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GENERAL METHOD OF REGULARIZATION.
II: RELAXATION PROPOSED BY SUQUET

Abstract. The aim of this paper is to prove that the relaxation of the
elastic-perfectly plastic energy (of a solid made of a Hencky material) is
the lower semicontinuous regularization of the plastic energy. We find the
integral representation of a non-locally coercive functional. We show that
the set of solutions of the relaxed problem is equal to the set of solutions of
the relaxed problem proposed by Suquet. Moreover, we prove an existence
theorem for the limit analysis problem.

1. Introduction. In the first part of this paper (see [2]) we investigate
the convex functional
(1.1) BD 5 uw B(e(n)) = | h(z, ()

9]

with constraints on the boundary of {2, where e(u) is the symmetrized gra-
dient of u and BD({2) is the space of bounded deformations. Moreover, we
assume that B(e(u)) = oo if e(u) ¢ L. In [1] we find the lower semicon-
tinuous (l.s.c.) relaxation of B, and we show that the relaxation is a l.s.c.
function (in the weak™ BD topology), not greater than B. Here we prove
that the above mentioned relaxation (in the case of the relaxation proposed
by Suquet) is the largest l.s.c. minorant less than B, i.e. it is the l.s.c. regu-
larization of B. If the volume forces are 0, then we can omit the assumption
of global coercivity of the functional considered. Moreover, we show that
the set of solutions of the classical relaxed problem is equal to the set of
solutions of the relaxed problem proposed by Suquet.
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In [3], the global method for relaxation is applied for l.s.c. regulariza-
tion of quasiconvex functionals with constraints (Dirichlet condition). These
functionals are defined on BV (§2). The constraints considered do not de-
scribe the relaxation proposed by Suquet (see [12]).

In [6] and [7] Christiansen finds the solution for the limit analysis prob-
lem, associated to the relaxed problem proposed by Suquet. But the limit
analysis problem is not explicitly formulated in [6] and the relation between
solutions of the relaxed problem and solutions of the relaxed problem pro-
posed by Suquet is not considered.

The classical method of relaxation does not allow one to find a solution
of the limit analysis problem (Py)ayz (see [13], [1]). Therefore we study the
method of relaxation proposed by Suquet (cf. [12], [1]).

In Section 3, we obtain an existence theorem for the limit analysis prob-
lem, associated to the relaxed problem proposed by Suquet. In Corollary 10,
we get a criterion of coercivity of the original problem (Pj ;), or the relaxed
problem (RFP}*) (see [2, (3.9)—(3.11), (5.1), (5.3), (5.4) and (5.8)]).

In the Appendix, we describe the scheme of duality in convex optimiza-
tion in the case of Hencky plasticity.

We obtain the above mentioned results under the following assumptions.

ASSUMPTION 1. {2 and §2; are bounded open connected sets of class C*
in R™ such that 2 CcC 2;. m

Let Iy and Iy (= I'1) be Borel subsets of the boundary Fr 2 of §2 such
that Iy N I7 = 0 and ds(Fr2 — (Iy U I1)) = 0. The Lebesgue and the
Hausdorff measures on {2 and Fr {2 are denoted by dx and ds, respectively.

In this paper we consider the Banach space of measurable functions

(1.2) W (R,div) = {o € L®(2,E") | dive € L"(2,R")}

with the natural norm |[|o|wn(0.av) = ollLe(@Er) + |divelpnorm
(where E” is the space of symmetric real n X n matrices). Moreover, we
consider the space

(1.3) Caiv(2,E}) = {0 € C(2,E}) | 0jins o € W™ (£2,div)}.
Let K : 2 — 2B be a multifunction.

ASSUMPTION 2 (see [11, p. 19, Lemma 1]). K(z) is a convex and closed
subset of E? for all x € 2, and there exists zg € C*(£2, E?) such that

(1.4) zo(z) € K(x) for every x € £2,
and the following conditions hold:

(i) if z(z) € K(x) for dz-a.e. x € 2, where z € Caiv (2, E), then
z(y) € K(y) for every y € (2
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(ii) for every y € £2 and w € K(y) there exists z € Cqiv (12, EY) such that
z(y) = w and z(z) € K(x) for every x € (2. =

Conditions (i) and (ii) are equivalent to the condition that for every
ye

(1.5)  K(y) ={z(y) | z € Caiv (2, ED), z(z) € K(z) for dr-a.e. z € 2}.
DEFINITION 1. Let j* : 2xE? — RU{oo} be a convez normal integrand,
ie.
(a) the function E? 5 w* — j*(z,w") is convex and l.s.c. for dz-a.e.
T € (2, B
(b) there exists a Borel function j* : 2 x E? — R U {oo} such that
j*(z,-) = j*(z,-) for dz-a.e. x € §2.
Moreover, assume that
(1.6) {w* e E} | j (z,w") < oo} =K(z) fordz-a.e. ze€ (2
AssuMPTION 3. For every 7 > 0 there exists ¢ such that
(1.7) sup{ {J*(z,2")da | 2" € L®(2,ED), 2"z~ <7
Q
and z*(z) € K(x) for dz-a.e. x € (2} <6 <00 m
ASSUMPTION 4. There exist u® € LD({2) and q € L*(£2,R) such that
(1.8) J (W) = e(u) (@) : w” + ()
for dz-a.e. x € 2 and every w* € E7, and yp(u®) =0 on Fr(2. =
The set K(x) denotes the elasticity convex domain at the point x. Define
(L9) (W) = 5 (e, w) = sup{w : w* — j*(z,w") | w” € EI'}
for dr-a.e. z € (2 and all w € Ef. Then j is a convex normal integrand.
Define j : 2 x E? — RU {0} by
(1.10) Joo(x, W) = sup{w : W* — Iic(z)(W") | w* € E}
for x € 2 and w € E.

