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COVARIANCE STRUCTURE OF WIDE-SENSE
MARKOV PROCESSES OF ORDER k > 1

Abstract. A notion of a wide-sense Markov process {X;} of order k > 1,
{X:¢} ~ WM(k), is introduced as a direct generalization of Doob’s notion of
wide-sense Markov process (of order £ = 1 in our terminology). A base for
investigation of the covariance structure of {X;} is the k-dimensional pro-
cess {zr; = (X¢—k+1,...,X¢)}. The covariance structure of {X;} ~ WM(k)
is considered in the general case and in the periodic case. In the general
case it is shown that {X;} ~ WM(k) iff {z;} is a k-dimensional WM(1)
process and iff the covariance function of {x;} has the triangular prop-
erty. Moreover, an analogue of Borisov’s theorem is proved for {z;}. In
the periodic case, with period d > 1, it is shown that Gladyshev’s pro-
cess {V; = (X(4—1)d41,---»Xw)} is a d-dimensional AR(p) process with

p=[k/d].

1. Introduction. The paper deals with a characterization of the struc-
ture of the covariance function of the periodic and nonperiodic Markov
processes in the wide sense of order k > 1. A real-valued process {X;,t € Z}
= {X;}, in a discrete time t € Z = {...,—1,0,1,...} with EX? < oo,
is called a Markov process in the wide sense of order k > 1, briefly a
WM(k) process, if the best linear prediction of the process at time u > t,
based on the past up to time ¢, denoted here by E'(Xu | Xs, 8 < t), is,
with probability one, equal to the best linear prediction of the value X,

based on the vector (X, X¢—1, ..., Xi—g+1), ie. E(Xu | Xs, s < t) B
E(Xu| X, Xi—1,...,X¢_g+1). The best linear prediction is meant in the
sense of the minimum-mean-square-error prediction. This is a generaliza-
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tion of the notion of a WM(1) process introduced by J. Doob in [4, p. 233],
which he called a Markov process in the wide sense. Doob considered those
processes in discrete time as well as in continuous time, both complex and
real valued. Here, presenting the results on WM(1) processes as well as con-
sidering WM(k) processes, we restrict our attention to real WM (k) processes
in discrete time. The covariance function for such a process is denoted by
~v(s,t) = cov(Xs, X¢). It is worth mentioning that the class of stationary
WDM(1) processes equals the class of autoregression processes of order one,
i.e. AR(1). Similarly, the class of stationary WM(k) processes equals AR(k).
In the case of wide-sense Markov processes of order k = 1 this follows from
[4] and for any k it follows from our Corollary 1. Below we consider those
processes in the nonstationary case.

Doob showed (see [4, p. 234]) that {X;} is a WM(1) process iff the
function R(t,s) := y(s,t)/v(s,s), s < t, has the triangular property, i.e.

(1) R(s,u) = R(s,t)R(t,u) fors <t <wu.

Relation (1) can be rewritten as ~y(s,u)vy(t,t) = v(s,t)y(t,u) for s <t < wu,
which can also be rewritten as v(s,u) = (s, )y~ (¢, t)y(¢, u), if v(¢,t) > 0.
Iteration of the last equality gives
v(s+1,5+2) y(u—1,u)

2 , = , 1 ... ,
@ ) =) JEE e A
which means that the covariance function (s, u) is determined by the values
0 < 02 :=~(t,t) and b := (¢t — 1,t) which satisfy bv? < o2 ;02

Another characterization of covariance functions for WM(1) processes
was given by I. S. Borisov in [3]. He showed that a function f(s,t) is the
covariance function of a WM(1) process iff

(3) f(s,t) = G(min(s, t))H (max(s,t)),

where the functions G and H are determined uniquely up to a multiplicative
constant and the ratio G/H is a positive and nondecreasing function.

