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GENERAL METHOD OF REGULARIZATION.
II: RELAXATION PROPOSED BY SUQUET

Abstract. The aim of this paper is to prove that the relaxation of the
elastic-perfectly plastic energy (of a solid made of a Hencky material) is
the lower semicontinuous regularization of the plastic energy. We find the
integral representation of a non-locally coercive functional. We show that
the set of solutions of the relaxed problem is equal to the set of solutions of
the relaxed problem proposed by Suquet. Moreover, we prove an existence
theorem for the limit analysis problem.

1. Introduction. In the first part of this paper (see [2]) we investigate
the convex functional

(1.1) BD 3 u 7→ B(ε(u)) =
�

Ω

h(x, ε(u))

with constraints on the boundary of Ω, where ε(u) is the symmetrized gra-
dient of u and BD(Ω) is the space of bounded deformations. Moreover, we
assume that B(ε(u)) = ∞ if ε(u) 6∈ L1. In [1] we find the lower semicon-
tinuous (l.s.c.) relaxation of B, and we show that the relaxation is a l.s.c.
function (in the weak∗ BD topology), not greater than B. Here we prove
that the above mentioned relaxation (in the case of the relaxation proposed
by Suquet) is the largest l.s.c. minorant less than B, i.e. it is the l.s.c. regu-
larization of B. If the volume forces are 0, then we can omit the assumption
of global coercivity of the functional considered. Moreover, we show that
the set of solutions of the classical relaxed problem is equal to the set of
solutions of the relaxed problem proposed by Suquet.
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In [3], the global method for relaxation is applied for l.s.c. regulariza-
tion of quasiconvex functionals with constraints (Dirichlet condition). These
functionals are defined on BV (Ω). The constraints considered do not de-
scribe the relaxation proposed by Suquet (see [12]).

In [6] and [7] Christiansen finds the solution for the limit analysis prob-
lem, associated to the relaxed problem proposed by Suquet. But the limit
analysis problem is not explicitly formulated in [6] and the relation between
solutions of the relaxed problem and solutions of the relaxed problem pro-
posed by Suquet is not considered.

The classical method of relaxation does not allow one to find a solution
of the limit analysis problem (P0)AL (see [13], [1]). Therefore we study the
method of relaxation proposed by Suquet (cf. [12], [1]).

In Section 3, we obtain an existence theorem for the limit analysis prob-
lem, associated to the relaxed problem proposed by Suquet. In Corollary 10,
we get a criterion of coercivity of the original problem (Pλ,j), or the relaxed
problem (RP ∗∗λ,j) (see [2, (3.9)–(3.11), (5.1), (5.3), (5.4) and (5.8)]).

In the Appendix, we describe the scheme of duality in convex optimiza-
tion in the case of Hencky plasticity.

We obtain the above mentioned results under the following assumptions.

Assumption 1. Ω and Ω1 are bounded open connected sets of class C1

in Rn such that Ω ⊂⊂ Ω1.

Let Γ0 and Γ1 (= Γ 1) be Borel subsets of the boundary FrΩ of Ω such
that Γ0 ∩ Γ1 = ∅ and ds(FrΩ − (Γ0 ∪ Γ1)) = 0. The Lebesgue and the
Hausdorff measures on Ω and FrΩ are denoted by dx and ds, respectively.

In this paper we consider the Banach space of measurable functions

(1.2) Wn(Ω,div) ≡ {σ ∈ L∞(Ω,En
s ) | divσ ∈ Ln(Ω,Rn)}

with the natural norm ‖σ‖Wn(Ω,div) = ‖σ‖L∞(Ω,Ens ) + ‖divσ‖Ln(Ω,Rn)

(where En
s is the space of symmetric real n × n matrices). Moreover, we

consider the space

(1.3) Cdiv(Ω,En
s ) ≡ {σ ∈ C(Ω,En

s ) | σ|intΩ ∈Wn(Ω,div)}.

Let K : Ω → 2Ens be a multifunction.

Assumption 2 (see [11, p. 19, Lemma 1]). K(x) is a convex and closed
subset of En

s for all x ∈ Ω, and there exists z0 ∈ C1(Ω,En
s ) such that

(1.4) z0(x) ∈ K(x) for every x ∈ Ω,
and the following conditions hold:

(i) if z(x) ∈ K(x) for dx-a.e. x ∈ Ω, where z ∈ Cdiv(Ω,En
s ), then

z(y) ∈ K(y) for every y ∈ Ω;
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(ii) for every y ∈ Ω and w ∈ K(y) there exists z ∈ Cdiv(Ω,En
s ) such that

z(y) = w and z(x) ∈ K(x) for every x ∈ Ω.

Conditions (i) and (ii) are equivalent to the condition that for every
y ∈ Ω,

(1.5) K(y) = {z(y) | z ∈ Cdiv(Ω,En
s ), z(x) ∈ K(x) for dx-a.e. x ∈ Ω}.

Definition 1. Let j∗ : Ω×En
s → R∪{∞} be a convex normal integrand ,

i.e.

(a) the function En
s 3 w∗ 7→ j∗(x,w∗) is convex and l.s.c. for dx-a.e.

x ∈ Ω;
(b) there exists a Borel function j̃∗ : Ω × En

s → R ∪ {∞} such that
j̃∗(x, ·) = j∗(x, ·) for dx-a.e. x ∈ Ω.

Moreover, assume that

(1.6) {w∗ ∈ En
s | j∗(x,w∗) <∞} = K(x) for dx-a.e. x ∈ Ω.

Assumption 3. For every r̂ > 0 there exists cr̂ such that

(1.7) sup
{ �

Ω

j∗(x, z∗) dx
∣∣∣ z∗ ∈ L∞(Ω,En

s ), ‖z∗‖L∞ < r̂

and z∗(x) ∈ K(x) for dx-a.e. x ∈ Ω
}
< cr̂ <∞.

Assumption 4. There exist ue ∈ LD(Ω) and q ∈ L1(Ω,R) such that

(1.8) j∗(x,w∗) ≥ ε(ue)(x) : w∗ + q(x)

for dx-a.e. x ∈ Ω and every w∗ ∈ En
s , and γB(ue) = 0 on FrΩ.

The set K(x) denotes the elasticity convex domain at the point x. Define

(1.9) j(x,w) ≡ j∗∗(x,w) ≡ sup{w : w∗ − j∗(x,w∗) | w∗ ∈ En
s }

for dx-a.e. x ∈ Ω and all w ∈ En
s . Then j is a convex normal integrand.

Define j∞ : Ω ×En
s → R ∪ {∞} by

(1.10) j∞(x,w) ≡ sup{w : w∗ − IK(x)(w
∗) | w∗ ∈ En

s }
for x ∈ Ω and w ∈ En

s .

Assumption 5. There exists σ0 ∈ Cdiv(Ω,En
s ) such that βB(σ0) = λg

on Γ1 and σ0(x) ∈ K(x) for dx-a.e. x ∈ Ω, where g is a boundary force
on Γ1.

Assumption 6. Let Γ1 = FrΩ ∩ C, where C = cl int C ⊂ Ω1 is a closed
Caccioppoli set and ds(FrΩ ∩ Fr C) = 0.

2. Relaxed problem proposed by Suquet. The classical method
of relaxation does not allow one to find a solution of the limit analysis
problem (P0)AL (see [4], [13], [1]). The problem has an interesting mechanical
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interpretation as the safety condition. Therefore we turn to the following
method of relaxation, proposed by Suquet (cf. [12], [1]).