AsSsUMPTION 5. There exists og € Cqiy ({2, E?) such that Bg(og) = \g
on I and og(z) € K(z) for dr-a.e. € (2, where g is a boundary force
on Fl. u

AsSUMPTION 6. Let I'1 = Fr{2NC, where C = clintC C §2; is a closed
Caccioppoli set and ds(Fr 2 NFrC) =0. =

2. Relaxed problem proposed by Suquet. The classical method
of relaxation does not allow one to find a solution of the limit analysis
problem (Py) ar, (see [4], [13], [1]). The problem has an interesting mechanical



324 J. L. Bojarski

interpretation as the safety condition. Therefore we turn to the following
method of relaxation, proposed by Suquet (cf. [12], [1]).
We define the following Banach spaces:

(21) LD(N)= {u c L'(2,R™)

51](1’1): 5(8.’13] + 8561) €L (Q)7Z7J_17'-'7n}7

(2.2)  BD(2)={uc L'(2,R") | &;(u) € Mp(2,R), 4,5 =1,...,n},
with the natural norms
lulleo = l[ullz + > llei (@)llzr,
(2.3) i
lullzp = [l + > llei; (W),
1,

where M (§2,R) is the space of R-valued bounded measures defined on (2.
Moreover, we consider the space

(2.4) YY) ={M e M,(2,E?) | Ju; € BD({),
e(w)g =M, uyp,_p =0}

- We now define the functional of the total elastic-perfectly plastic energy
H, introduced in [1]. We then find its L.s.c. regularization in the topology
a(YH02) x MY(IY), Caiy (2, E7) x C(I1,E?)) (where the bilinear form is
defined in (2.8) below). Let
(2.5) M) = {p®s v € M(I1,EY) | € M,(I1,R™)},

where v is the outer unit vector, normal to Fr (2. Consider the topological
vector spaces

(2.6) [C(I',ED),o(C(I1,E),M'(I1))], [M'(I1),c(M'(I),C(I1,EL))]

(the latter is equivalent to [M (1Y), weak* M'(I7)]).
We define the functional HY : Y!(£2) x M'(I'1) — RU {co} by

(2.7) Hi(e(u)‘ﬁ,u@)s v)= — S g p+ Sj(a:,r—:(u)a) dx
n 2

+ 1§ It (we.v—oy (VB (1) @5 v) ds
Iy
if up € LD(2) and p = v5(u)ds for [p — v5(u)ds|-a.e. © € I, and
M (e(u)z, # ®s V) = oo otherwise. Here I{yg(u)&u:o}("/}[g(u) ®s ) is the
indicator function, which takes value 0 if v5(u) ®s v = 0 and oo otherwise.
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We assume that there exist u € BD(f2;) and p € M, (I,R™) such that
U € LD(R2) and I (e(0) 5, b ®s V) < o0.

The bilinear form between Y*(£2) x M!(I") and Cyqi, (2, E?) x C(I'1, E?)
is given by

(28)  ((e(w)g k@ v);(0,K))2 = | o e(u)o
2

+ | o (v @v)ds+ | ki [ne, v
FI‘.Q Fl
for (e(u)q, —vE(n)ds @, v) € YY), p®sv € MY(TY)), o € Cqiy (2, ED)
and k € C(I7,EY). Because of the duality between Y!(2) x M (I') and
Caiv(2,E?) x C(I1,E?), we define a functional (H})* : Caiv(2,E?) X
(T, BY) = RU {0} by
(29)  (H})"(o, k) = sup{{(e(w) g, L ®; v); (0, K))2
B (e(0) 5 19, ) | () 5 € YH(@), p o, v € MY(TY)).
The bidual functional (H)** : Y'(2) x MY(I) — R U {oo} is defined by

(210)  (HY)™ (e(w),g, b ®s v) = sup{((e(u) 7. 1 ©; v); (0, K))2
— (B)*(0, k) | 0 € Caiv(2,EL), k € C(I', EN)}.
The bilinear form between My (2, E7) x Y (2)m o x MY (I1) and
Caiv(12,E7) x C(I', EY) is given by
(2.11) (W, v5(1) @ v, u®sv); (0, K))3 = S oW
Q
+ | o (pwev)ds+ | ki [po, v
FrQ Fl
for w € My(2,E?), v5(w)ds @ v € Y (2)jme o, p®s v € MY(IN), 0 €
Caiv(2,E?) and k € C(I,E?). The extension of Hj onto the space
My (2, E7) x Y'(2) 1m0 x M'(I1) (denoted by HY) is given by

(212)  H(w,~vh(w) @ v, p@.v)=— | g p

I
+ S ](.Z‘, W) dx + S I{’yfg(u)@suzo} (7é(u) ®s V) ds
2 Ip

if w € LY(2,E?) and p = v5(u)ds for |p — v5(u)ds|-a.e. z € I, and
H (w, —v5(u) ®s v, p @5 v) = 00 otherwise. B

By duality between M, (2, EZ) X Y (£2) 5, o x M*(I'1) and Cgiv (2, EZ) X
C(I'1,E?), we define a functional (]ﬁl&)* : Caiv (2, E)xC (I, E?) — RU{oo}
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by
(213) ()" (o, k) = sup{{(w, —5(w) @ v, p @, v); (0, K))3
— H(w, —vh () ®, v, p @, v) | w € L'(2,ED),
u€ BD(N) and p®, v e MY (1)},
since L' C M. The bidual functional (]ﬁl&)** (YY) x M) — RU{oo}
is defined by
(2.14)  (H)™ (W, =75 (0) @5 v, p @, v) = sup{ (W, —y5 (1) @, v, p @, v);
(0, 5))s — ()" (0,%) | & € Care (B, ED), s € C(I1, E))
for (w, —yL5(u)ds @5 v) € Y1(2) and p @5 v € M (7).

LEMMA 1. For every u € BD(f21) and p € My(I'1,R™) such that uj, €
LD(£2), v _5 =0, ~E(u) =0 on Iy and v5(u)ds = p on I, we have
(2.15) (8" (e(w) 1, 1 @) = B ()7 12, 0)

= ()™ (e(w)j0, —vE (W) @ ¥, p @ V).

Proof. By [1, (4.80)], we have (fﬁvﬂg\)**(s(u)m, —vE(n)ds@sv, pesv) =
M (e(u)z, p ®@s v) for every u € BD(21) and p € My(I'1,R”) such that
up € LD(2),ug _5=0, ~E(u) = 0 on Iy and v5(u)ds = p on I (now

H#* is denoted by (}ﬁlﬂ)**) Similarly to the proofs of Lemmas 6 and 8 from
[2] we obtain (2.15). =

LEMMA 2. Let ks € C(I',E?), 05 € Cqiy(2,E?), where dives = 0
on 2. If for every t € L' (I}, R™), SFl Ks: [t ®sv]ds =0, then
(H)) (0, %) = (H})" (0 + 0. & + K,)
for every o € Cqi(2,E") and k € C(I'y, E?).
Proof. We prove this result similarly to [2, Lemma 9]. =

We say that a net {(o, k¢)}ier C Caiv (2, E?)x C(I'1, ET) converges to
(¢, K) in the topology

(2.16)  o(Cai (2,E7) x C(I'1,E™), L' (2,E") x
{(p,p@sv) € Y Q)2 x MH(IT) | o, = 0, iy ds = p @, v})

if (wdr,p ®; v,p|nds @, v);[(o, k) — (0,K)])s — 0 for every w €
LY(2,E") and p € L*(Fr 2,R"), where P|r, = 0.

