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SCATTERING OF SMALL SOLUTIONS OF A SYMMETRIC
REGULARIZED-LONG-WAVE EQUATION

Abstract. We study the decay in time of solutions of a symmetric regu-
larized-long-wave equation and we show that under some restriction on the
form of nonlinearity, the solutions of the nonlinear equation have the same
long time behavior as those of the linear equation. This behavior allows us
to establish a nonlinear scattering result for small perturbations.

1. Introduction. In this paper we study the asymptotic behavior in
time and scattering of small solutions of the following symmetric regularized-
long-wave equation (SRLW):

utt − uxx + f(u)xt − uxxtt = 0(1.1)

or, equivalently, the system of equations{
ut − uxxt + f(u)x − vx = 0,

vt − ux = 0.
(1.2)

This is a model that describes weakly nonlinear ion acoustic and space-
charge waves [7]. The SRLW equation is obviously symmetric in t and x
derivatives and is very similar to the regularized-long-wave equation (RLW)
which describes unidirectional propagation of nonlinear dispersive waves,

ut + ux − uxxt + f(u)x = 0.(1.3)

In many nonlinear dispersive equations, solitary waves play an important
role, and criteria for stability and instability are often related in some way to
well-posedness and blow up questions. For equation (1.3) with f(u) = up+1

all solitary waves are stable when p ≤ 4, and when p > 4, there is a critical
value cr > 1 such that a solitary wave is stable for wave speed c > cr and
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unstable for 1 < c ≤ cr [8]. It is known that for sufficiently small initial data
and suitable p the solutions of (1.3) tend to 0 as t → ∞ with an algebraic
decay rate t−1/3.

For equation (1.1), when the nonlinearity has the special form f(u) = up

and p ≤ 5, all solitary waves are stable, and when p > 5, there is a critical
value c0 such that a solitary wave is stable for c > c0 and unstable for
1 < c < c0.

Our aim is to describe the asymptotics of solutions of (1.2) in the case
of nonlinearity of the form f(u) = up+1. The estimates of solutions ob-
tained below guarantee that small solutions of the nonlinear problem behave
asymptotically like solutions of the associated linear problem. Hence, this
behavior allows us to establish a nonlinear scattering result.

Throughout this paper we use the notations | · |p for the norm in the
space Lp(R) with 1 ≤ p < ∞, ‖ · ‖s for the norm in the Sobolev space
Hs(R), ‖ · ‖0 = | · |2, and we equip Xs = Hs(R)×Hs−1(R) with the norm
‖~u‖Xs = ‖(u, v)‖Xs = ‖u‖s + ‖v‖s−1. We define Λs = (1 − ∂2

x)s/2 for any
s ≥ 0.

2. Preliminary results. In this section we present several lemmas
which are needed to obtain our main results. First we will discuss the global
existence and regularity of solutions of (1.2).

Theorem 2.1 (Global existence). Let ~u0 = (u0, v0) ∈ X1 and f :
R → R be a C1 function with f(0) = 0. Then there exists a unique so-
lution ~u = (u, v) of (1.2) in C([0,∞);X1) with ~u(0) = ~u0.

Proof. For the proof, see [4].

The group of linear operators associated with the linear system{
ut − uxxt − vx = 0,

vt − ux = 0
(2.1)

will be denoted by S(t), so S(t)~u0 solves (2.1) with initial data ~u(0) = ~u0.
Using the Fourier transform we can write (2.1) in the form

d

dt

(
û
v̂

)
+ ikA(k)

(
û
v̂

)
= 0,(2.2)

where A(k) =
( 0
−1
− 1

1+k2

0

)
, since the system (2.1) is equivalent to
{
ut − (1− ∂2

x)−1∂xv = 0,

vt − ux = 0.
The formal solution of (2.2) with initial data (û0, v̂0) is(

û(ξ, t)
v̂(ξ, t)

)
= e−iξA(ξ)

(
û0
v̂0

)
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and a straightforward computation shows that

e−iξA(ξ)t =




cos
(

ξt√
1 + ξ2

)
i√

1 + ξ2
sin
(

ξt√
1 + ξ2

)

i
√

1 + ξ2 sin
(

ξt√
1 + ξ2

)
cos
(

ξt√
1 + ξ2

)


 .

The solution of (1.2) satisfies the Duhamel formula

~u(x, t) = S(t)~u0(x) +
t�

0

S(t− τ)∂x

(
−Λ−2f(u(τ))

0

)
dτ.

We have the following lemma (improving results in [4]).

Lemma 2.1. For n, t > 1 and ε < 1,

sup
α∈R

∣∣∣
�

|ξ|<n
eith(ξ,α) dξ

∣∣∣ ≤ c(ε+ t−1/2 max{ε−2, n2}),(2.3)

where h(ξ, α) = ξ/
√

1 + ξ2 + αξ and c is a constant.

The proof of Lemma 2.1 is based on the van der Corput lemma and can
be found in [6].

