M = {,udz and the energy E = {,u(0 + ¢o + 3¢) dz of
the system are constant in time,

(ii) the entropy
W = gulog<%) dx

does not increase in time.
Proof. The first assertion follows easily from the boundary conditions,

the Gauss—Green theorem and (1). For the entropy, a direct calculation shows
that

dw d U U u 0
(6) —:—Sulog—da::Sutlog—dac—f—S(—) - —dz
e dt) 0 B 0 PN
1 Vu
ng (AV0) dm—§<—+ (Vo + V) - >
2 2
w? Vu 2
S A | do — | ru| ==+ 5 (v¢+v¢0) dz <0,

which completes the proof. m

For a steady state (uoo,0s) (i-e. a solution independent of time), the
entropy of the system is constant. From this trivial fact and from (6) we
deduce that

Voo + Zﬁv(% + o)

vanishes a.e. in (2, and the temperature is constant: ., = const. Multiplying
by the nonzero factor e(?~t%0)/f~ and integrating, we obtain the equation
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for steady states
Me—($ootd0)/00

For simplicity of notation we write ¢oo := @, O := 0, U := u, and we will
consider only the case ¢g = 0.
As shown in [1], if we put ¢ = 0% in (7), the energy relation becomes

1 62 6>
E= §u<9+§¢>daz=9§udm+7Suwdm:9M+5gzpmpda;.
0 0 19 0
Then we can replace the problem of determination of steady states with
prescribed mass M > 0 and energy F by the problem

() == 3§ pavin st

Q
where m = M /60 and 1 solves the Poisson-Boltzmann—Emden equation
—¢
e
AYp =m ———— in (2,
©) P et
v =0 on 0f2
for the Dirichlet problem, and
m
9 = E
( ) ¢ S_Q e—vd d*e

for the “free” problem.

3. k-symmetric solutions for the Dirichlet problem. In this section
we will deal with the two-dimensional Dirichlet problem (8) in an annu-
lar domain. Recall that the existence of radial solutions for all values of
m > 0 was proved in [4]. Here we show the existence of nonradial solutions.
Moreover, we show nonuniqueness of solutions and we study their exact
shape.

To do this we take advantage of a reasoning from [7], concerning the
existence, for A > 0, of solutions of the problem

Av+Xe? =0 in {2,
v=0 on 02
Without loss of generality, we set 2 = {x € R? : 0 < a < |z| < 1}.

Let Tyx be the rotation of point x about the origin through 27/k, where
k=1,2,3,..., and let

Vi = {v € H}(2) : v(Tpz) = v(x) a.e. in 2},
Voo = {v € H}(2) : v is radial}.
Then V}, and Vo are closed subspaces of H{(2).

(10)
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It is evident that for v € V}, (k = 00,1,2,3,...) and X € R, if w solves
Aw+ X’ =0 in {2,
w=0 on 02,

then w also belongs to V.
Next we introduce two functionals

(11) o(v) = S '@ dg,
2
(12) J(v) = % | IVo(o)[ dz,
(0]

and define for every k € N a subset of Vj, by
Kpy={veVy:®w)=pnu} forpuekR.

Let ji[u] = infyer, , J(v) whenever Ky , # (). We will say that v is k-
symmetric when v € Vi, and v € V; for any [ > k.
Our goal is to prove

THEOREM 3.1. For every k € N there exists a k-symmetric solution of
the Dirichlet problem (8) for some m > 0.

In [7] the following is proved:

THEOREM 3.2. For every k = o0,1,2,3,... such that Ky, C V} is not
empty there exists v, € Ky, which minimizes (12) (i.e. jilp] = J(vu))-
Moreover, the minimizer v, solves

Avy, + e =0 in {2,
v, =0 ondf2,
for some parameter A\, € R. m
We also need two technical lemmas (for details see [7, Lemmas 3.3 and
3.4]).
LEMMA 3.3. For every k € N and sufficiently large i we have
Jklnl < Joolu].
LEMMA 3.4. For every k € N we have
ulu] < galp] < o < gilp] < -0 < o[l
Moreover, jili] < joolpt] implies
jilul < galpl < - < gilul.

Notice that for p > [f2| we have A > 0 and the solution v € K}, of
the minimization problem also solves (10). Indeed, suppose, on the contrary,
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that A < 0. From the maximum principle for elliptic problems we have v < 0
in (2. Then
= Se”dmﬁ S ldx = |£2|,
Q2 2
which contradicts the assumption p > [£2|.
Now we recall the main theorem from [7, Th. 3.5] with its proof.

THEOREM 3.5. For all k € N there exists py such that for all > g the
problem (10) has a k-symmetric solution. This solution satisfies

S e’ dr = p.
2
Proof. By Lemma 3.3 and Theorem 3.2 there exists v = vy, € V}, such
that J(v) = jk[u] < joolp] for some p sufficiently large. It suffices to show
that v is k-symmetric.
Suppose, contrary to our claim, that there exists a natural number [ > k
such that v € V;. Then

Jill] < J(0) = Gili] < ool
which contradicts Lemma 3.4. m
Now let us put v — —v in (10). Then we obtain
Av = Xe™? in 2,
v=20 on 042,

O(—v) = D1(v) = §, e dz, and (8) takes the form
m
Av = e”? in {2,
D1 (v)
v=>0 on 0f2.

Proof of Theorem 3.1. From Theorem 3.5 we have a k-symmetric solution
to the problem (10) for sufficiently large values of p = &1 (v). This solution
solves (8) with m = Au. =

Since (8) has radial solutions for all m > 0 (see [4]), the following corollary
is obvious:

COROLLARY 3.6. There is nonuniqueness of solutions for the problem
(8) in a two-dimensional annulus for some values of m > 0. m

4. Radial solutions for the “free” problem. Now we will analyze
(9) using dynamical systems methods. An example of use of this method is
in [3].