LEMMA 3. Let
(2.17) f:Cav(2,E") x C(I,E") > R

be a linear functional, continuous in the topology (2.16), such that there exist
Ko € C(IN,E?) and o1 € Caiv(£2,EY) such that for every o, € C(£2,E)
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with dives = 0, we have

(2.18) F(G1 + 04, k0) = f(51, ko).
Moreover, assume that for every ks € C(I', EY) with {1, ks : [t®sv]ds =0
for every t € LY(I't,R™), we have

(2.19) Vo € Cqiv(2,E?), Ve € C(I,E?), f(o,k) = f(o,k + Ks).

Then there exists Uy € LD({2) such that yp(u1) = 0 on Iy and for every
(o,k) € Caiv(2,E?) x C(I',E") we get

(2.20) flor)=\o:e@)dr— | o:(ysh) ®,v)ds
2 Fr 2
+ | ki (vs(@) ®sv)ds.
I

Proof. Since fis continuous in the topology (2.16), by Theorem V.3.9
of [8] there exist m € L'(2,E}) and u € BD(£2) with yp(u) = 0 on I
such that, for every o € Cyiv (2, E?) and k € C(I1,E?),

(2.21) flo, k) = S o:mdr — S o: (vp(0) ®sv)ds
2 Fr 2
+ S K: (yp(u) ®s v)ds.
I

Indeed, in (2.17) we can replace C(I'1,E?) by

(2.22) C(I1,E)/{k € C(I1,EL)

vt e LNIL,RY), | k[t @, v]ds = o}.

By the linearity of_fv, we get f(a + 05, k) = N(O', k) for every Kk €
C(I',EY), o0 € Caiw(£2,E?) and o5 € Caiy(£2,E?) such that dive, = 0.
Indeed, by (2.18) and (2.21) we have

(223)  flo+os ko) = f(O1+ 05 K) + f(0—51,0)

= (&1,&0) + f(O' — 5'1,0) = f(O',K,o),
and by (2.21) we get

(224) f(o.—i_a-sa'{“’):f(o-+0.87K/0)+f(07K’_K'0)

= f(O',K,()) +f(07K'_K/0) = f(O',K,).
Thus, f(o, 0) = 0 for every o, € C({2,E") with dive, = 0. Taking k = 0
in (2.21), we may proceed as in [2, Lemma 10]. m

Let Qi : Caiv (2, E?) x O(I'},E?) — R U {cc} be defined by
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(2.25) Q1(o,kK)
= igf{(ﬁg)*(a + 04, k)| o, € C(2,E") with dive, = 0}
for o € Cyiv (2,E7) and & € C(I'1,E?).
PROPOSITION 4. For every o € Caiy(2,E?) and k € O(I'y, E"
(2.26) (H})* (o, &) = clia.16) Qi (0, K),
where cla.16) @1 denotes the largest minorant which is less than Q1 and is

l.s.c. in the topology (2.16) (i.e. clia.16) Q1 is the l.s.c. regularization of Q1
in (2.16)).

Proof. Step 1. First notice that
(227) QoK) = inf {(ﬁ;)*(a + Oy, K+ Ky)

) we have

o, € C(2,E"),

ks € C(ILEY), divo, = 0 and Vb € LY(ILRY), | ko : [t @, v]ds = 0}
I
(see (2.11)—(2.13)). Next, assume the existence of a couple (&1,k0) €
Caiv(2,E?) x C(I'1,EZ) and a constant 9 > 0 such that (HY)*(61, ko) +
do < cli2.16) Q1(61,K0). On account of Lemma 2, it suffices to show that
this assumption leads to a contradiction, since (H3)*(o, k) < (H})*(o, k)
for every (o, k) € Caiv(2,E?) x C(I1,E?) (cf. (2.7)-(2.9), (2.11)—(2.13)).
Step 2. The linear space
(2.28) My ={o, € Cqiy(2,E?) | dive, = 0}

x {m € C(I.EY) |ve e NTLRY), | w:[t e, v]ds = o}
Iy

is a closed subspace of Cgiy (2, E?) x C(I'1, E?) endowed with the topology
(2.16). Indeed, by Green’s formula (see [2, (2.11) and (4.23)]) we have

(2.29) N {(0', k) € Caiy (2, E") x (I, EP)
ueLD(£2),vp(u)=00n Iy

S(diva) -udr = S K: (yp(u) ®v) ds}

2 I
= N {(U,K) € Caiv (2, E") x C(I', ET)

ueLD(£2),yp(u)=00nIY
dive =0 in 2, S K:(yp(u) ®sv)ds = O}
I
= {(0',/4;) ‘ dive =0, S K:[t®sv]ds=0,Vt e Ll(Fl,]R”)} = M;,
I

since the trace yp is a surjection onto L!(Fr 2, R™).
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Step 3. Let

(2.30) @1 : Caiv(2,EY) x C(I, EY) — [Caiv(2,EY) x C(I, EY)]/ My
be the linear function (canonical homomorphism) such that M; = ker @;.
Moreover, let [Caiv (2, E}) x C(I1, EY)]/M; be endowed with the strongest
topology for which @, is continuous, where Cai, (£2, E?) x C(I1,E?) is en-
dowed with the topology (2.16). Then
(231) A ={((6.5),0) € [(Caw (2, BY) x C(I'1, EY)) /M| x R |

3(o, k) such that cliz16) Q1(0, k) < a and &1(0, k) = (0,K)}
is a convex closed set. By the Hahn—Banach theorem, there exists a closed

affine hyperplane H; which strictly separates the set A; and (®1(01, ko),
(H)*(61, ko) + o). From [1, (4.79)] and Assumption 4, we deduce that

inf{(H)*(o. k) — {,e(u®) : odz | o € Caiv(2,E?), k € C(I1,ED)} is
finite (here H¥ is denoted by (]ﬁl&)*) Then, similarly to Step 4 of the proof
of Proposition 11 from [2], there exists a continuous linear functional f3 :

[Caiv (2, E) xC(I'1, E?)]/M; — R and ¢3 € R such that
(2.32)  f3(P1(51, ko)) + G5 > (H3)*(G1,k0) + 00, f3(F.K)+es<a
for every ((&,K),a) € A;.