The next lemma concerns the decay of solutions of the linear sys-
tem (2.1). The estimate obtained in the lemma allows us to prove our main
result, namely the decay of solutions of (1.2).

Lemma 2.2. Let ~u(t) = (u(t), v(t)) be a solution of the linear system (2.1)
and ~u0 ∈ Xs+1, Λ1u0 ∈ L1(R), v0 ∈ L1(R). Then

|~u|∞ ≤ c0(‖~u0‖Xs+1 + |v0|1 + |Λ1u0|1)(1 + t)−θ,

where s > 1/2 and

θ =





1
2s+ 3

, s ≥ 3/2,

2s− 1
2(2s+ 3)

, s ≤ 3/2,

and c0 is a constant depending only on s.

Proof. Since

~u(t) = S(t)~u0

=
∞�

−∞
eixξ




cos
(

ξt√
1+ξ2

)
i√

1+ξ2
sin
(

ξt√
1+ξ2

)

i
√

1+ξ2 sin
(

ξt√
1+ξ2

)
cos
(

ξt√
1+ξ2

)


 ~̂u0(ξ) dξ

we obtain
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|~u(t)| ≤ 1
4π

∑∣∣∣
∞�

−∞

(
û0 ±

1√
1 + ξ2

v̂0

)
eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

+
1

4π

∑∣∣∣
∞�

−∞
(v̂0 ±

√
1 + ξ2 û0)eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

≤ 1
4π

∑∣∣∣
∞�

−∞
(û0 ± Λ̂−1v0)eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

+
1

4π

∑∣∣∣
∞�

−∞
(v̂0 ± Λ̂1u0)eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

≤ 1
2π

�

|ξ|>n
(|û0|+ |Λ̂−1v0|+ |v̂0|+ |Λ̂1u0|) dξ

+
1

4π

∑∣∣∣
∞�

−∞
(u0(y)± Λ−1v0(y)) dy

∣∣∣ ·
∣∣∣
n�

−n
eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

+
1

4π

∑∣∣∣
∞�

−∞
(v0(y)± Λ1u0(y)) dy

∣∣∣ ·
∣∣∣
n�

−n
eit(±ξ/

√
1+ξ2+xξ/t) dξ

∣∣∣

where the sums are over the two choices of sign. Hence

|~u(t)| ≤ (‖u0‖s + ‖v0‖s + ‖Λ1u0‖s + ‖Λ−1v0‖s)
( �

|ξ|≥n
(1 + ξ2)−s dξ

)1/2

+ c(ε+ t−1/2 max{ε−2, n2})(|~u0|L1×L1 + |Λ1u0|1 + |Λ−1v0|1),

|~u(t)| ≤ (‖u0‖s + ‖v0‖s + ‖Λ1u0‖s + ‖Λ−1v0‖s)n−(s−1/2)

+ c(ε+ t−1/2 max{ε−2, n2})(|~u0|L1×L1 + |Λ1u0|1 + |Λ−1v0|1).

Choosing ε = t−α and n = tα, we deduce

|~u(t)| ≤ (‖u0‖s + ‖v0‖s + ‖Λ1u0‖s + ‖Λ−1v0‖s)t−α(s−1/2)

+ c(|u0|1 + |v0|1 + |Λ1u0|1)(t−α + t−1/2t2α),

|~u(t)| ≤ (‖u0‖s+1 + ‖v0‖s)t−α(s−1/2)

+ c(|u0|1 + |v0|1 + |Λ1u0|1)(t−α + t−1/2t2α).

Let α(s− 1/2) = 1/2− 2α. It follows that

|~u(t)|∞ ≤ c(‖u0‖s+1 + ‖v0‖s + |u0|1 + |v0|1 + |Λ1u0|1)t−θ,

where

θ =





1
2s+ 3

, s ≥ 3/2,

2s− 1
2(2s+ 3)

, s ≤ 3/2.
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3. Decay and scattering of solutions of the nonlinear equation

Theorem 3.1. Let f(u) = up+1 and p > 11. Then there is a constant
δ > 0 such that for any ~u0 ∈ X2, Λ1u0 ∈ L1, v0 ∈ L1 for which ‖~u0‖X2 +
|Λ1u0|1 + |v0|1 < δ, the solution ~u(x, t) of (1.2) satisfies

|~u(x, t)| ≤ C(~u0)(1 + t)−1/10

for all t > 0 and x ∈ R.

Proof. From the Duhamel formula

~u(t) = S(t)~u0 +
t�

0

S(t− τ)∂x

(
−Λ−2f(u(τ))

0

)
dτ(3.1)

and Lemma 2.2, for s = 1 we obtain

(1 + t)1/10|~u(t)| ≤ |S(t)~u0|+
t�

0

∣∣∣∣S(t− τ)∂x

(
−Λ−2f(u(τ))

0

) ∣∣∣∣ dτ

≤ c(‖u0‖2 + ‖v0‖1 + |v0|1 + |Λ1u0|1)

+ c(1 + t)1/10
t�

0

(1 + t− τ)−1/10(‖∂xΛ−2f(u)‖2 + |Λ1(∂xΛ−2f(u))|1) dt.