An interesting case of nonstationary processes is when the covariance
function is periodic. A process {X;} is called periodically correlated with
period d > 1, briefly PC(d), if v(s,t) = v(s +d,t + d) for all s,¢t and d is
the smallest number with that property. Gladyshev showed (see [5]) that, if
{X:} is PC(d), then the d-dimensional process {Y;,t € Z} = {Y;} defined
as Yy = (Xat—da+1, Xat—d+2, - - - Xat), t € Z, is stationary. In the case when
{X:} is a WM(k) and PC(d) process we say that {X;} is a WM(k)PC(d)
process. The structure of covariance functions for WM(1)PC(d) processes
was characterized by A. R. Nematollahi and A. R. Soltani in [8]. In that
case the covariance function v(s,t) is determined by 2d numbers o7 and
be, 1 <t <d (see |8, Theorem 3.2]).
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In this paper we study the structure of covariance functions of WM (k)
processes and WM (k)PC(d) processes. For that it is natural to consider the
multivariate process {x:,t € Z} = {x+}, defined as

Ty 1= (m%l), . 7x§k))T = (Xt—k-i-ly Xt ky2,--- ,Xt)T, teZ,

ie. xl(f) = X ki, where ()T denotes the transposition of a vector. This sug-
gests considering multivariate wide-sense Markov processes. A process {Z; =
(Zt(l), ce Zt(k))T, t € Z} = {Z;}, where Z; are random vectors in R¥, is called
a multivariate wide-sense Markov process of order m, briefly an MWM(m)
process, if the best linear prediction E (Zy | Zs, s < t) is, with probability one,
equal to the best linear prediction E(Zu | Zt, Z1—1, ...y Zt—m+1). Processes
of that type were considered by F. J. Beutler [2] and V. Mandrekar [6] for
m = 1. They obtained some results similar to the case of WM(1) processes.
For example, an analogue of the triangular property (1) for the covariance
function of those processes is given in [2].

In this paper we study the structure of covariance functions of WM(k)
processes {X;} via studying the structure of covariance functions of the
MWDM(1) processes {z;}. The main results are given in Section 3. First, we
show that {X;} is a WM(k) process iff {z;} is a MWM(1) process. Next
we show that the covariance function of the {x;} process, denoted here by
I'(s,u), satisfies an analogue of the triangular property (1) (it can also be
obtained from Beutler’s results in [2]). Moreover it satisfies an analogue of
the recursive relation (2) and an analogue of (3). Finally, we characterize the
structure of covariance functions of those processes in the periodic case. Such
a function is specified by d vectors in R* and d covariance matrices satisfying
some conditions. It turns out that the notion of WM (k)PC(d) processes
is related to the notion of periodic autoregressive processes considered by
M. Pagano in |7].

2. Preliminaries. In this section we give the main definitions, notation
and auxiliary results. For a process {X;} we assume that EX? < oo and
EX; = 0, where the last assumption is only for simplicity of notation. For any

such {X;} we consider the k-dimensional process {z; = (mgl), . ,xﬁk))T},
where wﬁz) = Xt gyi, 1 <7 < k. The expectation of a random vector is

meant here as the vector of the expectations of its coordinates. Analogously
we understand the conditional expectation and the best linear prediction
of a random vector based on some random vector. Namely, for the random
vector x; we define

~

E(xy|xs,s <)
= (E(xz(}) ‘ Ls, S S t)7E(x1(,L2) ’xsa S S t): e 7E(x1(f) |x87 § S t))T'
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Here E(xg) | 25, s<t) is the best linear prediction of 2\ based on (x5, s<t).
(i)

It is equivalent to the best linear prediction of x;’ on X, X;_1,.... In a
similar way we mean define the best linear prediction of x, on x;, denoted

~ ~

~ 5 (k
by Zug = E(wy|20) = (BE@|2y), ..., E@z,)T.

In the set of nonsingular k x k matrices we use the operation * defined
by A* := (A71)T. Of course A* = (AT)~!. Furthermore (AB)* = A*B*
and (B71AT)T = AB*. We use the notation A = 0 to mean that A is a
covariance matriz, i.e. a symmetric and nonnegative definite matrix, while
A = B denotes that A — B > 0. It is well known that if A > 0, then
(4) MAMT =0
for any m x k matrix M, m € N.

Furthermore for ¢ < u we define

D(t,u) := cov(zs, 2y) = Exrl = (Bxyal)T

I(u,t):=I(t,w)?, I:=TI(tt),

R(t,u) :== [T 0(tu)  if det(I}) #0,

)

and
I'(t,u)
yt—k+Lu—k+1) yt-k+1lLu—-Fk+2) ... y(t—k+1,u)
=k +2,u—k+1) At—k+2,u—k+2) ... y(t—k+2u)
y(t,u—k+1) y(t,u—k+2) v(t,w)
I'(t,u)y
o F(t,UQ
F(tvu)k

where I'(t,u); denotes the ith row of the matrix I'(¢,u), 1 <i < k. Hence
I'(t,u); = cov(xgi), Ty) = Ew,@xf
=ht—k+iu—k+)yt—k+iu—k+2),...,v(t—k+1i,u).