Step 4. Therefore the linear functional ]74 defined by ]74 = fg oy strictly
separates epi cl(s.16) @1 and

(2.33)  {(0,k,a) € Cain(2,EZ?) x C(I1,EZ) xR |
(0,k) € My +{(G1,k0)}, a = (H})* (81, ko) + do}-
Moreover M C kerﬁ and ﬁl is continuous in the topology (2.16), since
]74 = fg oPq.
Step 5. By Lemma 3, there exists u; € LD({2) such that yp(u1) = 0
on Iy and for every (o,k) € Caiv(£2,EZ) x C(I1,EY),

(2.34) filo, k) = X o:e(uy)dr — X o:(yp(u1) ®sv)ds
2 Fr 2

+ X K: (yp(ty) ®s v)ds.
I
Step 6. We say that a net {(o¢, k¢)ier C Caiv(2,E7) x C(I'y, E?)
converges to (&, K) in the topology
(2.35)  0(Cai({2,EY) x C(I', EY )i {(p, p @ v) € YH(£2) x M (1) |
Ju € BD(f21), e(u) = ¢, ujgp € LD(2), ujp,_5 =0,

~L(u) =0 on Iy and y5(u)ds = p on I})
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if
(2.36) {(e(w) 3,75 (0) ds @ v); (0, k1) — (3, R))2 — 0

for every u € BD(§21), where ujp € LD(£2), ujp,_5 = 0 and ~E(u) =0
on Iy. The l.s.c. regularization of (ﬁg\)* in the topology (2.35) (denoted by

cl2.35) (H)*) is given by

(237)  class) (H]) (0, k) = sup{((e(u) 3, Y5 (w) ds @, v); (0, K))»
— (H)** (e(u) 3, vh(w) ds @, v) | w € BD($1), g € LD(12),
U, 5 =0and YE(u) =0o0n I} = sup{(e(u)g5, (v5(u) ds @, v);
(07, K))2 — H} (e(w) 3,7 (w) ds) | u € BD(,

e € LD(2), u _5=0and ~E(u) =0o0n I} = (Hg\)*(a,n

)

);
)7

for every o € Cuiv(£2,E?) and k € C(I'1,E") (see Lemma 1).

By (2.32), (2.34) and (2.37) we obtain a contradiction, because fy is
continuous in (2.35). m

We say that a net {(o, k¢) }eer C Caiv (2, E?) x C(I'1, ET) converges to
(7, R) in the topology

(2.38) o(Caiv(2,E™) x C(I', E™), Y () x L} (I, R") ®, v)
if
(2.39) ((e(0)g,2ds @5 v); (01, Ke) — (0,K))2 — 0

for every e(u) g € Y!'() and z € L}(I},R").

LEMMA 5. For every k > 0, the topology (2.16) is stronger than (2.38)
over the set A = {(o,k) € Caiw(2,E?) x C(I'1,E?) | ||dive|L. < k,
l&llcr er) <k}

Proof. Suppose a net {(o¢,K¢)}ter C Aj converges to (&,&) in the
topology (2.16). Then by the Green formula (see [2]) we obtain § . (k; — &) :

(vB(u) @ v)ds —{,div(ey — &) - udr — 0 for every u € LD(§2) such
that vp(u) = 0 on I}. Since C}(£2,R™) is dense in L™ (=D (£2,R"™), so is
CH(02,R"™) + {u} for every u € LD({2). Therefore the set
(2.40)  {(w,z®,v) € L"""D(QR") x (L' (I1,R") @, v) |

Ju, € CH2,R™), Fuy € LD(N), w = U; + Uy, vp(U) =z on I}
is dense in L™ (=D (2, R") x (L'(I'},R") ®, v). By [8, Theorem I1.1.18],

(2.41) S (ki —R): (z®sv)ds — S div(ey — &) -udzr — 0
n Q
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for allu € BD(§2) and z € L*(I'1,R™). By the Green formula, {(0, k¢) }ter
converges to (&, K) in the topology (2.38). m

PROPOSITION 6. Let Ay be as in Lemma 5. For every & € Caiy (2, E?)
and k € C(I', EY) there exists ks zy > 0 such that for every k > k(s z),

(2.42) (H})* (6, R) = clz, Q:1(F,K),

where clz, Q1(-,-) is the l.s.c. regularization of (o, k) — Q1(0,k)+17, (0, K)
in the topology (2.16) and Iy, (-) is the indicator function of Ay.

Proof. We prove this result similarly to [2, Proposition 13]. m

THEOREM 7. For every e(u)5 € Y1 (§2) and p € My(I'1,R™) we have
(243) ()" (e(0) 7 1 @y v) = ()™ (e(0) 7,1 @, ).

Proof. Step 1. By Proposition 4, Lemma 5 and Proposition 6 (simi-

larly to the proof of Theorem 14 from [2]) we get (]ﬁl{\)**(e(u)‘ﬁ, ZQRV) =
(Hf\)**(s(u)m,z ®s v) for every e(u) € Y!(Q) and z € LY(I1,R").

Step 2. In [1, (4.80)] we obtain the explicit representation of (HJ)**:

(244)  (E))™ (W) n®sv) = — | Agp+ | i e(w),) do

I 2
() )
*}f“( $ s ) KCREC R

for every e(u)z € Y!(2) and p € My(I},R") (now H#* is denoted by
(]ﬁlf\)**) Consider the function Qa(u)‘ﬁ : MY(I'1) — RU {oc} for s(u)|§ €
Y!({2), defined by

(HL) ™ (e(w) g 1 ®s v)
(2.45) OV = Qe (R ®s V) = if p € LN, RY),

oo otherwise.
By (2.44),

(246) Qe (B ®sv) = — | Mg+ cequy
Iy
(m d((p — vp(w) ds) ®; v)
Cdl(p—vp(a)ds) @, v

e )l =y tw) ) .