We have

‖Λ−2∂xf(u)‖2 =
�

R
(1 + |ξ|2)2 |ξ|2

(1 + |ξ|2)2 |f̂(u)(ξ)|2 dξ

≤ c‖f(u)‖1 ≤ c|u|p∞‖u‖1.

Since the operator Λ−1 is the convolution with a function from L1(R) (see
Lemma 1.12 in [8]), it follows that

|Λ1(∂xΛ−2f(u))|1 = |Λ−1(∂xf(u))|1 ≤ c1|u|p−1
∞ |uux|1

≤ c1|u|p−1
∞ |u|2|ux|2 ≤ c2|u|p−1

∞ ‖u‖21.
From the above inequalities, we have

(3.2) (1 + t)1/10|~u(t)|∞ ≤ c(‖u0‖2 + ‖v0‖1 + |v0|1 + |Λ1u0|1)

+ c(1 + t)1/10
t�

0

(1 + t− τ)−1/10(|u|p∞‖u‖1 + |u|p−1
∞ ‖u‖21) dτ.

Define

q(t) = sup
0≤τ≤t

((1 + τ)1/10|~u(τ)|∞ + ‖u(τ)‖1).
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Then from (3.2),

(1 + t)1/10|~u|∞ ≤ c(‖u0‖2 + ‖v0‖1 + |v0|1 + |Λ1u0|1)

+ c(1 + t)1/10
t�

0

(1 + t− τ)−1/10((1 + τ)−p/10 + (1 + τ)−(p−1)/10) dτ qp+1(t).

Since p > 11 the last integral is bounded by (1 + t)−1/10. Therefore

(1 + t)1/10|~u|∞ ≤ c(‖u0‖2 + ‖v0‖1 + |v0|1 + |Λ1u0|1) + qp+1(t).(3.3)

Next, from (3.1) and Lemma 2.2 we obtain

‖~u(t)‖X2 ≤ ‖S(t)~u0‖X2 +
t�

0

∥∥∥∥S(t− τ)∂x

(
−Λ−2f(u)

0

)∥∥∥∥
X2
dτ

≤ c(‖u0‖2 + ‖v0‖1) +
t�

0

‖up+1‖1 dτ

≤ c(‖u0‖2 + ‖v0‖1) +
t�

0

|u|p∞‖u‖1 dτ ≤ c(‖u0‖2 + ‖v0‖1) + qp+1(t).

Combining (3.3) and the above inequality we obtain

q(t) ≤ A(‖u0‖2 + ‖v0‖1 + |v0|1 + |Λ1u0|1 + qp+1(t)).(3.4)

Choose a number η > 0 such that η > Aηp+1, where A is the same
constant appearing in (3.4). Choose δ > 0 such that if

‖~u0‖X2 + |Λ1u0|1 + |v0|1 < δ,

then q(0) < η and

η > A[‖~u0‖X2 + |Λ1u0|1 + |v0|1 + ηp+1].(3.5)

Then ‖~u0‖X2 + |Λ1u0|1 + |v0|1 < δ must imply q(t) < η for all t ≥ 0.
Otherwise, by continuity of q(t), we would have q(t) = η for some t, and
then (3.5) would contradict (3.4).

By Theorem 3.1, we are able to obtain a nonlinear scattering result for
small solutions.

Theorem 3.2. Let ~u(t) = (u(t), v(t)) be the solution of (1.2) with initial
data as in the previous theorem, f(u) = up+1 and p > 11. Then there are
~u− and ~u+ such that ‖~u(t)− ~u±(t)‖X1 tends to 0 as t tends to ±∞, where
~u±(t) = S(t)~u± solves the linear equation.
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Proof. Define

~u+(t) = S(t)~u0 +
∞�

0

S(t− τ)∂x

(
−Λ−2f(u)

0

)
dτ

= ~u(t) +
∞�

t

S(t− τ)∂x

(
−Λ−2f(u)

0

)
dτ.

The function ~u+(t) is a solution of the linear equation (1.2), so ~u+(t) =
S(t)~u+ for some ~u+. It follows that

‖~u(t)− ~u+(t)‖X1 ≤
∞�

t

∥∥∥∥S(t− τ)∂x

(
−Λ−2f(u)

0

)∥∥∥∥
X1
dτ

=
∞�

t

‖S(t− τ)∂xΛ−2(up+1)‖X1 dτ

≤ c
∞�

t

‖up+1(τ)‖1 dτ ≤ c
∞�

t

|u(τ)|p∞‖u‖1 dτ

≤ C‖~u0‖1
∞�

t

(1 + τ)−pθ dτ ≤ C‖~u0‖1(1 + t)1−pθ → 0

as t → ∞, since in this case θ = −1/10 and 1 − pθ < 0. In the estimate
above we use the inequality ‖u‖1 ≤ ‖u‖1 + |v|2 = ‖~u0‖X1 .

The case t → −∞ involving u− is completely analogous by the change
of variables t 7→ −t.
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