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ON THE INTEGRABILITY OF THE GENERALIZED
YANG–MILLS SYSTEM

Abstract. We consider a hamiltonian system which, in a special case
and under the gauge group SU(2), can be considered as a reduction of the
Yang–Mills field equations. We prove explicitly, using the Lax spectral curve
technique and the van Moerbeke–Mumford method, that the flows generated
by the constants of motion are straight lines on the Jacobi variety of a genus
two Riemann surface.

1. Statement of the problem. The problem of integrating hamilto-
nian systems on symplectic manifolds has attracted a considerable amount of
attention in recent years. In hamiltonian mechanics, to integrate a dynamical
system with n degrees of freedom, it is sufficient in most cases to know only
the first n integrals. This situation is known as Liouville complete integra-
bility of a hamiltonian system. It seems still hopeless to describe, or even to
recognize with any facility, those hamiltonian systems which are completely
integrable, though they are quite exceptional. Now we shall recall their exact
definition. A hamiltonian system on a 2n-dimensional symplectic manifold
is called completely integrable if it has n integrals H1, . . . ,Hn in involution
(i.e., such that the associated Poisson brackets {Hi,Hj} all vanish) with
linearly independent gradients (i.e., dH1 ∧ . . . ∧ dHn 6= 0). For appropriate
constants c1, . . . , cn, the invariant manifold {H1 = c1, . . . ,Hn = cn} is com-
pact, connected and therefore diffeomorphic to an n-dimensional torus, by
the Arnold–Liouville theorem [9]. Also, there is a transformation to so-called
action-angle variables, mapping the flow into a straight line motion on that
torus.

In this paper, we consider the Yang–Mills system for a field with gauge
group SU(2):
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∂Fik
∂xi

+ [Ai, Fik] = 0,

where Fik, Ai ∈ TeSU(2), 1 ≤ i, k ≤ 4, and

Fik =
∂Ak
∂xi
− ∂Ai
∂xk

+ [Ai, Ak].

In the case of a homogeneous two-component field, ∂Ak/∂xi = 0 (i 6= 1),
A1 = A2 = 0, A3 = n1U1 ∈ su(2), A4 = n2U2 ∈ su(2), where ni are
su(2)-generators. The system becomes

∂2U1

∂t2
+ U1U

2
2 = 0,

∂2U2

∂t2
+ U2U

2
1 = 0,

with t = x1. By setting Ui = qi, ∂Ui/∂t = pi, i = 1, 2, the Yang–Mills
equations reduce to a hamiltonian system with the hamiltonian

H = 1
2(p2

1 + p2
2 + q2

1q
2
2).

The symplectic transformation

p1 = α(x1 + x2),

p2 = α(x1 − x2),

q1 = β(y1 + iy2),

q2 = β(y1 − iy2),

where α ≡
√

2/2 and β ≡ 1
2( 4
√

2)3, takes the hamiltonian into

H = 1
2(x2

1 + x2
2) + 1

4y
4
1 + 1

4y
4
2 + 1

2y
2
1y

2
2.

We start with a general expression of the Yang–Mills hamiltonian

H = 1
2(x2

1 + x2
2 + a1y

2
1 + a2y

2
2) + 1

4y
4
1 + 1

4a3y
4
2 + 1

2a4y
2
1y

2
2.(1)

The corresponding system is given by

ẏ1 = x1,

ẏ2 = x2,

ẋ1 = −a1y1 − y3
1 − a4y1y

2
2,

ẋ2 = −a2y2 − a3y
3
2 − a4y

2
1y2.

(2)

This hamiltonian system also arises in connection with some problems in
scalar field theory and in the semi-classical method in quantum field theory.
The integrability of the system (2) has been studied by several authors (e.g.
[2], [13], [14]). It has been shown [2] that the hamiltonian (1) has the Painlevé
property (i.e., the general solutions have no movable singularities other than
poles) only if

(i) a1 = a2, a3 = a4 = 1,

(ii) a1 = a2, a3 = 1, a4 = 3.