I
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for every pu € L'(I',R™), where Ce(u),; depends only on €(u) 5 € Y(0).
We now prove that the l.s.c. regularization of Qs(u)‘ﬁ in the topology
o(MY(IY),C(Iy, E?)) (denoted by cl Qe(u), ;) 1s given by

(2.47) L Qe (1 B 1) = ()™ (e(w) g 1 @, v)

for e(u) | € Y1(2) and p € M (I, R™).
Indeed, by [5], we obtain

(2.48) Q:(u)lﬁ(ﬂ) = sup { S (k-v+)Ag) - pds
I

= ool (n = vE (W) @5 v) ds — o)

s Ll(Fl,R”)}

I
=sup{ [ (5 v+ 2g) - (= vh (W) ds — | joo(a, (1 — vh (W) @, ) ds
I I
~ Ceuy | 1 € LNILRY b+ [ (50w o+ Ag) - v (w) ds
I

= S (R vVt )‘g) ! 7é(u) ds + S I{n-u+/\g€IC(x)-u(m)}(R v+ )‘g) ds — Ce(u)lﬁ
Fl Fl

for every k € C(I1,E?), and

(249) Qi (msw) =sup{ [ 5 (moyv) = [ (5 +g) vh(w)ds
I I

— S I{K.y+)\g€;<(w).,,(x)}(f<, -V + )\g) ds + Cg(u)‘!7
I

e C(Fl,EZ)}

= SHP{ S (k-v+Ag): (m—"p(u)ds) — S Ligvirgek(a)vz)}y (K- V+Ag) ds ‘
Fl Fl

K € C(Fl,EZ)} — S )\g-,u—i-ce(u)lﬁ

Iy

(1 — '7119(11) ds) ®s V|

for au p € My(I,R™). Thus we get (2.47). Since (]ﬁl{\)**(e(u)‘ﬁ, B Rs V)
= (H3)**(e(u),5, p ®s v) for every (e(u),z,p) € Y1(2) x L}(I';,R™), and
(Hf\)** is the Ls.c. regularization of HJ, we obtain (2.43).

Now we turn to mechanical conclusions.
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The following is known as the Suquet problem (see [12]):
(250)  (SQn;) Find inf{AFsq(u, p) + Gj(e(w) |
uc LD(‘Q)a (1A= Mb(Flan)}a
where the functional of the total loading has the form

(2.51) AFsg(u,p) = — )\(Sf~udx+ S g-u)
2 n

T X Iip (u)(2)=0} (—7B(0) @5 V) ds
I

if p=~L(u)ds for |u —~5(u)ds|-a.e. z € I'l, and AFsg(u, u) = oo other-
wise. The elastic-plastic potential G is defined by [2, (3.11)].
The following bidual relaxed Suquet problem is studied in [1]:

(2.52)  (SP5%;) Find inf{(AFg)"(u, pu) + G;*(e(n)) |
u € BD(2), p € My(I1,R™)},
where for every u € BD({2) and p € M, (I7,R"),

(2.53)  (AFg)™(u,p) = —/\[ S f udr + S g- ,u}

2 I
+ | Joo(@, (—yB (1) @5 v)) ds
Io
. d((p —vp(u)ds) @, v) B . )
! 151 /e (x7 dl(p —vyp(u)ds) ®; v > dl(p —vyp(u)ds) @ v

and G (e(+)) is defined in [2, (5.4)].

ASSUMPTION 7. There exist k; > 0 and r; > 0 such that j*(x,w*) < k;
for every w* € Bg.(0,71) and for dz-a.e. x € 2, where Bg»(0,71) is the
closed ball in E? with center 0 and radius r1. =

Let the functional
(250) () — [SQx,](u, ) = \Fsq(u, 1) + Gy(e(u))
be coercive over BD(§2) x M(I7,R"), i.e.,
(255) i [nllzp + limlhs, — 00 then  [SQxy] (W ptm) — 00

for any sequences {u, }men C BD(£2) and {ptm, fmen C Mp(I1,R™). More-
over, let 0 < Ay < A. Then the functional [SQ, ;] is coercive on BD({2) x
M, (I, R™). Similarly, if the functional

(2.56) (u, ) = [SP (0, p) = (AFw)™ (u, p) + G5 (e(u))
is coercive and 0 < A1 < A, then [SPJy ;| is coercive over BD({2) x
M (171, R™). Moreover, we obtain [SQ ;] > [SPy%].
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We say that a net {(u, pt) hrer € BD(£2) x My(I1,R™) converges to
(ug, o) in the weak™ BD(£2) x My(I7,R™) topology if uy — ug in the
weak® BD({2) topology and p; — po in the weak® M, (17, R™) topology.

THEOREM 8. Let ds(Iy) # 0 and f € L"°(£2,R™), where § > 0. If
the functional [SQ» ;] is coercive over BD({2) x M(I,R™), then the L.s.c.
regularization of [SQx ;| in the weak* BD(£2) x My (I, R™) topology is the
functional [SPY%] (cf. (2.50), (2.52), (2.53)).

Proof. Step 1. Let (u, ) € BD($2) x My (I'1,R™) and {(uy, pp) }pep be a
net such that (u,, pp) — (0, i) in the weak* BD(£2) x M, (11, R™) topology.
By Steps 1 and 2 of [2, proof of Theorem 18], liminf,cp[SQx ;] (up, pp) >
[SPy%(a, p), since [SQy ;] is equal to the function defined in [2, (3.8)] and
[RP57%] is equal to [SP{%] (cf. [2, (5.6)]) if p = vp(u)ds on I7.

Step 2. Let (H])**( (), B ®s V) < oo. By Theorem 7, there is a net
{(utv “t)}tEZ C BD(“Q)_X Mb(FD Rn) SuChEhat (th, Ht s V) - (ﬁa ﬁ®s V)
in the topology o(Y'(£2) x M' (1), Caiv(£2,EZ) x C(I1,EY)), where the
bilinear form (-;-)2 between Y (£2) x M!(I) and Cuiy (2, E?) x C(I1,E?)
is given by (2.8). Moreover,

(257)  lim ([SQa;1 (e, o) + A [ £+ updo) = ()™ (e(®) g 2 @5 ).
Q
Theorem 7 holds in the special case when g = 0 on ;. Then

(2.58)  lim [(SQA,jl(ut,ut) + /\< § foudet | g ut)}
= (H)* (e(W), p@s V) + A | g- L ER,
I
because | {,. g fi| < oo. By Assumption 7, [2, Lemma 16] and (2.58), the
net {(u, pt) btex is bounded and (uy, p¢) — (0, @) in the weak* BD({2) x
M, (I, R™) topology. Therefore, by Theorem 7 and [2, Lemma 15], we get

(2.59) lin [SQx 51w, ) = [SP33] (@ ).