Adapting the well known results on prediction (see for example [1]) to our
notation we give the form of the predictions

E(l“q(f) |z¢) = E(Xu—k+i | Xty Xo—15 ooy Xe—kt1),
and E(xu | 2¢) = Tt
PROPOSITION 1. Fort < u,

~

(5) i'\u,t = E('xu | xt) = @(u’ t)xtv
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where
(6) E@@D | z) = ®(u, t)xy, 1<i<k,
and
P(u,t); = [P(u, V)it O(u, )]
is the ith row of the matriz ®(u,t) defined for t < u as the solution of the
equation
(7) L0 (u,t) = D(t,u).
Equation (7) gives
(8) " (u,t) = [T 0(tu) = R(t, ).
Below we assume that det I'(s,u) # 0 for all s, u.

COROLLARY 1. FEwvery stationary WM(k) process is autoregressive of or-
der k, i.e. AR(k).

Proof. Putting u=t+ 1,7 = k and using (6) we obtain

k
Xep1 = Brprg+eer1 = Y O+ Ltk Xig1kj + 41,
i=1

where {£;} is a white noise with mean zero and &4y is uncorrelated with
X, s < t. By stationarity and (7) it follows that ¢(t + 1,t)r; = Pr—jt1,

j=1,...,k, are independent of ¢, {e,} is stationary, so
k
Xy = Z i Xit1-j + €141,
j=1

which finishes the proof of the corollary. m

REMARK 1. Corollary 1 also follows from Theorem 5 below with d = 1.

3. Main results
3.1. Autocovariance structure for MWM(1) processes {x}

THEOREM 1. The following statements are equivalent:

(1) {X:¢} is a WM(k) process;
(i1) {z¢} is an MWM(1) process;
(iii) for anyt < u the random vector x,—Ty+ is orthogonal to all random
vectors rgs, s <1, i.e.
(9) Exs(vy — Tur)t =0 fors <t
(iv) for any s <t < u,

(10) R(s,u) = R(s,t)R(t,u).
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Proof. To prove the implication (i)=-(ii) observe that
E(@{ |25, 5 <1) = E(Xypsi| Xo 5 <1)
= E(Xu ki | Xty oy Xe_poy1) = E@ | 2),
where the last equality is a consequence of the Markov property in the case
u—k—+14>t, while for u — k +1i <t, :cq(f) is o(x¢, ..., T4_p41)-measurable.

This proves that {z;} is an MWM(1) process.
To prove (ii)=-(i) observe that

E(Xy|Xs, s <t) = E@Pla,, s <t) = E@@P|z)
= E(Xu ’ Xta Xt—l: e 7Xt7k+1)7
which means that {X;} is a WM(k) process
To prove (ii)=-(iii) notice that (ii) implies
~ Pl ~

Ty — Tyt = Ty — E(xy |25, s < t).

By the well known properties of prediction it follows that the random vectors
on the right hand side of the above equality are orthogonal to all x4, s < t.
Therefore the random vectors on the left hand side are orthogonal to all z,
s < t. This gives (iii).

To prove (iii)=-(ii) observe that (iii) implies
(11)  E((xy —Tus)|xs,s<t)=0 and E((zy—Zuyt)|z:) =0.
Since E(fut |25, s <t) = E(&:\ut | 2¢) = Ty, from (11) we get

E(xu ’ Ts, S < t) = E(fu,t | $t) - t/fu,ta

which proves (ii).
To prove (iii)=-(iv) notice that from (iii), i.e. from the orthogonality of
the random vectors z,, — T+ to x5 for s < ¢, we get

I'(s,u) = Bxgal = Exsicﬂt = Bz (P(u,t)x)! = Bxgal &7 (u,t)
= I'(s,t)P" (u,1).
Hence
I (s u) = I (s, )7 (u, 1),

which by the definition of ﬁ(s,u) and by the equality &7 (u,t) = ﬁ(t,u),
given in (8), give equality (10) in (iv).