We define the following Banach spaces:

(2.1) LD(Ω) ≡
{

u ∈ L1(Ω,Rn)
∣∣∣∣

εij(u) ≡ 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
∈ L1(Ω), i, j = 1, . . . , n

}
,

(2.2) BD(Ω) ≡ {u ∈ L1(Ω,Rn) | εij(u) ∈Mb(Ω,R), i, j = 1, . . . , n},
with the natural norms

(2.3)

‖u‖LD = ‖u‖L1 +
n∑

i,j

‖εij(u)‖L1 ,

‖u‖BD = ‖u‖L1 +
n∑

i,j

‖εij(u)‖Mb ,

where Mb(Ω,R) is the space of R-valued bounded measures defined on Ω.
Moreover, we consider the space

(2.4) Y1(Ω) ≡ {M ∈Mb(Ω,En
s ) | ∃u1 ∈ BD(Ω1),

ε(u1)|Ω = M, u1|Ω1−Ω = 0}.
We now define the functional of the total elastic-perfectly plastic energy

Hjλ, introduced in [1]. We then find its l.s.c. regularization in the topology
σ(Y1(Ω) ×M1(Γ1), Cdiv(Ω,En

s ) × C(Γ1,En
s )) (where the bilinear form is

defined in (2.8) below). Let

(2.5) M1(Γ1) ≡ {µ⊗s ν ∈Mb(Γ1,En
s ) | µ ∈Mb(Γ1,Rn)},

where ν is the outer unit vector, normal to FrΩ. Consider the topological
vector spaces

(2.6) [C(Γ1,En
s ), σ(C(Γ1,En

s ),M1(Γ1))], [M1(Γ1), σ(M1(Γ1), C(Γ1,En
s ))]

(the latter is equivalent to [M1(Γ1), weak∗ M1(Γ1)]).
We define the functional Hjλ : Y1(Ω)×M1(Γ1)→ R ∪ {∞} by

Hjλ(ε(u)|Ω ,µ⊗s ν) ≡ −
�

Γ1

λg · µ+
�

Ω

j(x, ε(u)a) dx(2.7)

+
�

Γ0

I{γIB(u)⊗sν=0}(γ
I
B(u)⊗s ν) ds

if u|Ω ∈ LD(Ω) and µ = γIB(u) ds for |µ − γIB(u) ds|-a.e. x ∈ Γ1, and
Hjλ(ε(u)|Ω , µ⊗s ν) ≡ ∞ otherwise. Here I{γIB(u)⊗sν = 0}(γ

I
B(u)⊗s ν) is the

indicator function, which takes value 0 if γIB(u)⊗s ν = 0 and ∞ otherwise.
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We assume that there exist ũ ∈ BD(Ω1) and µ̃ ∈Mb(Γ1,Rn) such that
ũ|Ω ∈ LD(Ω) and Hjλ(ε(ũ)|Ω, µ̃⊗s ν) <∞.

The bilinear form between Y1(Ω)×M1(Γ1) and Cdiv(Ω,En
s )×C(Γ1,En

s )
is given by

(2.8) 〈(ε(u)|Ω,µ⊗s ν); (σ,κ)〉2 ≡
�

Ω

σ : ε(u)|Ω

+
�

FrΩ

σ : (−γIB(u)⊗s ν)ds+
�

Γ1

κ : [µ⊗s ν]

for (ε(u)|Ω,−γIB(u)ds⊗s ν) ∈ Y1(Ω), µ⊗s ν ∈M1(Γ1), σ ∈ Cdiv(Ω,En
s )

and κ ∈ C(Γ1,En
s ). Because of the duality between Y1(Ω) ×M1(Γ1) and

Cdiv(Ω,En
s ) × C(Γ1,En

s ), we define a functional (Hjλ)∗ : Cdiv(Ω,En
s ) ×

C(Γ1,En
s )→ R ∪ {∞} by

(2.9) (Hjλ)∗(σ,κ) = sup{〈(ε(u)|Ω,µ⊗s ν); (σ,κ)〉2
−Hjλ(ε(u)|Ω ,µ⊗s ν) | ε(u)|Ω ∈ Y1(Ω), µ⊗s ν ∈M1(Γ1)}.

The bidual functional (Hjλ)∗∗ : Y1(Ω)×M1(Γ1)→ R ∪ {∞} is defined by

(2.10) (Hjλ)∗∗(ε(u)|Ω ,µ⊗s ν) = sup{〈(ε(u)|Ω ,µ⊗s ν); (σ,κ)〉2
− (Hjλ)∗(σ,κ) | σ ∈ Cdiv(Ω,En

s ), κ ∈ C(Γ1,En
s )}.

The bilinear form between Mb(Ω,En
s ) × Y1(Ω)|FrΩ × M1(Γ1) and

Cdiv(Ω,En
s )× C(Γ1,En

s ) is given by

(2.11) 〈(w,γIB(u)⊗s ν,µ⊗s ν); (σ,κ)〉3 =
�

Ω

σ : w

+
�

FrΩ

σ : (−γIB(u)⊗s ν) ds+
�

Γ1

κ : [µ⊗s ν]

for w ∈ Mb(Ω,En
s ), γIB(u)ds ⊗s ν ∈ Y1(Ω)|FrΩ , µ ⊗s ν ∈ M1(Γ1), σ ∈

Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ). The extension of Hjλ onto the space
Mb(Ω,En

s )×Y1(Ω)|FrΩ ×M1(Γ1) (denoted by H̃jλ) is given by

(2.12) H̃jλ(w,−γIB(u)⊗s ν,µ⊗s ν) ≡ −
�

Γ1

λg · µ

+
�

Ω

j(x,w) dx+
�

Γ0

I{γIB(u)⊗sν=0}(γ
I
B(u)⊗s ν) ds

if w ∈ L1(Ω,En
s ) and µ = γIB(u)ds for |µ − γIB(u)ds|-a.e. x ∈ Γ1, and

H̃jλ(w, −γIB(u)⊗s ν,µ⊗s ν) ≡ ∞ otherwise.
By duality betweenMb(Ω,En

s )×Y1(Ω)|FrΩ×M1(Γ1) and Cdiv(Ω,En
s )×

C(Γ1,En
s ), we define a functional (H̃jλ)∗ : Cdiv(Ω,En

s )×C(Γ1,En
s )→ R∪{∞}
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by

(2.13) (H̃jλ)∗(σ,κ) = sup{〈(w,−γIB(u)⊗s ν,µ⊗s ν); (σ,κ)〉3
− H̃jλ(w,−γIB(u)⊗s ν,µ⊗s ν) | w ∈ L1(Ω,En

s ),

u ∈ BD(Ω) and µ⊗s ν ∈M1(Γ1)},
since L1 ⊂Mb. The bidual functional (H̃jλ)∗∗ : Y1(Ω)×M1(Γ1)→ R∪{∞}
is defined by

(2.14) (H̃jλ)∗∗(w,−γIB(u)⊗s ν,µ⊗s ν) = sup{〈(w,−γIB(u)⊗s ν,µ⊗s ν);

(σ,κ)〉3 − (H̃jλ)∗(σ,κ) | σ ∈ Cdiv(Ω,En
s ), κ ∈ C(Γ1,En

s )}
for (w,−γIB(u)ds⊗s ν) ∈ Y1(Ω) and µ⊗s ν ∈M1(Γ1).

Lemma 1. For every u ∈ BD(Ω1) and µ ∈Mb(Γ1,Rn) such that u|Ω ∈
LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0 and γIB(u)ds = µ on Γ1, we have

(Hjλ)∗∗(ε(u)|Ω , µ⊗s ν) = Hjλ(ε(u)|Ω, µ⊗s ν)(2.15)

= (H̃jλ)∗∗(ε(u)|Ω,−γIB(u)⊗s ν, µ⊗s ν).

Proof. By [1, (4.80)], we have (H̃jλ)∗∗(ε(u)|Ω, −γIB(u)ds⊗s ν, µ⊗s ν) =
Hjλ(ε(u)|Ω , µ ⊗s ν) for every u ∈ BD(Ω1) and µ ∈ Mb(Γ1,Rn) such that
u|Ω ∈ LD(Ω), u|Ω1−Ω = 0, γIB(u) = 0 on Γ0 and γIB(u)ds = µ on Γ1 (now

H#∗ is denoted by (H̃jλ)∗∗). Similarly to the proofs of Lemmas 6 and 8 from
[2] we obtain (2.15).

Lemma 2. Let κs ∈ C(Γ1,En
s ), σs ∈ Cdiv(Ω,En

s ), where divσs = 0
on Ω. If for every t ∈ L1(Γ1,Rn), �

Γ1
κs : [t⊗s ν]ds = 0, then

(Hjλ)∗(σ,κ) = (Hjλ)∗(σ + σs,κ+ κs)

for every σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ).

Proof. We prove this result similarly to [2, Lemma 9].

We say that a net {(σt,κt)}t∈T ⊂ Cdiv(Ω,En
s )× C(Γ1,En

s ) converges to
(σ̂, κ̂) in the topology

(2.16) σ(Cdiv(Ω,En
s )× C(Γ1,En

s ), L1(Ω,En
s )×

{(ϕ,µ⊗s ν) ∈ Y1(Ω)|FrΩ ×M1(Γ1) | ϕ|Γ0 = 0, ϕ|Γ1ds = µ⊗s ν})
if 〈(wdx,p ⊗s ν,p|Γ1ds ⊗s ν); [(σt,κt) − (σ̂, κ̂)]〉3 → 0 for every w ∈
L1(Ω,En

s ) and p ∈ L1(FrΩ,Rn), where p|Γ0 = 0.