Step 3. Let (]HIJ)**( (1), 4 ®s v) = 0o. Then, by Step 4 of the proof
of Theorem 18 from [2], for every net {(u,, p,)}pep such that (up, p,) —
(u, @) in the weak* BD(£2) x M,(I7,R™) topology, we have

(2.60) i [5Q ] (e, a0) = 00 = [P (0, ),
Next, we proceed similarly to Step 5 of the proof of [2, Theorem 18]. m

COROLLARY 9. [SQ» ;] is coercive over BD(£2) x My (I, R"™) if and only
if [SPY%] is coercive.

Proof. We prove this similarly to [2, Corollary 19]. =
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COROLLARY 10. The functional (3.8) from [2] is coercive over BD({2)
if and only if [SPY] is coercive, where u® = 0 on I (in the functional [2,
(3.8))).

Proof. Indeed, by [2, (3.11)], (2.51) and (2.54), the functional [SQ@ ;]
is coercive over BD(£2) x M, (I, R™) if and only if (3.8) from [2] is coercive
over BD({2). m

THEOREM 11. Let ds(Ip) # 0 and £ € L"9(£2,R™), where § > 0. More-
over, let j* : 2 x E" — RU{oo} be a nonnegative normal integrand. If the
functional (3.8) from [2] is coercive over BD(£2) and u® = 0 on Iy (in [2,
(3.8)]), then the couple (u,pm) € BD(£2) x My(I7,R™) is a solution of the
problem (SP%) if and only if p = yp()r, ds € My([1,R") and u is a
solution of the problem (RPY™) (cf. [2, (5.2)-(5.4)], (2.52) and (2.53)).

Proof. Since the normal integrand j* is nonnegative, (RFP5”) and (SP}Y)
have finite infima, because [RP;*1(0) < oo and [SP5%](0,0) < oo (cf. [2,
(5.6)]).

First, let u be a solution of (RF5*). Then the couple (u,vp(u)r, ds) €
BD(£2) x My(I,R™) is a solution of (SPy*), since

(2.61) inf (R )\7]-) = inf (P ;) = inf (SQ», ;) = inf (SP;Z-),

where (P ;) is defined in [2, (5.1) and (3.8)] (cf. [2, Theorem 18], Theorem 8,
2, (3.8), (5.2), (5.1)] and (2.50), (2.52)).

Next, we show the inverse implication. Let (u, ) be a solution of (SPY).
Then there exists a sequence {(Wm, ) }men in BD(§2) x My (I, R™) such
that limp, o [SQx ;| (Wm, pm) = inf(SP%) and (wp, gm) — (0, ) in
weak* BD(2) x My(I1,R™) topology. By (2 50), there exists mgy € N such
that for every m > mo we have p, = vp(um) ds on I, because inf (SP%)
< oo. Since inf (RP}Y) = inf (SP}7), we obtain

(262)  lim [SQr ] (W, v (0) r, ds) = lm_ P () = inf [RPS],
where P, ; is defined in [2, (3.8)] (cf. (2.61)). Therefore, by [2, Theorem 18],
we get

(2.63) [RPY" (1) = inf (RPYY;) = inf (SPYY).

Reasoning by contradiction, we prove that gt = vp(1) ds on I';. Suppose p #

v5(Q)r, ds. By [2, (5.2)], (2.52) and (2.63) we have [SP* (0, v5(0)|r, ds)
= [SP%1(u, p). The function

, d(t(pn —vp(1) ds) @,
[0,00)925'—> ISI.]OO< d’(u 73< )ds)@sl/’

+(1-t) { g ys@)ds+t g i
I I

)>d!(ﬁ—73(ﬁ)d8) ®s ]
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is positively homogeneous. Then for every ¢ > 0, [SPy* [(a, p) = [SPy%] (1,
t(m—~vp()|p, ds) +vp(0)|r, ds). Therefore we obtain a contradiction with
the coercivity of [SP* ] (cf. Corollary 10). m

Let ds(Ip) = 0 and L(u) =0 for every u € Rp = {u € BD | e(u) = 0}.
Moreover, let the functionals (3.8) from [2] and (RPy") be defined over
BD(£2)/Ro, and let (SQ» ;) and (SPy™) be defined over the space (BD(§2) x
My (I, R™))/{(a,vs(Q)|r, ds) | 0 € Ro}. Then the assertions of Theorem 8,
Corollary 9, Corollary 10 and Theorem 11 hold. Indeed, in their proofs, we
can replace weak* BD(£2) topology by o(Y'(£2), Caiv(£2, E")), and G;(e(*))
does not depend on u € kere (cf. [2, Lemma 15], (2.10) and (2.14)).

3. The limit analysis problem. Here we define the limit analysis
problem (SF(7j)ar associated with (SP5”). We prove that (SPy*) is coer-
cive if inf (SPJ;) AL > A, under some assumptions given below. Moreover,
we obtain an existence theorem for (SF;7%) L.

ASSUMPTION 8. j* is a nonnegative function. m

The original problem (P, ;) is defined by (see [2, formula (3.8)—(3.11)])

(3.1) (Py,;) find inf{AF(u)+ G;(e(u)) |ue BD(2)},

where

(3.2) AF(u) = —-AL() + Ic,0)(w), L(u)=|f-udz+ | g-ys(u)ds,
and ? "

(3.3) C4(0) = {u e BD({2) | vg(u), = 0 on Ip}.

The elastic-plastic potential G : M, (£2, EZ) — R U {oo} is defined by
(3.4) Gi(p) = { Joi(z,p)de if pe L'(2,EY),

00 otherwise.
With (P ;) one associates the limit analysis problem (Py ;)ar:

(35)  (Poj)ar find inf{ Sjoo(:c,e(u))da: u e LD(0),
2
~vp(u) =0 on Iy, L(u) = 1}.