To prove (iv)=>(iii) observe that (9) is equivalent to the equality I'(s,u) =
I'(s,t)®T (u,t), which can be rewritten as
0=TI(s,u)—I(s,)®" (u,t) = Exs(xy —D(u,t)x)T = Exs(xy —Tus)’ =0,

and that in turn implies (iii). This finishes the proof of the theorem. m
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THEOREM 2 (Structure of I'(s,t) and ®(t,s)). Let {X:} be a WM(k)
process. Then the matrices I'(s,t), @(t,s) and &y := P(t,t — 1) satisfy the
recurrent relation

(12) [(s,t+1)=TI(s,t)- @}, for s<t,
which has the solution
(13) [(s,t) = [ ®L - & for any s <t.

Furthermore the matrices P(t, s) are as follows: ®(t,t) is the identity matriz,

(14)  P(t+1,t) = Drq

1 0

0 1
0 0 0 0 1
bt41,1 Per12 Pre13 oo Diyi k-1 Pitik

where
br1,5 = ot + L, 1), 1<j<k,
and the ith row of ®(t+ j,t), 1 <i<k—j, is
Bt +j,t); = [0,...,0,1,0,...,0].
jtia1 k—j—i
Proof. Since {X;} is WM(k), by Theorem 1 the random vector z;41 —
Zy41,¢ is orthogonal to all x4, s < t. Hence and by equality (5) foru=1¢+1
we get
0 = Exy(w11 — To1y) = Brsalyy — Bogiiq,
= I'(s,t+1) — Bxg(P(t + 1,t)x)T
= I'(s,t+1) — Bxal &1 (t +1,t) = ['(s,t + 1) — (s, )T (t + 1,1),
which proves (12).
Equality (13) can be obtained by iteration of (12).
The form of the matrix ®(¢ + 1,t), given in (14), follows from (5) and
Proposition 1, i.e. from the equality
(15) i‘\t—l—l,t = Qs(t + 1, t)ﬁt
Indeed, the right hand side of (15) equals
(16)  D(t+1,t)z = Dt + 1,8) - [Xp—pg1, Xo—pyo, -, Xi|T
= [ Xtk Xeobt3r -0 Xoy b0 XKoo+ i1 2X e prot -+ o X

= [Xiotor2s Ximporzs - Xy O£+ 1, 8) 2] T



136 A. Kasprzyk and W. Szczotka

To find the left hand side of (15), notice that for 1 <1i < k — 1,

(17) $§421 = E(xt+1 |z¢) = E(Xt—i-l—k—l-i | Xty Xeopr1) = Xev1— gt
while for i = k,
(18) @) = B |20) = E(Xeq1 | Xoy- o, Xi_p1) = B+ 1, 8) .

Altogether this proves that @(t + 1,t) is of the form (14). This finishes the
proof of Theorem 2. m

From the relation &7 (u,t) = R(t,u) for ¢ < u and from the triangular
property for R(t,u), given in (10), we get the following relation:

(19) B(t+h+1,t) =Dt +h+1,t+Rh)B(t+h,t), h>0.

This in turn and the form of &(¢ + 1,¢), given in (14), imply the following
corollary.

COROLLARY 2. The following relations hold:

(20) S(t+h+1,t); =D(t+h,t)it1 for 1 <i<k-—1,
(21) S(t+h+1,t)y=P(t+h+1t+h)P(t+ h,t),
(22) Sp(t+h+1,t)i:Qs(t-i-h-i-l—j,t)i_;_j for 1 <5<k —i.

THEOREM 3. A function {f(s,u), s,u € Z} is the autocovariance func-
tion of an MWM(1) process {x.} iff there exist k X k matrices Gy, Hy, t € Z,
such that
(23) f(sa U) =GsH, and f(u’ 5) = (f(37u))T for s < u,

(24) H{G; =0 and H Gi1—H{Gy =0 forall t €Z.