Lemma 3. Let

(2.17) f̃ : Cdiv(Ω,En
s )× C(Γ1,En

s )→ R
be a linear functional , continuous in the topology (2.16), such that there exist
κ0 ∈ C(Γ1,En

s ) and σ̃1 ∈ Cdiv(Ω,En
s ) such that for every σs ∈ C(Ω,En

s )
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with divσs = 0, we have

(2.18) f̃(σ̃1 + σs,κ0) = f̃(σ̃1,κ0).

Moreover , assume that for every κs ∈ C(Γ1,En
s ) with �

Γ1
κs : [t⊗sν] ds = 0

for every t ∈ L1(Γ1,Rn), we have

(2.19) ∀σ ∈ Cdiv(Ω,En
s ), ∀κ ∈ C(Γ1,En

s ), f̃(σ,κ) = f̃(σ,κ+ κs).

Then there exists ũ1 ∈ LD(Ω) such that γB(ũ1) = 0 on Γ0 and for every
(σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s ) we get

f̃(σ,κ) =
�

Ω

σ : ε(ũ1) dx−
�

FrΩ

σ : (γB(ũ1)⊗s ν) ds(2.20)

+
�

Γ1

κ : (γB(ũ1)⊗s ν) ds.

Proof. Since f̃ is continuous in the topology (2.16), by Theorem V.3.9
of [8] there exist m ∈ L1(Ω,En

s ) and û ∈ BD(Ω) with γB(û) = 0 on Γ0

such that, for every σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ),

f̃(σ, κ) =
�

Ω

σ : m dx−
�

FrΩ

σ : (γB(û)⊗s ν) ds(2.21)

+
�

Γ1

κ : (γB(û)⊗s ν) ds.

Indeed, in (2.17) we can replace C(Γ1,En
s ) by

(2.22) C(Γ1,En
s )/
{
κ ∈ C(Γ1,En

s )
∣∣∣∀t ∈ L1(Γ1,Rn),

�

Γ1

κ : [t⊗s ν] ds = 0
}
.

By the linearity of f̃ , we get f̃(σ + σs, κ) = f̃(σ, κ) for every κ ∈
C(Γ1,En

s ), σ ∈ Cdiv(Ω,En
s ) and σs ∈ Cdiv(Ω,En

s ) such that divσs = 0.
Indeed, by (2.18) and (2.21) we have

f̃(σ + σs,κ0) = f̃(σ̃1 + σs,κ0) + f̃(σ − σ̃1,0)(2.23)

= f̃(σ̃1,κ0) + f̃(σ − σ̃1,0) = f̃(σ,κ0),

and by (2.21) we get

f̃(σ + σs,κ) = f̃(σ + σs,κ0) + f̃(0,κ− κ0)(2.24)

= f̃(σ,κ0) + f̃(0,κ− κ0) = f̃(σ,κ).

Thus, f̃(σs, 0) = 0 for every σs ∈ C(Ω,En
s ) with divσs = 0. Taking κ = 0

in (2.21), we may proceed as in [2, Lemma 10].

Let Q1 : Cdiv(Ω,En
s )× C(Γ1,En

s )→ R ∪ {∞} be defined by
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(2.25) Q1(σ,κ)

= inf
σs
{(H̃jλ)∗(σ + σs,κ) | σs ∈ C(Ω,En

s ) with divσs = 0}

for σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ).

Proposition 4. For every σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ) we have

(2.26) (Hjλ)∗(σ,κ) = cl(2.16) Q1(σ,κ),

where cl(2.16) Q1 denotes the largest minorant which is less than Q1 and is
l.s.c. in the topology (2.16) (i.e. cl(2.16) Q1 is the l.s.c. regularization of Q1

in (2.16)).

Proof. Step 1 . First notice that

(2.27) Q1(σ,κ) = inf
σs,κs

{
(H̃jλ)∗(σ + σs,κ+ κs)

∣∣∣σs ∈ C(Ω,En
s ),

κs ∈ C(Γ1,En
s ), divσs = 0 and ∀t ∈ L1(Γ1,Rn),

�

Γ1

κs : [t⊗s ν] ds = 0
}

(see (2.11)–(2.13)). Next, assume the existence of a couple (σ̂1,κ0) ∈
Cdiv(Ω,En

s )× C(Γ1,En
s ) and a constant δ0 > 0 such that (Hjλ)∗(σ̂1, κ0) +

δ0 < cl(2.16) Q1(σ̂1,κ0). On account of Lemma 2, it suffices to show that
this assumption leads to a contradiction, since (Hjλ)∗(σ,κ) ≤ (H̃jλ)∗(σ,κ)
for every (σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s ) (cf. (2.7)–(2.9), (2.11)–(2.13)).

Step 2. The linear space

(2.28) M1 ≡ {σs ∈ Cdiv(Ω,En
s ) | divσs = 0}

×
{
κ ∈ C(Γ1,En

s )
∣∣∣∀t ∈ L1(Γ1,Rn),

�

Γ1

κ : [t⊗s ν] ds = 0
}

is a closed subspace of Cdiv(Ω,En
s )×C(Γ1,En

s ) endowed with the topology
(2.16). Indeed, by Green’s formula (see [2, (2.11) and (4.23)]) we have

(2.29)
⋂

u∈LD(Ω), γB(u)=0 onΓ0

{
(σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s )
∣∣∣

�

Ω

(divσ) · u dx =
�

Γ1

κ : (γB(u)⊗s ν) ds
}

=
⋂

u∈LD(Ω), γB(u)=0 onΓ0

{
(σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s )
∣∣∣

divσ = 0 in Ω,
�

Γ1

κ : (γB(u)⊗s ν) ds = 0
}

=
{

(σ,κ)
∣∣∣ divσ = 0,

�

Γ1

κ : [t⊗s ν] ds = 0, ∀t ∈ L1(Γ1,Rn)
}

=M1,

since the trace γB is a surjection onto L1(FrΩ,Rn).
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Step 3. Let

(2.30) Φ1 : Cdiv(Ω,En
s )× C(Γ1,En

s )→ [Cdiv(Ω,En
s )× C(Γ1,En

s )]/M1

be the linear function (canonical homomorphism) such that M1 = kerΦ1.
Moreover, let [Cdiv(Ω,En

s )×C(Γ1,En
s )]/M1 be endowed with the strongest

topology for which Φ1 is continuous, where Cdiv(Ω,En
s )× C(Γ1,En

s ) is en-
dowed with the topology (2.16). Then

(2.31) Â1 ≡ {((σ̃, κ̃), a) ∈ [(Cdiv(Ω,En
s )× C(Γ1,En

s ))/M1]× R |
∃(σ,κ) such that cl(2.16) Q1(σ,κ) ≤ a and Φ1(σ,κ) = (σ̃, κ̃)}

is a convex closed set. By the Hahn–Banach theorem, there exists a closed
affine hyperplane H1 which strictly separates the set Â1 and (Φ1(σ̂1,κ0),
(Hjλ)∗(σ̂1,κ0) + δ0). From [1, (4.79)] and Assumption 4, we deduce that
inf{(H̃jλ)∗(σ,κ) − �

Ω
ε(ue) : σ dx | σ ∈ Cdiv(Ω,En

s ), κ ∈ C(Γ1,En
s )} is

finite (here H# is denoted by (H̃jλ)∗). Then, similarly to Step 4 of the proof
of Proposition 11 from [2], there exists a continuous linear functional f̃3 :
[Cdiv(Ω,En

s ) ×C(Γ1,En
s )]/M1 → R and c̃3 ∈ R such that

(2.32) f̃3(Φ1(σ̂1,κ0)) + c̃3 > (Hjλ)∗(σ̂1,κ0) + δ0, f3(σ̃, κ̃) + c3 < a

for every ((σ̃, κ̃), a) ∈ Â1.

Step 4 . Therefore the linear functional f̃4 defined by f̃4 = f̃3◦Φ1 strictly
separates epi cl(2.16) Q1 and

(2.33) {(σ,κ, a) ∈ Cdiv(Ω,En
s )× C(Γ1,En

s )× R |
(σ,κ) ∈M1 + {(σ̂1,κ0)}, a = (Hjλ)∗(σ̂1,κ0) + δ0}.