Existence results for solutions to the problem (9) can be found in [3] and
the references therein.
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Our main goal in this section is to prove

THEOREM 4.1. For any a and some values of A and m, the “free” prob-
lem (9) has at least two radial solutions in 22 = {xr € R :0< a < |z| < A
< oo} for3<d<9.

Assume that v is radial. Abusing the notation, we set ¢ (z) = (|z|) =
¥ (r). Then v solves

m

—_ " -
(13) "L/J—Sne_wded*e
in the annulus 2.
It is obvious that ¢ also solves
A " o
w =m W m .

We set Q(r) = {,, AY(z) dz. Since 9 is radial,

Q)= | Au(e)dr = | (w"ux) - u/<|:c|>) dn
o o

1§ (v + ) asas
@ S(s)
= ogr W (r) — oqa® Y (a).
But ¢/(a) = 0, and furthermore, from the right hand side of (13),

m s T
QUr)=c——m 0 e V) dSds = M ogs?te V) ds,
Sng e V@) da (815(85) cSz
which gives
d T
/ _ v d—1_—(s) — d—1 _—1(r)
(14) Q'(r) - ()\(gads e ds) Aogr® e .

Multiplying both sides of (14) by r'~% and differentiating with respect
to r we obtain

(15) (1 —d)yr=4Q' (r) + r1Q" (r) = =\ (r)oge ™).

Using 047 19/(r) = Q(r) and multiplying (15) by r¢, we deduce from (14)
and (15) the equation

(16) Q') + (1= d) - Q) + — Q' (1)Q(r) =0.

0d
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Moreover, this equation is supplemented by the boundary conditions

Q(a) = | AU(z)dx =0,

(17) i
Q) = | Av(w)ds = — L —— | e @z =m.
4 SQ;; € dx o

Notice that this procedure reduces our nonlocal problem to a local one.
Now, we can set

s =logr,
v(s) = oy Q' (r),
w(s) = 0517“2_‘1@(7“).
Then (16) will take the form of the dynamical system

{ V'(s) = (2 — w)v,

(18) w'(s) = (2 —d)w + v,
with the initial conditions

(19) w(loga) = 0J1a2_dQ(a) =0,
w(log A) = 0, A>79Q(A) = 0, A*~Im,

resulting from (17).
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Fig. 1
Figure 1 shows the phase portrait of (18) in the first quadrant for d = 3.
In the general case (3 < d < 9) the image is similar. We have two stationary
points P = (8) iPy= (2(d2_ 2)). The first one is of source type, and the second
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one is a focus. These and other properties of this system can be found for
example in [5].
Let us state two simple lemmas:

LEMMA 4.2. The vector field generated by the system (18) is continuous,
and transforms every interval {(x,0) : 0 < 0 < z} to some curve homeomor-
phic to this interval. m

LEMMA 4.3. For every number qo < | < q1 and every point (wy,0) there
exists At such that the trajectory of the system (18), starting at time to from
(wo, 0), intersects the line w = [ at least k times for every fived k € N in the
time interval [to,to + At]. =

Lemma 4.3 may be easily deduced from Figure 1 and the Lyapunov func-
tion for the system (18),

L= %(w—2)2+(v—2(d—2)) —2(d—2)log<ﬁ>.

Proof of Theorem 4.1. Since P is a stationary point and the vector field
is continuous, for any tg, At > 0 and 1 > 0 we can find 0 < £9 < 1 such
that the trajectory starting from the point (e3,0) at time tp will remain in
the ball B((0,0),e1) in the time interval [to, to + At].

For simplicity, let us fix the inner radius a of our annulus to be 1. Then
from (19) we have ty = 0. Now, we choose a point (z(,0) on the v-axis and
some positive number [y such that the line w = [y crosses the separatrix in
at least two points. Next, we set the outer radius A of our annulus such that
trajectory starting from (x,0) for ¢; = 0 intersects the line w = [y twice
in the time interval [0, At], where At = log A. Finally, we determine the
parameter mg such that UJIAQ_dmO = lp.

As mentioned before we can now choose (¢,0) such that the trajectory
starting from (g,0) at time tp will not cross the line w = [y before time
to + At. Now by Lemma 4.2 the interval I = {(z,0) : ¢ < o < xo} is
transformed by the dynamical system (18) to a curve I', homeomorphic to
this interval. This means that there exist at least two points K; = (mlf , o),
Ko = (mé,lo) such that I' crosses the line w = [y at Ky, Ko. Hence we can
find two points N7 = (27,0), Na = (24,0) in I such that the trajectories
starting from N7, N5 will, after time tg + At, stop at line w = ly. These are
the trajectories we are looking for. They represent two different solutions of
(9) on the annulus 24 with parameter m = mq. =

COROLLARY 4.4. Taking a, A, m in the proof of Theorem 4.1 more care-

fully, we can construct exactly k different radial solutions for the problem (9)
in 22 and any fired k € N.
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REMARK 4.5. By applying this approach, for a fixed m, it is not difficult
to show uniqueness of radial solutions when A/a > 0 is sufficiently small and

nonexistence of such solutions for A/a > 1.

4

Fig. 2

Examples of such solutions can be found below. We put » = 1, R =
e3, m = 504.8424623. After a suitable change of variables we find two tra-
jectories such that for ¢y = 0, t; = 3 we have w(ty) = 0 and w(t;) = 2.00015
(we used the Fehlberg fourth-fifth order Runge-Kutta method). In Figure 2
we have both trajectories (w,v). The left one starts from (0.04026,0), and
the right one from (1.77,0). Figure 3 shows the section of the graph of the
density function along some ray starting from (0, 0).
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