Proof. To prove necessity we show that if {z;} is an MWM(1) process

with autocovariance function I'(t,u) = Exxl for t < u, then there exist

k x k matrices Gy, Hy, t € Z, which satisfy conditions (23)-(24). To this
end, fix g and define

Gy = T(t,to) Iy /1t < to) + LT (to, ) 1(t > to),
Hy = I (4, t0) Lt < to) + Ty /2T (t0, )1(t > to),

where 1(A) denotes the indicator of A. Notice that equality (10) in Theorem
1 is equivalent to I'(s,u) = I'(s,t)[} 'T'(t,u) for s <t < u. We use that
equality to show (23), which we verify below separately in three cases. For
to < s < u we have

[(s,u) =TI (t, $)(to, w) = (LI~ (to, )/ *) (I T (to, ) = Gy Hy.
For s <ty < u we have

[(s,u) = I(s,to) Iy " D(to, u) = (I'(s, to) Iy /*) (I,

to

V2Pt u)) = GoH,,.
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For s < u <ty we have
[(s,u) = (s, to) T (u, to) Tu= (I'(s,to) Ty /) (LT (u, t) T)
=G H,.

Hence the matrices G; and H; satisfy (23).
Since I} = 0 implies thl > 0, we have

H{ Gy = G{(G{)" (H/)™'Gy = G (H{ G] )G = G{ I} 'G¢ = 0,
which proves the first relation in (24), i.e.
(25) H;Gy=GIr7'Gy - o.
To show the second relation in (24) notice that

(241 — Dr17e) (Teg1 — Pry1a0)”
= T2y — T2 Py — Prprwerlyy + Gopamr] Pl
Hence the covariance matrix of the random vector 11 — @12 equals
Lo =TT (4t + 1)OL — $pa D(t,t+ 1) + $ [P 4,
which by putting &7, = I, 'I'(t,t + 1) has the form
L =TTt + )00t 4 1) =TT (4 D HT 0t + 1)
+ It t+ )Y LIy et + 1)
=Ty — Tt t+ DIt + 1),
Using (23) and the fact that the above is a covariance matrix we get
A= Gry1Hipr — (GiHyyr) T (GeHy) T GiHyyq = 0.
Hence using (25) we get
0= Hf\ AH. | = H} ,Giy1 — H/ Gy,
which gives the second relation in (24). This finishes the proof of the neces-
sity.
Now assume that the function f(s,u) is defined by (23) and the matrices

Gy, Hy, t € Z, satisfy (24). We show that f(s,u) has the triangular property
and is nonnegative definite. Indeed, for s <t < u we have

f(S,U) = GSHU = GSHtH;IG;thHU = f(s,t)(f(t,t))_lf(t,u),

which means that f(s,u) has the triangular property, i.e. satisfies (10).
To prove the nonnegative definiteness of f we use the following notation:
Ap:= Gy, By i= Hyy, syi= (z],...,20)T, where z; := (Z(t=1)kt15 -+ -5 2)7,

r e n

while fi; = f(ki,kj) and Sy := (fi;, 1 < i,j < N). We will show that
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Sn = 0 for all positive integers N. Notice that

N
T T7% T \T TF
shSnvsv =Yzl figzi= Y 2 (fi)m+ Y 2l fiz
ij=1 1<j<i<N 1<i<j<N
— T RT AT, . TA DR,
= E z; B Ajz; + E z; A;Bjz;
I<j<i<N I<i<j<N
N N N-1 N
— T pRT AT, . TAR...
= E E z; B Ajz; + g E z; A;Bjz;
j=1i=j i=1 j=i+1
N-1 N N-1 N
= [ Bl ATz + 1 AjBizi + 2y B AR
= Z; Z; Z 14 ZN NANZN.
]:1 i:] ] 1= ]+1

Setting
Mj:ZziTBi for1<j<N
and using the relations

(Z?AjBizi)T = ziTBiTAJsz,
(A;B))" = A;B;,  A] = BjA;Bj, (BjA))" = BjA;,

we get
T p T plg T T T
T Sysy = Z MiATz;+ (3 S 2l ABizs) + My ARay
J=1 7=11=5+1
N—-1 N—-1 N
= M]AJTZJ + Z( Z z BT)A z; + MnAnzNn
7=1 =1 i=j5+1
N-1 N—-1
= MjA?Zj + Z Mj+1A?ZJ‘ + MNA%ZN
j=1 j=1
N-1 N-1
=Y M;BjA;Bjz;+ Y  M;1BjA;Bjz; + MyByAyByzy.
j=1 j=1
But
N N
MjB;AijZj = MJB]*AJ (Z BiZi — Z Bzzz)
i=j i=j+1

= M;B;A;M] — M;B;A; M}, |
= M;B;A;M] - Mj+1A;‘-F(Bj)TM]T
= M;B;A;M] — M; 1 B;A; M.
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Analogously we show that

N N
MjJrlB;AijZj = Mj+1B;~<Aj (Z BiZi — Z Blzz)
i=j i=j+1
= M1 BjAjM] — M; 1By A M.