Moreover M1 ⊂ ker f̃4 and f̃4 is continuous in the topology (2.16), since
f̃4 = f̃3 ◦ Φ1.

Step 5. By Lemma 3, there exists ũ1 ∈ LD(Ω) such that γB(ũ1) = 0
on Γ0 and for every (σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s ),

f̃4(σ,κ) =
�

Ω

σ : ε(ũ1) dx−
�

FrΩ

σ : (γB(ũ1)⊗s ν) ds(2.34)

+
�

Γ1

κ : (γB(ũ1)⊗s ν) ds.

Step 6. We say that a net {(σt,κt)}t∈T ⊂ Cdiv(Ω,En
s ) × C(Γ1,En

s )
converges to (σ̂, κ̂) in the topology

(2.35) σ(Cdiv(Ω,En
s )× C(Γ1,En

s ); {(ϕ,µ⊗s ν) ∈ Y1(Ω)×M1(Γ1) |
∃u ∈ BD(Ω1), ε(u) = ϕ, u|Ω ∈ LD(Ω), u|Ω1−Ω = 0,

γIB(u) = 0 on Γ0 and γIB(u) ds = µ on Γ1})
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if

(2.36) 〈(ε(u)|Ω ,γ
I
B(u) ds⊗s ν); (σt,κt)− (σ̂, κ̂)〉2 → 0

for every u ∈ BD(Ω1), where u|Ω ∈ LD(Ω), u|Ω1−Ω = 0 and γIB(u) = 0

on Γ0. The l.s.c. regularization of (H̃jλ)∗ in the topology (2.35) (denoted by
cl(2.35)(H̃jλ)∗) is given by

(2.37) cl(2.35)(H̃jλ)∗(σ,κ) = sup{〈(ε(u)|Ω ,γ
I
B(u) ds⊗s ν); (σ,κ)〉2

− (H̃jλ)∗∗(ε(u)|Ω,γ
I
B(u) ds⊗s ν) | u ∈ BD(Ω1), u|Ω ∈ LD(Ω),

u|Ω1−Ω = 0 and γIB(u) = 0 on Γ0} = sup{〈ε(u)|Ω, (γ
I
B(u) ds⊗s ν);

(σ,κ)〉2 −Hjλ(ε(u)|Ω ,γ
I
B(u) ds) | u ∈ BD(Ω1),

u|Ω ∈ LD(Ω), u|Ω1−Ω = 0 and γIB(u) = 0 on Γ0} = (Hjλ)∗(σ,κ),

for every σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ) (see Lemma 1).
By (2.32), (2.34) and (2.37) we obtain a contradiction, because f̃4 is

continuous in (2.35).

We say that a net {(σt,κt)}t∈T ⊂ Cdiv(Ω,En
s )×C(Γ1,En

s ) converges to
(σ,κ) in the topology

(2.38) σ(Cdiv(Ω,En
s )× C(Γ1,En

s ),Y1(Ω)× L1(Γ1,Rn)⊗s ν)

if

(2.39) 〈(ε(u)|Ω, z ds⊗s ν); (σt,κt)− (σ,κ)〉2 → 0

for every ε(u)|Ω ∈ Y1(Ω) and z ∈ L1(Γ1,Rn).

Lemma 5. For every k > 0, the topology (2.16) is stronger than (2.38)
over the set Ak ≡ {(σ,κ) ∈ Cdiv(Ω,En

s ) × C(Γ1,En
s ) | ‖divσ‖Ln ≤ k,

‖κ‖C(Γ1,Ens ) ≤ k}.

Proof. Suppose a net {(σt,κt)}t∈T ⊂ Ak converges to (σ,κ) in the
topology (2.16). Then by the Green formula (see [2]) we obtain �

Γ1
(κt−κ) :

(γB(u) ⊗s ν) ds − �
Ω

div(σt − σ) · u dx → 0 for every u ∈ LD(Ω) such
that γB(u) = 0 on Γ0. Since C1

c (Ω,Rn) is dense in Ln/(n−1)(Ω,Rn), so is
C1
c (Ω,Rn) + {u} for every u ∈ LD(Ω). Therefore the set

(2.40) {(w, z⊗s ν) ∈ Ln/(n−1)(Ω,Rn)× (L1(Γ1,Rn)⊗s ν) |
∃û1 ∈ C1

c (Ω,Rn), ∃û2 ∈ LD(Ω), w = û1 + û2, γB(û2) = z on Γ1}
is dense in Ln/(n−1)(Ω,Rn)× (L1(Γ1,Rn)⊗s ν). By [8, Theorem II.1.18],

(2.41)
�

Γ1

(κt − κ) : (z⊗s ν) ds−
�

Ω

div(σt − σ) · u dx→ 0
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for all u ∈ BD(Ω) and z ∈ L1(Γ1,Rn). By the Green formula, {(σt,κt)}t∈T
converges to (σ,κ) in the topology (2.38).

Proposition 6. Let Ak be as in Lemma 5. For every σ̂ ∈ Cdiv(Ω,En
s )

and κ̂ ∈ C(Γ1,En
s ) there exists k(σ̂,κ̂) > 0 such that for every k ≥ k(σ̂,κ̂),

(2.42) (Hjλ)∗(σ̂, κ̂) = clAk Q1(σ̂, κ̂),

where clAk Q1(·, ·) is the l.s.c. regularization of (σ,κ) 7→Q1(σ,κ)+IAk(σ,κ)
in the topology (2.16) and IAk(·) is the indicator function of Ak.

Proof. We prove this result similarly to [2, Proposition 13].

Theorem 7. For every ε(u)|Ω ∈ Y1(Ω) and µ ∈Mb(Γ1,Rn) we have

(2.43) (H̃jλ)∗∗(ε(u)|Ω ,µ⊗s ν) = (Hjλ)∗∗(ε(u)|Ω,µ⊗s ν).

Proof. Step 1. By Proposition 4, Lemma 5 and Proposition 6 (simi-
larly to the proof of Theorem 14 from [2]) we get (H̃jλ)∗∗(ε(u)|Ω, z⊗s ν) =

(Hjλ)∗∗(ε(u)|Ω, z⊗s ν) for every ε(u)|Ω ∈ Y1(Ω) and z ∈ L1(Γ1,Rn).

Step 2. In [1, (4.80)] we obtain the explicit representation of (H̃jλ)∗∗:

(2.44) (H̃jλ)∗∗(ε(u)|Ω ,µ⊗s ν) = −
�

Γ1

λgµ+
�

Ω

j(x, ε(u)a) dx

+
�

Γ1

j∞

(
x,
d((µ− γIB(u) ds)⊗s ν)
d|(µ− γIB(u) ds)⊗s ν|

)
d|(µ− γIB(u) ds)⊗s ν|

+
�

Ω

j∞

(
x,

dε(u)s
d|ε(u)s|

)
d|ε(u)s|+

�

Γ0

j∞(x, (−γIB(u))⊗s ν) ds

for every ε(u)|Ω ∈ Y1(Ω) and µ ∈ Mb(Γ1,Rn) (now H#∗ is denoted by

(H̃jλ)∗∗). Consider the function Qε(u)|Ω : M1(Γ1) → R ∪ {∞} for ε(u)|Ω ∈
Y1(Ω), defined by