In case (i), the second integral has the form

H2 = x2y1 − x1y2,

whereas in case (ii) the second integral is

H2 = x1x2 + y1y2(a1 + y2
1 + y2

2).
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Recently, it was shown [5] that if

a1 = a2/4, a3 = 16, a4 = 6,

then the system (2) is integrable and the second integral is

H2 = y2
1y2(a1 + y2

1 + 2y2
2) + x1(x2y1 − x1y2).

This paper deals with the problem of integrability of the system (2) corre-
sponding to the choice: a1, a2 arbitrary and a3 = a4 = 1. We study this case
using the Lax spectral curve technique and the van Moerbeke–Mumford lin-
earization method. We show that in this case the system (2) is linearized in
the jacobian variety of a genus two hyperelliptic Riemann surface Γ .

2. Lax representation and complete integrability. New examples
of completely integrable hamiltonian systems, which have recently been dis-
covered, are based on the Lax representation of the equations of motion. For
more information, see [1], [3], [4], [6] and [12]. Using the results given in [3]
and [4], we consider the Lax representation in the form

Ȧh = [Bh, Ah] = BhAh − AhBh, ˙≡ ∂

∂t
,(3)

with the following ansatz for the Lax operator:

Ah =
(
U(h) V (h)
W (h) −U(h)

)
, Bh =

(
0 1

R(h) 0

)
,

where

V (h) = −(a1 + h)(a2 + h)
(

1 +
1
2

(
y2

1

a1 + h
+

y2
2

a2 + h

))
,

U(h) =
1
2

(a1 + h)(a2 + h)
(
x1y1

a1 + h
+

x2y2

a2 + h

)
,

W (h) = (a1 + h)(a2 + h)
(

1
2

(
x2

1

a1 + h
+

x2
2

a2 + h

)
− h+

1
2

(y2
1 + y2

2)
)
,

R(h) = h− y2
1 − y2

2.

(4)

Equation (3) is equivalent to (2) with a3 = a4 = 1. The proof is straightfor-
ward and based on direct computation: we have

Ȧh =
(
U̇(h) V̇ (h)
Ẇ (h) −U̇(h)

)
,

[Bh, Ah] =
(
W (h)− V (h)R(h) −2U(h)

2U(h)R(h) V (h)R(h)−W (h)

)
,



348 A. Lesfari and A. Elachab

and it follows from (4) and (2) with a3 = a4 = 1 that

U̇(h) = W (h)− V (h)R(h),

V̇ (h) = −2U(h),

Ẇ (h) = 2U(h)R(h).

Equation (3) means that for h ∈ C and under the time evolution of the
system, Ah(t) remain similar to Ah(0). So the spectrum of Ah is conserved,
i.e. it undergoes an isospectral deformation. The eigenvalues of Ah, viewed
as functionals, represent the integrals (constants of motion) of the system.
To be precise, a hamiltonian flow of the type (3) preserves the spectrum of
Ah and therefore its characteristic polynomial det(Ah − zI). We form the
Riemann surface in (z, h) space

Γ : det(Ah − zI) = 0,(5)

whose coefficients are functions of the phase space. Explicitly, equation (5)
looks as follows:

Γ : z2 = U2(h) + V (h)W (h),(6)

= (a1 + h)(a2 + h)(h3 + (a1 + a2)h2 + (a1a2 −H1)h−H2)

≡ P5(h),

where H1 = H is defined by (1) with a1, a2 arbitrary, a3 = a4 = 1 and a
second quartic integral H2 of the form

H2 = 1
4(a2y

4
1 + a1y

4
2 + (a1 + a2)y2

1y
2
2 + (x1y2 − x2y1)2)(7)

+ 1
2(a2x

2
1 + a1x

2
2 + a1a2(y2

1 + y2
2)).