Similarly, (SP5Y), defined in (2.52), is connected with the relazed limit anal-
ysis problem (SP;%)aL:

(3.6) (SP;;)ar find inf{ S Joo(x, —yB(u) ®s V) ds
Io

(x (s — yp(w) ds) ©, v)

" d|(p = vB(u)ds) ®; V|

+ | Joc

>d!(u—73(u) ds) ®, v
I
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+ | doo(z, e(0)a) do + | joo (

| (i) e

u € BD(2), p € M(I7,R" ,S ud:E—I—Sg-u:l}.
Q n

u)s|

Directly from (3.5) and (3.6) we get
(3.7) inf (P j)ar > inf (SFg%) AL

If ds(Iv) = 0 and inf (Py;)ar, > 0 then for every u € LD(f2) and T €
LD(£2) such that e(@) = 0 in 2, we have L(u) = L(u + W), since j* is
nonnegative (i.e. j(z,0) < 0 for dz-a.e. x € §2); cf. Assumption 8 and (3.2)).
We can prove the following result.

PROPOSITION 12. Assume that \, satisfies Assumption 5, where \ is re-
placed by \.. Moreover, let u® = 0 in (Pa,.j)- If inf (Py j)ar > A > A >0
then inf (Py, ;) > —oo. The inverse implication holds in the following form:
if inf (Py, ;) > —oo then inf (Py j)ar > Ar. Moreover, if inf (Py;)ar >
Ar > A\ > 0 then any sequence {W,, Ymen C BD(82) such that

(3.8) inf{|ju, + z||pp | z € BD({2) and e(z) = 0} — oo

satisfies limyy, o0 (A F(um,)+G;(e(uy,))) = 00, i.e. the functional BD(§2) >
— (A F(u) + Gj(e(u))) is coercive. m

Below we study the relation between (SPy) and the relaxed limit anal-
ysis problem (SF;%)arL.

REMARK 1. If inf (Py ;) ar > 0, then the assumptions of Corollaries 9,
10 and Theorem 8 hold (in the sense of (3.8)) if ds(I) = 0. Indeed, L(u) =0
for e(u) = 0 (cf. Assumption 8 and (3.2)).

PROPOSITION 13. Assume that A, satisfies Assumption 5, where X is
replaced by X\, and suppose inf (Po,j)arL > Ar > A\, > 0. Problem (SP:::]-)
s coercive if and only if inf (SP&}‘-)AL > Ay,

Proof. By Corollary 10, problem (SP5%) is coercive if and only if (Py ;) is
coercive. By Proposition 12, if )\ satisfies Assumption 5 and inf (Po,j)aL >
Ar > Ay > 0, then (Py, ;) is coercive if and only if (P, ;. ) is coercive.
From Corollary 10, (Py,;..) is coercive if and only if (SP}%_) is coercive.
Therefore, if \, satisfies Assumption 5 and inf (Poj)ar > Ar > A > 0, then

(SP3 ;) is coercive if and only if (SPy* ; ) is coercive. Moreover, (SPy% )
is coercive if and only if (SP5%)ar > A, where A > 0. =

THEOREM 14. There exists a solution (u,p) € BD(£2) x My(I1,R™)
of the problem (SFy%)aL, i-e. (SF%)aL achieves its infimum at the point
(U, ). If ds(Iv) = 0 then we assume that L(a) = 0 for every u € Ry =
{ue BD |e(u) = 0}.
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Proof. The functional (SPY* ) isls.c.in the weak™ BD(£2)xMy(I7,R")
topology over bounded subsets of BD(£2) x M, (17, R™), for f = 0 and g = 0.
The functional

(3.9) My(I,R") 5 p | g-peRr
I

is continuous in the weak* M (I, R™) topology, because g € C'(I'y,R™) (cf.
Assumption 5). By [2, Lemma 15] the functional

(3.10) BD(2)5ur [f-udzeR
Q
is continuous in the weak* BD({2) topology on bounded subsets of BD({2).

If ds(Iy) # 0, then by Assumption 7, every minimizing sequence for
(SPj*)ar is bounded.

7J
If ds(Ip) = 0, then the assertion of Corollary 10 holds for (3.8) from [2]
and (SPy%), where j is replaced by joo. Then inf (SF77%)ar is equal to the

infimum in the limit analysis problem associated to (P ;.. ), defined by

(3.11)  (Py;)az Find inf{ | oo (2, e(w) dz | u € LD(2),
2
vp(u) =0 on Iy and L(u) = 1}

(cf. (3.2)). There exists a bounded minimizing net {uy}rex for (Fo;)ar,
since G;_ (e(-)) does not depend on us € kere = Ry and L(u) = 0 for
every U € Rg. Therefore {(ux,vp(Ux)} ek is a bounded minimizing net for
(SP3%) AL

Then by continuity (in the weak* BD(£2) x M (I, R™) topology) of the
functionals (3.9) and (3.10) over bounded sets in BD({2) x M, (I, R™), we
obtain the existence of the minimum for (SFP;%)ar. =

4. Appendix. Below we introduce a family of perturbations studied in
convex optimization (see [9, Chapter 3]). Next, we apply these results to
Hencky plasticity.

Let V and V* (resp. Y and Y*) be two topological vector spaces in
duality via the bilinear pairing (-, -)v ((-, )y, respectively). We shall assume
the existence of a continuous linear operator A from V into Y, with transpose
A*. Taking a function V' 3 u — F(u)+G(Au) € RU{co}, we are concerned
with the minimization problem

(4.1) (P) inf{F(u)+G(Au) |ueV}.

We shall also consider a function @ : V x Y — R U {co} such that
@(u,0) = F(u) + G(Au), and for every z € Y we shall consider the mini-
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mization problem

(4.2) (P,) inf{®(u,z)|ueV},

where @(u,z) = F(u) + G(A(u) + z) for every u € V and z € Y. The

problems (P,) will be said to be perturbed problems of (P). Let &* be the

conjugate function of @ in the duality between V x Y and V* x Y*, given

by

(43)  @"(u",2") = sup{(u', W)y — F(u)— (", Au)y + (2, A(u) + 2)y
—GA(n)+z)|ueV,zeY} =F"(u"—A"z") + G*(z").

The problem

(4.4) (P*) sup{—2*(0,z") | z* € Y"}

is termed the dual problem of (P) with respect to &.

It is natural to associate the perturbed problems (u* € V*)
(4.5) (Py.) sup{—®*(u*,z")|z" € Y"}

with the dual problem (P*), and to determine the dual problem of (P*)
with respect to these perturbations; we easily arrive at the following problem
which will be termed the bidual problem of (P):

(4.6) (P*)  inf{®**(u,0) |ueV},
where **(u,z) = F**(u) + G**(A(u) + z) for every u € V, z € Y and
(4.7) F**(u) = sup{(u*,u)y — F*(u*) | u* € V*},

(4.8) G (A(u) +2z) =sup{(z*, A(u) + z)y — G*(z") | z" € Y*}.