(2.45) µ⊗s ν 7→ Qε(u)|Ω (µ⊗s ν) =





(H̃jλ)∗∗(ε(u)|Ω,µ⊗s ν)

if µ ∈ L1(Γ1,Rn),

∞ otherwise.
By (2.44),

(2.46) Qε(u)|Ω (µ⊗s ν) = −
�

Γ1

λgµ+ cε(u)|Ω

+
�

Γ1

j∞

(
x,
d((µ− γIB(u) ds)⊗s ν)
d|(µ− γIB(u) ds)⊗s ν|

)
d|(µ− γIB(u) ds)⊗s ν|
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for every µ ∈ L1(Γ1,Rn), where cε(u)|Ω depends only on ε(u)|Ω ∈ Y1(Ω).
We now prove that the l.s.c. regularization of Qε(u)|Ω in the topology
σ(M1(Γ1), C(Γ1, En

s )) (denoted by clQε(u)|Ω ) is given by

(2.47) clQε(u)|Ω (µ⊗s ν) = (H̃jλ)∗∗(ε(u)|Ω ,µ⊗s ν)

for ε(u)|Ω ∈ Y1(Ω) and µ ∈Mb(Γ1,Rn).
Indeed, by [5], we obtain

(2.48) Q∗ε(u)|Ω
(κ) = sup

{ �

Γ1

(κ · ν + λg) · µ ds

−
�

Γ1

j∞(x, (µ− γIB(u))⊗s ν) ds− cε(u)|Ω

∣∣∣µ ∈ L1(Γ1,Rn)
}

= sup
{ �

Γ1

(κ · ν + λg) · (µ− γIB(u)) ds−
�

Γ1

j∞(x, (µ− γIB(u))⊗s ν) ds

− cε(u)|Ω

∣∣∣µ ∈ L1(Γ1,Rn)
}

+
�

Γ1

(κ · ν + λg) · γIB(u) ds

=
�

Γ1

(κ · ν + λg) · γIB(u) ds+
�

Γ1

I{κ·ν+λg∈K(x)·ν(x)}(κ · ν + λg) ds− cε(u)|Ω

for every κ ∈ C(Γ1,En
s ), and

(2.49) Q∗∗ε(u)|Ω
(µ⊗s ν) = sup

{ �

Γ1

κ : (µ⊗s ν)−
�

Γ1

(κ · ν + λg) · γIB(u) ds

−
�

Γ1

I{κ·ν+λg∈K(x)·ν(x)}(κ · ν + λg) ds+ cε(u)|Ω

∣∣∣κ ∈ C(Γ1,En
s )
}

= sup
{ �

Γ1

(κ ·ν+λg) · (µ−γIB(u) ds)−
�

Γ1

I{κ·ν+λg∈K(x)·ν(x)}(κ ·ν+λg) ds
∣∣∣

κ ∈ C(Γ1,En
s )
}
−

�

Γ1

λg · µ+ cε(u)|Ω

=
�

Γ1

j∞

(
x,
d((µ− γIB(u) ds)⊗s ν)
d|(µ− γIB(u) ds)⊗s ν|

)
d|(µ− γIB(u) ds)⊗s ν|

−
�

Γ1

λg · µ+ cε(u)|Ω

for all µ ∈ Mb(Γ1,Rn). Thus we get (2.47). Since (H̃jλ)∗∗(ε(u)|Ω, µ ⊗s ν)

= (Hjλ)∗∗(ε(u)|Ω ,µ⊗s ν) for every (ε(u)|Ω ,µ) ∈ Y1(Ω)× L1(Γ1,Rn), and

(Hjλ)∗∗ is the l.s.c. regularization of Hjλ, we obtain (2.43).

Now we turn to mechanical conclusions.
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The following is known as the Suquet problem (see [12]):

(2.50) (SQλ,j) Find inf{λFSQ(u,µ) +Gj(ε(u)) |
u ∈ LD(Ω), µ ∈Mb(Γ1,Rn)},

where the functional of the total loading has the form

λFSQ(u,µ) ≡ − λ
( �

Ω

f · u dx+
�

Γ1

g · µ
)

(2.51)

+
�

Γ0

I{γB(u)(x)=0}(−γB(u)⊗s ν) ds

if µ = γIB(u) ds for |µ− γIB(u) ds|-a.e. x ∈ Γ1, and λFSQ(u,µ) ≡ ∞ other-
wise. The elastic-plastic potential Gj is defined by [2, (3.11)].

The following bidual relaxed Suquet problem is studied in [1]:

(2.52) (SP ∗∗λ,j) Find inf{(λFH)∗∗(u,µ) +G∗∗j (ε(u)) |
u ∈ BD(Ω), µ ∈Mb(Γ1,Rn)},

where for every u ∈ BD(Ω) and µ ∈Mb(Γ1,Rn),

(2.53) (λFH)∗∗(u,µ) ≡ −λ
[ �

Ω

f · udx+
�

Γ1

g · µ
]

+
�

Γ0

j∞(x, (−γB(u)⊗s ν)) ds

+
�

Γ1

j∞

(
x,
d((µ− γB(u) ds)⊗s ν)
d|(µ− γB(u) ds)⊗s ν|

)
d|(µ− γB(u) ds)⊗s ν|

and G∗∗j (ε(·)) is defined in [2, (5.4)].

Assumption 7. There exist kb > 0 and r1 > 0 such that j∗(x,w∗) ≤ kb
for every w∗ ∈ BEns (0, r1) and for dx-a.e. x ∈ Ω, where BEns (0, r1) is the
closed ball in En

s with center 0 and radius r1.

Let the functional

(2.54) (u,µ) 7→ dSQλ,je(u,µ) ≡ λFSQ(u,µ) +Gj(ε(u))

be coercive over BD(Ω)×Mb(Γ1,Rn), i.e.,

(2.55) if ‖um‖BD + ‖µm‖Mb →∞ then dSQλ,je(um,µm)→∞
for any sequences {um}m∈N ⊂ BD(Ω) and {µm}m∈N ⊂ Mb(Γ1,Rn). More-
over, let 0 ≤ λ1 < λ. Then the functional dSQλ1,je is coercive on BD(Ω)×
Mb(Γ1,Rn). Similarly, if the functional

(2.56) (u,µ) 7→ dSP ∗∗λ,je(u,µ) ≡ (λFH)∗∗(u,µ) +G∗∗j (ε(u))

is coercive and 0 ≤ λ1 ≤ λ, then dSP ∗∗λ1,j
e is coercive over BD(Ω) ×

Mb(Γ1,Rn). Moreover, we obtain dSQλ,je ≥ dSP ∗∗λ,je.
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We say that a net {(ut,µt)}t∈T ⊂ BD(Ω) ×Mb(Γ1,Rn) converges to
(u0,µ0) in the weak∗ BD(Ω) × Mb(Γ1,Rn) topology if ut ⇀ u0 in the
weak∗ BD(Ω) topology and µt ⇀ µ0 in the weak∗ Mb(Γ1,Rn) topology.

Theorem 8. Let ds(Γ0) 6= 0 and f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. If
the functional dSQλ,je is coercive over BD(Ω)×Mb(Γ1,Rn), then the l.s.c.
regularization of dSQλ,je in the weak∗ BD(Ω)×Mb(Γ1,Rn) topology is the
functional dSP ∗∗λ,je (cf. (2.50), (2.52), (2.53)).

Proof. Step 1. Let (ũ, µ̃) ∈ BD(Ω)×Mb(Γ1,Rn) and {(up,µp)}p∈P be a
net such that (up,µp) ⇀ (ũ, µ̃) in the weak∗ BD(Ω)×Mb(Γ1,Rn) topology.
By Steps 1 and 2 of [2, proof of Theorem 18], lim infp∈P dSQλ,je(up,µp) ≥
dSP ∗∗λ,je(ũ, µ̃), since dSQλ,je is equal to the function defined in [2, (3.8)] and
dRP ∗∗λ,je is equal to dSP ∗∗λ,je (cf. [2, (5.6)]) if µ = γB(u) ds on Γ1.

Step 2. Let (H̃jλ)∗∗(ε(ũ)|Ω , µ̃⊗s ν) <∞. By Theorem 7, there is a net
{(ut,µt)}t∈Σ ⊂ BD(Ω)×Mb(Γ1,Rn) such that (ut,µt⊗s ν) ⇀ (ũ, µ̃⊗s ν)
in the topology σ(Y1(Ω) ×M1(Γ1), Cdiv(Ω,En

s ) × C(Γ1,En
s )), where the

bilinear form 〈·; ·〉2 between Y1(Ω)×M1(Γ1) and Cdiv(Ω,En
s )×C(Γ1,En

s )
is given by (2.8). Moreover,

(2.57) lim
t∈Σ

(
dSQλ,je(ut,µt) + λ

�

Ω

f · ut dx
)

= (H̃jλ)∗∗(ε(ũ)|Ω , µ̃⊗s ν).

Theorem 7 holds in the special case when g = 0 on Γ1. Then

(2.58) lim
t∈Σ

[
dSQλ,je(ut,µt) + λ

( �

Ω

f · ut dx+
�

Γ1

g · µt
)]

= (H̃jλ)∗∗(ε(ũ)|Ω, µ̃⊗s ν) + λ
�

Γ1

g · µ̃ ∈ R,

because |λ �
Γ1

g · µ̃| <∞. By Assumption 7, [2, Lemma 16] and (2.58), the
net {(ut,µt)}t∈Σ is bounded and (ut,µt) ⇀ (ũ, µ̃) in the weak∗ BD(Ω)×
Mb(Γ1,Rn) topology. Therefore, by Theorem 7 and [2, Lemma 15], we get

(2.59) lim
t∈Σ
dSQλ,je(ut,µt) = dSP ∗∗λ,je(ũ, µ̃).