The Riemann surface Γ determined by the fifth-order equation (6) is smooth,
hyperelliptic and its genus is two. Obviously, Γ is invariant under the hy-
perelliptic involution (h, z) y (h,−z). The second hamiltonian vector field
is written as

ẏ1 = 1
2(x1y2 − x2y1)y2 + a2x1,

ẏ2 = −1
2(x1y2 − x2y1)y1 + a1x2,

ẋ1 = −a2y
3
1 − 1

2(a1 + a2)y1y
2
2 + 1

2(x1y2 − x2y1)x2 − a1a2y1,

ẋ2 = −a1y
3
2 − 1

2(a1 + a2)y2
1y2 − 1

2(x1y2 − x2y1)x1 − a1a2y2.

These vector fields are in involution with respect to the associated Poisson
bracket. For generic c = (c1, c2) ∈ C2 the affine variety defined by

Mc = {H1 = c1, H2 = c2},(8)

is the fibre of a morphism from C4 to C2 and thus Mc is a smooth affine
surface. Using the van Moerbeke–Mumford linearization method [11], we
show that the linearized flow can be realized on the jacobian variety Jac(Γ )
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of the Riemann surface (6) associated to (3). Recall that the jacobian of Γ
is

Jac(Γ ) ≡ Pic0(Γ ) = line bundles of degree zero,

= H1(OΓ )/H1(Γ,Z) via the exponential sheaf sequence,

' H0(ΩΓ )∗/H1(Γ,Z) via the duality given by Abel’s theorem,

where ΩΓ is the sheaf of holomorphic 1-forms on Γ . We can construct an
algebraic map from Mc to the Jacobi variety Jac(Γ ):

Mc → Jac(Γ ), p ∈Mc y (s1 + s2) ∈ Jac(Γ ),

and the flows generated by the constants of motion are straight lines on
Jac(Γ ), i.e., the linearizing equations are given by

2∑

i=1

si(t)�

si(0)

ωk = ckt, 0 ≤ k ≤ 2,

where ω1, ω2 span the two-dimensional space of holomorphic differentials on
the Riemann surface Γ and s1, s2 are two appropriate variables, algebraically
related to the originally given ones, for which the Hamilton–Jacobi equation
can be solved by separation of variables. Consequently, we have

Theorem 1. Suppose that a3 = a4 = 1. Then the system (2) is com-
pletely integrable for all a1, a2 and admits a Lax representation given by (3).
The invariants of Ah are integrals of motion in involution. The first integral
is given by the hamiltonian H1 = H (see (1)), whereas the second integral H2
is also quartic and has the form (7). The flows generated by H1 and H2 are
straight line motions on the jacobian variety Jac(Γ ) of a smooth genus two
hyperelliptic Riemann surface Γ given by (6) associated to Lax equation (3).

According to the schema of [3] and [4], we introduce coordinates s1 and
s2 on the surface Mc given by (8) such that V (s1) = V (s2) = 0, a1 6= a2,

y2
1 = 2

(a1 + s1)(a1 + s2)
a1 − a2

, y2
2 = 2

(a2 + s1)(a2 + s2)
a2 − a1

,

i.e.,

s1 + s2 = 1
2(y2

1 + y2
2)− a1 − a2, s1s2 = −1

2(a2y
2
1 + a1y

2
2) + a1a2.

After some algebraic manipulations, we obtain the following equations for
s1 and s2:

ṡ1 = 2

√
P5(s1)
s1 − s2

, ṡ2 = 2

√
P5(s2)
s2 − s1

,

where P5(s) is defined by (6). These equations can be integrated by the
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abelian mapping

Γ → Jac(Γ ) = C2/L, py
( p�

p0

ω1,

p�

p0

ω2

)
,

where the hyperelliptic Riemann surface Γ of genus two is given by the
equation (6), L is the lattice generated by the vectors n1 +Ωn2, (n1, n2)∈Z2,
Ω is the period matrix of the Riemann surface Γ , (ω1, ω2) is the canonical
basis of holomorphic differentials on Γ , i.e.,

ω1 =
ds√
P5(s)

, ω2 =
sds√
P5(s)

,

and p0 is a fixed point. Consequently, we have

Theorem 2. The system of differential equations (2) with a3 = a4 = 1
can be integrated in terms of genus two hyperelliptic functions of time.

For a1 = a2, it is easy to show that the problem can be integrated in
terms of elliptic functions.
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