Below we study Hencky plasticity with the Mises (or Tresca) yield con-
dition (see [10]). We assume that 2 C R™ and n > 2.

ASSUMPTION 9. Let P : 2 — 2®D” be a multifunction such that
KP(z) c (E")P and

(4.9) K(z)=KP(z) ®{w* € EZ | 3t € R, w}; = td;;}

for every x € 2, where (E?)P denotes the set of symmetric real n x n
matrices (whose trace is 0) and wj; are the components of w*. Here d;; = 1
if i = j and 9;; = 0 otherwise. There exist r1,72 > 0 such that

(4.10) B(E?)D(O,Tl) C ICD(Z‘) C B(E?)D(O,Tg). [

AssuMPTION 10. The normal integrand j* satisfies

(4.11) F*ewt) = il ()P 4 i ()
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for every w* € E7 and dz-a.e. x € {2, where j}, and j;. are nonnegative
functions, and the deviator (w*)? of w* is given by

(4.12) w;ij =w;; — %5ij(trw*).

There exist k > 0, a > a1 > 0 and b > 0 such that

(4.13) at®> +b > j* (x,t) > ayt?  Vt € R, for da-a.e. x € §2,
(4.14) jh(z, (wH)P) <k V(w")P e KP(z), for dz-ae. z € 2. m

The vector spaces

(4.15) U(2)={ue BD(2)|divu € L*(2)},
(4.16) Uy(2) = {ue BD(R) | divu e L1 (2)}
are Banach spaces with the natural norms

(4.17) lullo(e) = [ullzpe) + Idivul|Lz(q),
(4.18) lullv,2) = lullBp2) + divall gr/o;-1 (o)
(see [13]). We obtain

(4.19) U($2) C Uy(£2) C BD(42),

since {2 C R" is a bounded set and n > 2. Moreover, we consider the space
(4.20) 2(2)={o € L*(2,E) | o” € L>*(2,E"),dive € L™ (2,R")}

endowed with the natural norm

(4.21)  lolls@) = llo”lr~@Er) + lollL2 (2B + | divel a0z
(cf. [13, Chapter 2, Section 7]). Define

(4.22) Ys(2)={o € X(2)|vs(o) € L=®(Fr 2,R")},

where the trace vy : X(£2) — C1(Fr £2,R")’ is given by

(4.23) vs(e)=0-v on Fr, forall ¢ € C*(2,E7).

Let

(4.24) V=U,(02), Y*=X(9).

Let I denote the n X n unit matrix and set
(4.25) Y () = span(e(U,(2)), L' (2, EMP) @ LV (=00 R)I)
={p € Mp(2,E?) | Ju € Uy(£) and
Iw € LY(2,(EMP) o LD, R)I
such that p = e(u) + wdzx}.
The dual space V* (to Up(£2)) is
(4.26) V*={(u*,¥") € L"(2,R") x L=(Fr 2,R™)}.
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The bilinear form between U,(f2) and V* is

(4.27)  Up(2) x V* 3 (u,(u*,¢*)) — — S u*-udr
Q
Vo vs(u)ds = (u; (u*, 47)) o, xve-
Fr 2
The space Uy, (£2) is endowed with the topology o(U,(£2), V*). Similarly V* is
endowed with the topology o(V*,U,({2)). Therefore [U,(£2),0(U,(£2), V*)]*
=V*and [V*,a(V*,U,(2))]* = (Q) (see [8, Theorem V.3.9]).
The bilinear form between Y and Y™ is given by

(4.28) <,U§0'>Y><Y*:S0'5N:SU )—i—Sa:wdm
Q Q Q
for o0 € X(2) and p € Y, where p = e(u) + w, u € U,(f2) and w €
LY (2, (E")P) @ L/ (=D (2 R)I. Then we have [Y,o(Y,Y*)]* = Y* and
YV*, oY, Y)* =Y.
The linear operator € : [U,,o(Up, V*)] — [Y, o (Y, Xs(£2))] is continuous.
The explicit form of e* : X (§2) — V* reads

1
(4.29) (e(u),o)yxy+ = S o:¢e(u) = S a? el (u)+ - S tro div udz
Q Q "o
=— S(div o) -udr + S v (o) -vp(u)ds
Q Fr
= (w;e”(0))u, xv+
Hence the function e* : X5 (£2) — V* is given by e*(o) = (div o, vx(0)).
The original problem (P, ;) is defined by (3.1)—(3.4).
Let the functional of relaxed elastic-plastic energy [RPy ;| : BD(2) —
R U {oo} be defined by

(4.30) [RPy;](u) = AFR(u) 4+ Gj(e(u)),
where AF : BD(§2) — RU {00} is defined by
(4.31) AFp(u) = =AL(w) + | joo(z, —yB(1) @, v) ds

if u € LD(S2), and AFr(u) = oo otherwise (cf. (3.2)). The elastic-plastic
potential G is given by (3.4). The relaxed problem (RPj ;) is

(4.32) (RPy,;) find inf{[RPy ;](u)|ue Uy(02)}.
We can show that the dual relaxed problem (RPy ;) is
(4.33)  (RP},) sup{ — i (2, 0)de ‘ o e 3,(0),

Q
dive = —Xf in 2 and vx (o) = Ag on Fl}.
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The bidual relaxed problem (RPyY) is

(434)  (RPY) find mb{(\Fp)™ (w) + G7(e(w)) | u € Uy(2)},

where (AFr)**(u) = AFgr(u) for every u € U,({2) and

(435)  G(e(u) = | j(r e(u)a) de + | juc ( M) dle(u),|
j )t VI Gle ().

for every u € Up,(£2).

Similarly to [14], we prove that the supremum in the problem (RF ;)
exists in the space X'(£2). Moreover, if ds(Ip) = 0, the solution of (RF ;)
belongs to the space Xs(2), since g € C1 (I}, R™).

*%

In [13] and [1] an existence theorem for (RP5) is proved in the space
U($2) (cf. (4.11), (4.13), (4.14) and (4.19)).

By [9, Chapter 3], the dual problem to (RPy*) is equal to (RF5 ;).

If & is a solution of (RPy ;), U is a solution of (RP}Y), inf (RPY) =
sup (RP5, j) and this value is finite, then the couple (&, u) satisfies the ex-
tremality relation (see [9, Chapter 3, Proposition 2.4]).
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