Step 3. Let (H̃jλ)∗∗(ε(ũ)|Ω, µ̃ ⊗s ν) = ∞. Then, by Step 4 of the proof
of Theorem 18 from [2], for every net {(up,µp)}p∈P such that (up,µp) ⇀
(ũ, µ̃) in the weak∗ BD(Ω)×Mb(Γ1,Rn) topology, we have

(2.60) lim inf
p∈P

dSQλ,je(ut,µt) =∞ = dSP ∗∗λ,je(ũ, µ̃).

Next, we proceed similarly to Step 5 of the proof of [2, Theorem 18].

Corollary 9. dSQλ,je is coercive over BD(Ω)×Mb(Γ1,Rn) if and only
if dSP ∗∗λ,je is coercive.

Proof. We prove this similarly to [2, Corollary 19].
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Corollary 10. The functional (3.8) from [2] is coercive over BD(Ω)
if and only if dSP ∗∗λ,je is coercive, where u0 = 0 on Γ0 (in the functional [2,
(3.8)]).

Proof. Indeed, by [2, (3.11)], (2.51) and (2.54), the functional dSQλ,je
is coercive over BD(Ω)×Mb(Γ1,Rn) if and only if (3.8) from [2] is coercive
over BD(Ω).

Theorem 11. Let ds(Γ0) 6= 0 and f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. More-
over , let j∗ : Ω ×En

s → R ∪ {∞} be a nonnegative normal integrand. If the
functional (3.8) from [2] is coercive over BD(Ω) and u0 = 0 on Γ0 (in [2,
(3.8)]), then the couple (ũ, µ̃) ∈ BD(Ω) ×Mb(Γ1,Rn) is a solution of the
problem (SP ∗∗λ,j) if and only if µ̃ = γB(ũ)|Γ1 ds ∈ Mb(Γ1,Rn) and ũ is a
solution of the problem (RP ∗∗λ,j) (cf. [2, (5.2)–(5.4)], (2.52) and (2.53)).

Proof. Since the normal integrand j∗ is nonnegative, (RP ∗∗λ,j) and (SP ∗∗λ,j)
have finite infima, because dRP ∗∗λ,je(0) < ∞ and dSP ∗∗λ,je(0,0) < ∞ (cf. [2,
(5.6)]).

First, let ũ be a solution of (RP ∗∗λ,j). Then the couple (ũ,γB(ũ)|Γ1 ds) ∈
BD(Ω)×Mb(Γ1,Rn) is a solution of (SP ∗∗λ,j), since

(2.61) inf (RP ∗∗λ,j) = inf (Pλ,j) = inf (SQλ,j) = inf (SP ∗∗λ,j),

where (Pλ,j) is defined in [2, (5.1) and (3.8)] (cf. [2, Theorem 18], Theorem 8,
[2, (3.8), (5.2), (5.1)] and (2.50), (2.52)).

Next, we show the inverse implication. Let (ũ, µ̃) be a solution of (SP ∗∗λ,j).
Then there exists a sequence {(um,µm)}m∈N in BD(Ω)×Mb(Γ1,Rn) such
that limm→∞dSQλ,je(um,µm) = inf(SP ∗∗λ,j) and (um,µm) ⇀ (ũ, µ̃) in
weak∗ BD(Ω) ×Mb(Γ1,Rn) topology. By (2.50), there exists m0 ∈ N such
that for every m > m0 we have µm = γB(um) ds on Γ1, because inf (SP ∗∗λ,j)
<∞. Since inf (RP ∗∗λ,j) = inf (SP ∗∗λ,j), we obtain

(2.62) lim
m→∞

dSQλ,je(um,γB(um)|Γ1 ds) = lim
m→∞

Pλ,j(um) = inf dRP ∗∗λ,je,

where Pλ,j is defined in [2, (3.8)] (cf. (2.61)). Therefore, by [2, Theorem 18],
we get

(2.63) dRP ∗∗λ,je(ũ) = inf (RP ∗∗λ,j) = inf (SP ∗∗λ,j).

Reasoning by contradiction, we prove that µ̃ = γB(ũ) ds on Γ1. Suppose µ̃ 6=
γB(ũ)|Γ1 ds. By [2, (5.2)], (2.52) and (2.63) we have dSP ∗∗λ,je(ũ,γB(ũ)|Γ1 ds)
= dSP ∗∗λ,je(ũ, µ̃). The function

[0,∞) 3 t 7→
�

Γ1

j∞

(
x,
d(t(µ̃− γB(ũ) ds)⊗s ν)
d|(µ̃− γB(ũ) ds)⊗s ν|

)
d|(µ̃− γB(ũ) ds)⊗s ν|

+ (1− t)
�

Γ1

g · γB(ũ) ds+ t
�

Γ1

g · µ̃
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is positively homogeneous. Then for every t > 0, dSP ∗∗λ,je(ũ, µ̃) = dSP ∗∗λ,je(ũ,
t(µ̃−γB(ũ)|Γ1 ds) +γB(ũ)|Γ1 ds). Therefore we obtain a contradiction with
the coercivity of dSP ∗∗λ,je (cf. Corollary 10).

Let ds(Γ0) = 0 and L(û) = 0 for every û ∈ R0 ≡ {u ∈ BD | ε(u) = 0}.
Moreover, let the functionals (3.8) from [2] and (RP ∗∗λ,j) be defined over
BD(Ω)/R0, and let (SQλ,j) and (SP ∗∗λ,j) be defined over the space (BD(Ω)×
Mb(Γ1,Rn))/{(û,γB(û)|Γ1 ds) | û ∈ R0}. Then the assertions of Theorem 8,
Corollary 9, Corollary 10 and Theorem 11 hold. Indeed, in their proofs, we
can replace weak∗ BD(Ω) topology by σ(Y1(Ω), Cdiv(Ω,En

s )), and Gj(ε(·))
does not depend on u ∈ ker ε (cf. [2, Lemma 15], (2.10) and (2.14)).

3. The limit analysis problem. Here we define the limit analysis
problem (SP ∗∗0,j)AL associated with (SP ∗∗λ,j). We prove that (SP ∗∗λ,j) is coer-
cive if inf (SP ∗∗0,j)AL > λ, under some assumptions given below. Moreover,
we obtain an existence theorem for (SP ∗∗0,j)AL.

Assumption 8. j∗ is a nonnegative function.

The original problem (Pλ,j) is defined by (see [2, formula (3.8)–(3.11)])

(3.1) (Pλ,j) find inf{λF (u) +Gj(ε(u)) | u ∈ BD(Ω)},
where

(3.2) λF (u) ≡ −λL(u) + ICa(0)(u), L(u) ≡
�

Ω

f · u dx+
�

Γ1

g · γB(u) ds,

and

(3.3) Ca(0) ≡ {u ∈ BD(Ω) | γB(u)|Γ0 = 0 on Γ0}.
The elastic-plastic potential Gj : Mb(Ω,En

s )→ R ∪ {∞} is defined by

(3.4) Gj(µ) ≡
{ �

Ω
j(x,µ) dx if µ ∈ L1(Ω,En

s ),

∞ otherwise.
With (Pλ,j) one associates the limit analysis problem (P0,j)AL:

(3.5) (P0,j)AL find inf
{ �

Ω

j∞(x, ε(u)) dx
∣∣∣u ∈ LD(Ω),

γB(u) = 0 on Γ0, L(u) = 1
}
.

Similarly, (SP ∗∗λ,j), defined in (2.52), is connected with the relaxed limit anal-
ysis problem (SP ∗∗0,j)AL:

(3.6) (SP ∗∗0,j)AL find inf
{ �

Γ0

j∞(x,−γB(u)⊗s ν) ds

+
�

Γ1

j∞

(
x,
d((µ− γB(u) ds)⊗s ν)
d|(µ− γB(u) ds)⊗s ν|

)
d|(µ− γB(u) ds)⊗s ν|
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+
�

Ω

j∞(x, ε(u)a) dx+
�

Ω

j∞

(
x,

dε(u)s
d|ε(u)s|

)
d|ε(u)s|

∣∣∣∣

u ∈ BD(Ω), µ ∈Mb(Γ1,Rn),
�

Ω

f · u dx+
�

Γ1

g · µ = 1
}
.

Directly from (3.5) and (3.6) we get

(3.7) inf (P0,j)AL ≥ inf (SP ∗∗0,j)AL.

If ds(Γ0) = 0 and inf (P0,j)AL > 0 then for every u ∈ LD(Ω) and u ∈
LD(Ω) such that ε(u) = 0 in Ω, we have L(u) = L(u + u), since j∗ is
nonnegative (i.e. j(x,0) ≤ 0 for dx-a.e. x ∈ Ω); cf. Assumption 8 and (3.2)).
We can prove the following result.

Proposition 12. Assume that λr satisfies Assumption 5, where λ is re-
placed by λr. Moreover , let u0 = 0 in (Pλr,j). If inf (P0,j)AL > λr > λr ≥ 0
then inf (Pλr,j) > −∞. The inverse implication holds in the following form:
if inf (Pλr,j) > −∞ then inf (P0,j)AL ≥ λr. Moreover , if inf (P0,j)AL >
λr > λr ≥ 0 then any sequence {um}m∈N ⊂ BD(Ω) such that

(3.8) inf
z
{‖um + z‖BD | z ∈ BD(Ω) and ε(z) = 0} → ∞

satisfies limm→∞(λrF (um)+Gj(ε(um))) =∞, i.e. the functional BD(Ω) 3
u 7→ (λrF (u) +Gj(ε(u))) is coercive.

Below we study the relation between (SP ∗∗λ,j) and the relaxed limit anal-
ysis problem (SP ∗∗0,j)AL.

Remark 1. If inf (P0,j)AL > 0, then the assumptions of Corollaries 9,
10 and Theorem 8 hold (in the sense of (3.8)) if ds(Γ0) = 0. Indeed, L(û) = 0
for ε(û) = 0 (cf. Assumption 8 and (3.2)).

Proposition 13. Assume that λr satisfies Assumption 5, where λ is
replaced by λr, and suppose inf (P0,j)AL > λr > λr ≥ 0. Problem (SP ∗∗λr ,j)
is coercive if and only if inf (SP ∗∗0,j)AL > λr.

Proof. By Corollary 10, problem (SP ∗∗λ,j) is coercive if and only if (Pλ,j) is
coercive. By Proposition 12, if λr satisfies Assumption 5 and inf (P0,j)AL >
λr > λr ≥ 0, then (Pλr,j) is coercive if and only if (Pλr,j∞) is coercive.
From Corollary 10, (Pλ,j∞) is coercive if and only if (SP ∗∗λ,j∞) is coercive.
Therefore, if λr satisfies Assumption 5 and inf (P0,j)AL > λr > λr ≥ 0, then
(SP ∗∗λr ,j) is coercive if and only if (SP ∗∗λr ,j∞) is coercive. Moreover, (SP ∗∗λ,j∞)
is coercive if and only if (SP ∗∗0,j)AL > λ, where λ ≥ 0.

Theorem 14. There exists a solution (û, µ̂) ∈ BD(Ω) × Mb(Γ1,Rn)
of the problem (SP ∗∗0,j)AL, i.e. (SP ∗∗0,j)AL achieves its infimum at the point
(û, µ̂). If ds(Γ0) = 0 then we assume that L(û) = 0 for every û ∈ R0 ≡
{u ∈ BD | ε(u) = 0}.
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Proof. The functional (SP ∗∗λ,j∞) is l.s.c. in the weak∗ BD(Ω)×Mb(Γ1,Rn)
topology over bounded subsets of BD(Ω)×Mb(Γ1,Rn), for f = 0 and g = 0.
The functional

(3.9) Mb(Γ1,Rn) 3 µ 7→
�

Γ1

g · µ ∈ R

is continuous in the weak∗ Mb(Γ1,Rn) topology, because g ∈ C(Γ 1,Rn) (cf.
Assumption 5). By [2, Lemma 15] the functional

(3.10) BD(Ω) 3 u 7→
�

Ω

f · u dx ∈ R

is continuous in the weak∗ BD(Ω) topology on bounded subsets of BD(Ω).
If ds(Γ0) 6= 0, then by Assumption 7, every minimizing sequence for
(SP ∗∗0,j)AL is bounded.

If ds(Γ0) = 0, then the assertion of Corollary 10 holds for (3.8) from [2]
and (SP ∗∗λ,j), where j is replaced by j∞. Then inf (SP ∗∗0,j)AL is equal to the
infimum in the limit analysis problem associated to (Pλ,j∞), defined by

(3.11) (P0,j)AL Find inf
{ �

Ω

j∞(x, ε(u)) dx
∣∣∣u ∈ LD(Ω),

γB(u) = 0 on Γ0 and L(u) = 1
}

(cf. (3.2)). There exists a bounded minimizing net {ũk}k∈K for (P0,j)AL,
since Gj∞(ε(·)) does not depend on us ∈ ker ε = R0 and L(û) = 0 for
every û ∈ R0. Therefore {(ũk,γB(ũk)}k∈K is a bounded minimizing net for
(SP ∗∗0,j)AL.

Then by continuity (in the weak∗ BD(Ω)×Mb(Γ1,Rn) topology) of the
functionals (3.9) and (3.10) over bounded sets in BD(Ω)×Mb(Γ1,Rn), we
obtain the existence of the minimum for (SP ∗∗0,j)AL.

4. Appendix. Below we introduce a family of perturbations studied in
convex optimization (see [9, Chapter 3]). Next, we apply these results to
Hencky plasticity.

Let V and V ∗ (resp. Y and Y ∗) be two topological vector spaces in
duality via the bilinear pairing 〈·, ·〉V (〈·, ·〉Y , respectively). We shall assume
the existence of a continuous linear operator Λ from V into Y, with transpose
Λ∗. Taking a function V 3 u 7→ F (u)+G(Λu) ∈ R∪{∞}, we are concerned
with the minimization problem

(4.1) (P ) inf{F (u) +G(Λu) | u ∈ V }.
We shall also consider a function Φ : V × Y → R ∪ {∞} such that

Φ(u,0) = F (u) + G(Λu), and for every z ∈ Y we shall consider the mini-
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mization problem

(4.2) (Pz) inf{Φ(u, z) | u ∈ V },
where Φ(u, z) ≡ F (u) + G(Λ(u) + z) for every u ∈ V and z ∈ Y . The
problems (Pz) will be said to be perturbed problems of (P ). Let Φ∗ be the
conjugate function of Φ in the duality between V × Y and V ∗ × Y ∗, given
by

(4.3) Φ∗(u∗, z∗) = sup{〈u∗,u〉V − F (u)−〈z∗, Λu〉Y + 〈z∗, Λ(u) + z〉Y
−G(Λ(u) + z) | u ∈ V, z ∈ Y } = F ∗(u∗ − Λ∗z∗) +G∗(z∗).

The problem

(4.4) (P ∗) sup{−Φ∗(0, z∗) | z∗ ∈ Y ∗}
is termed the dual problem of (P ) with respect to Φ.

It is natural to associate the perturbed problems (u∗ ∈ V ∗)
(4.5) (P ∗u∗) sup{−Φ∗(u∗, z∗) | z∗ ∈ Y ∗}
with the dual problem (P ∗), and to determine the dual problem of (P ∗)
with respect to these perturbations; we easily arrive at the following problem
which will be termed the bidual problem of (P ):

(4.6) (P ∗∗) inf{Φ∗∗(u,0) | u ∈ V },
where Φ∗∗(u, z) = F ∗∗(u) +G∗∗(Λ(u) + z) for every u ∈ V, z ∈ Y and

F ∗∗(u) = sup{〈u∗,u〉V − F ∗(u∗) | u∗ ∈ V ∗},(4.7)

G∗∗(Λ(u) + z) = sup{〈z∗, Λ(u) + z〉Y −G∗(z∗) | z∗ ∈ Y ∗}.(4.8)

Below we study Hencky plasticity with the Mises (or Tresca) yield con-
dition (see [10]). We assume that Ω ⊂ Rn and n ≥ 2.

Assumption 9. Let KD : Ω → 2(Ens )D be a multifunction such that
KD(x) ⊂ (En

s )D and

(4.9) K(x) = KD(x)⊕ {w∗ ∈ En
s | ∃t ∈ R, w∗ij = tδij}

for every x ∈ Ω, where (En
s )D denotes the set of symmetric real n × n

matrices (whose trace is 0) and w∗ij are the components of w∗. Here δij = 1
if i = j and δij = 0 otherwise. There exist r1, r2 > 0 such that

(4.10) B(Ens )D(0, r1) ⊂ KD(x) ⊂ B(Ens )D(0, r2).

Assumption 10. The normal integrand j∗ satisfies

(4.11) j∗(x,w∗) = j∗D(x, (w∗)D) + j∗tr

(
x,

1
n

tr w∗
)
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for every w∗ ∈ En
s and dx-a.e. x ∈ Ω, where j∗D and j∗tr are nonnegative

functions, and the deviator (w∗)D of w∗ is given by

(4.12) w∗Dij = w∗ij −
1
n
δij(tr w∗).

There exist k̂ > 0, a ≥ a1 > 0 and b ≥ 0 such that

at2 + b ≥ j∗tr(x, t) ≥ a1t
2 ∀t ∈ R, for dx-a.e. x ∈ Ω,(4.13)

j∗D(x, (w∗)D) ≤ k̂ ∀(w∗)D ∈ KD(x), for dx-a.e. x ∈ Ω.(4.14)

The vector spaces

U(Ω) ≡ {u ∈ BD(Ω) | div u ∈ L2(Ω)},(4.15)

Up(Ω) ≡ {u ∈ BD(Ω) | div u ∈ Ln/(n−1)(Ω)}(4.16)

are Banach spaces with the natural norms

‖u‖U(Ω) = ‖u‖BD(Ω) + ‖div u‖L2(Ω),(4.17)

‖u‖Up(Ω) = ‖u‖BD(Ω) + ‖div u‖Ln/(n−1)(Ω)(4.18)

(see [13]). We obtain

(4.19) U(Ω) ⊂ Up(Ω) ⊂ BD(Ω),

since Ω ⊂ Rn is a bounded set and n ≥ 2. Moreover, we consider the space

(4.20) Σ(Ω) ≡ {σ ∈ L2(Ω,En
s ) | σD ∈ L∞(Ω,En

s ),divσ ∈ Ln+1(Ω,Rn)}
endowed with the natural norm

(4.21) ‖σ‖Σ(Ω) = ‖σD‖L∞(Ω,Ens ) + ‖σ‖L2(Ω,Ens ) + ‖divσ‖Ln+1(Ω,Rn)

(cf. [13, Chapter 2, Section 7]). Define

(4.22) Σs(Ω) ≡ {σ ∈ Σ(Ω) | γΣ(σ) ∈ L∞(FrΩ,Rn)},
where the trace γΣ : Σ(Ω)→ C1(FrΩ,Rn)′ is given by

(4.23) γΣ(σ) = σ · ν on FrΩ, for all σ ∈ C1(Ω,En
s ).

Let

(4.24) V ≡ Up(Ω), Y ∗ ≡ Σs(Ω).

Let I denote the n× n unit matrix and set

(4.25) Y (Ω) ≡ span(ε(Up(Ω)), L1(Ω, (En
s )D)⊕ Ln/(n−1)(Ω,R)I)

= {µ ∈Mb(Ω,En
s ) | ∃u ∈ Up(Ω) and

∃w ∈ L1(Ω, (En
s )D)⊕ Ln/(n−1)(Ω,R)I

such that µ = ε(u) + wdx}.
The dual space V ∗ (to Up(Ω)) is

(4.26) V ∗ ≡ {(u∗,ψ∗) ∈ Ln(Ω,Rn)× L∞(FrΩ,Rn)}.
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The bilinear form between Up(Ω) and V ∗ is

(4.27) Up(Ω)× V ∗ 3 (u, (u∗,ψ∗)) 7→ −
�

Ω

u∗ · u dx

+
�

FrΩ

ψ∗ · γB(u) ds ≡ 〈u; (u∗,ψ∗)〉Up×V ∗ .

The space Up(Ω) is endowed with the topology σ(Up(Ω), V ∗). Similarly V ∗ is
endowed with the topology σ(V ∗, Up(Ω)). Therefore [Up(Ω), σ(Up(Ω), V ∗)]∗

= V ∗ and [V ∗, σ(V ∗, Up(Ω))]∗ = Up(Ω) (see [8, Theorem V.3.9]).
The bilinear form between Y and Y ∗ is given by

(4.28) 〈µ;σ〉Y×Y ∗ =
�

Ω

σ : µ =
�

Ω

σ : ε(u) +
�

Ω

σ : w dx

for σ ∈ Σs(Ω) and µ ∈ Y , where µ = ε(u) + w, u ∈ Up(Ω) and w ∈
L1(Ω, (En

s )D) ⊕ Ln/(n−1)(Ω,R)I. Then we have [Y, σ(Y, Y ∗)]∗ = Y ∗ and
[Y ∗, σ(Y ∗, Y )]∗ = Y .

The linear operator ε : [Up, σ(Up, V ∗)]→ [Y, σ(Y,Σs(Ω))] is continuous.
The explicit form of ε∗ : Σs(Ω)→ V ∗ reads

〈ε(u),σ〉Y×Y ∗ =
�

Ω

σ : ε(u) =
�

Ω

σD : εD(u) +
1
n

�

Ω

trσ div u dx(4.29)

= −
�

Ω

(div σ) · u dx+
�

FrΩ

γΣ(σ) · γB(u) ds

= 〈u; ε∗(σ)〉Up×V ∗ .
Hence the function ε∗ : Σs(Ω)→ V ∗ is given by ε∗(σ) = (div σ, γΣ(σ)).

The original problem (Pλ,j) is defined by (3.1)–(3.4).
Let the functional of relaxed elastic-plastic energy dRPλ,je : BD(Ω) →

R ∪ {∞} be defined by

(4.30) dRPλ,je(u) = λFR(u) +Gj(ε(u)),

where λFR : BD(Ω)→ R ∪ {∞} is defined by

(4.31) λFR(u) ≡ −λL(u) +
�

Γ0

j∞(x,−γB(u)⊗s ν) ds

if u ∈ LD(Ω), and λFR(u) ≡ ∞ otherwise (cf. (3.2)). The elastic-plastic
potential Gj is given by (3.4). The relaxed problem (RPλ,j) is

(4.32) (RPλ,j) find inf{dRPλ,je(u) | u ∈ Up(Ω)}.
We can show that the dual relaxed problem (RP ∗λ,j) is

(4.33) (RP ∗λ,j) sup
{
−

�

Ω

j∗(x,σ) dx
∣∣∣σ ∈ Σs(Ω),

divσ = −λf in Ω and γΣ(σ) = λg on Γ1

}
.
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The bidual relaxed problem (RP ∗∗λ,j) is

(4.34) (RP ∗∗λ,j) find inf{(λFR)∗∗(u) +G∗∗j (ε(u)) | u ∈ Up(Ω)},
where (λFR)∗∗(u) = λFR(u) for every u ∈ Up(Ω) and

(4.35) G∗∗j (ε(u)) =
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞

(
x,

dε(u)s
d|ε(u)s|

)
d|ε(u)s|

for every u ∈ Up(Ω).
Similarly to [14], we prove that the supremum in the problem (RP ∗λ,j)

exists in the space Σ(Ω). Moreover, if ds(Γ0) = 0, the solution of (RP ∗λ,j)
belongs to the space Σs(Ω), since g ∈ C1(Γ1,Rn).

In [13] and [1] an existence theorem for (RP ∗∗λ,j) is proved in the space
U(Ω) (cf. (4.11), (4.13), (4.14) and (4.19)).

By [9, Chapter 3], the dual problem to (RP ∗∗λ,j) is equal to (RP ∗λ,j).
If σ̂ is a solution of (RP ∗λ,j), û is a solution of (RP ∗∗λ,j), inf (RP ∗∗λ,j) =

sup (RP ∗λ,j) and this value is finite, then the couple (σ̂, û) satisfies the ex-
tremality relation (see [9, Chapter 3, Proposition 2.4]).

References

[1] J. L. Bojarski, The relaxation of Signorini problems in Hencky plasticity , I : three-
dimensional solid , Nonlinear Anal. 29 (1997), 1091–1116.

[2] —, General method of regularization. I : functionals defined on BD space, Appl.
Math. (Warsaw) 31 (2004), 175–199.
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