Hence
N-1
snSnsy = MiBf AM{ + Y M;B;A;M]
j=2

1

Mj 1 Bf A; M| + My By An MY
j=1

N—-2
= MlBikAlMlT + Z Mj_i_lB;JrlAj_;,_lMﬁl
j=1
N—-1
+MyBNANMEG — > M BiA;M]
j=1
N—-1
= MlBTAlMlT + Z Mj+1(B;+1Aj+1 — B;AJ)MJJ;_I > 0.
j=1

Thus f(s,n) is nonnegative definite, which finishes the proof of the theo-
rem. m

COROLLARY 3 (Construction of autocovariance functions for WM (k) pro-
cesses). Let {¢ri1 = (P11, -5 Pi11k),t € Z} be a sequence of vectors in
R* such that wi411 # 0, let {Py11, t € Z} be the sequence of k X k matrices
defined by

0 0
0 0
(26)  Ppyq =
0 0 0 - 0 1
Pr+1,1 Pt+1,2 Pt41,3 -0 Pitlk—1 Pitlk
and let {I,t € Z} be a sequence of k X k matrices such that
(27) @t__,'_llrt_t'_l(@;’_ll)T — I =0 for all integers t.

Then the sequence of matrices {I'(s,t)} defined by
[(s,t) =TI L, d]  fors<t
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and ['(t,s) := (I'(s,t))T is the autocovariance function for some MWM(1)
process {x;}.

Proof. For t > 0 define H; := &l ®T ... &I and H_; := &J oL, .- - oT,,
while Gy := I H, ! for all t. We show that H; and G satisfy the conditions
in (24) of Theorem 3. In the proof we use (4). First notice that for ¢ > 0,

HiGy= (@521 - &))" Ti(ef o] - 7).
Hence and by (4) we get H;G¢ = 0. In a similar way we show that H/G; > 0

for ¢t <0.
Now notice that for ¢ > 0 we have

H{( G — H{ Gy
= (@21 -+ &) ) (P e (D7) — L)(@G P - 7).
By (27) and (4) it follows that H/ Giy1 — HfGy = 0 for t > 0. In a

similar way we show that the last inequality holds for ¢ < 0. Therefore using
Theorem 3 we get the assertion of the corollary. m

3.2. Covariance structure for MWM(1)PC(d) processes. A process {X;}
is said to be periodically correlated with period d > 1 if its autocovariance
function ~y(¢, s) is periodic with period d, i.e. y(t +d, s + d) = 7(t, s) for all
t,s, and d is the smallest such value. Then
(28) I't+dyu+d)=TI(t,u) and P(t+d,u+d)=P(t,u).

Hence we get the following lemma.

LEMMA 1. If {X:} is a WM(k) process with period d, then
(29) Lya =Ty, T(tt+nd) = (P Plyo - Blig)"
and for 1 <i <d,

(30)  I(t,t+nd+i) = [P 1P s L) (P11 Plyn - PLyy).

THEOREM 4. The autocovariance function of a WM(k)PC(d) process
{z} is determined by d covariance matrices I} and d wvectors piy1 =
(Pt41,15 -+ Pr41.4) such that 11 # 0 with 0 < t < d— 1 and satisfy-
ing (27).

Immediately from the definition of the process {z;} and the Glady-
shev process {Y;}, associated with {X;}, where YV; = (Y;1,...,Y.q)T =
(Xat—dr1, Xdt—dr2,-- - th)T, we get some relations between these processes.
To state them, we define an £ x r matrix Ay, = (a;;), for r > £, as follows:
ajiyr—¢ = 1 and a;; = 0 for other ¢,j. The first r — £ columns of A, are
zero vectors.
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REMARK 2. If {X;} is a WM(k)PC(d) process, then

Y, = x4 for k =d,
Tatr = Akde;g for k < d,
Y, = Adexdt for k£ > d.

To give the structure of the Gladyshev process {Y;} associated with a
WM(k)PC(d) process {X;} we define some matrices formed from the ma-
trices @(u,t). Recall that for u > t, ®(u,t) is a k x k matrix such that
Tyt = D(u,t)my, ie. it satisfies the equation I;¢7 (u,t) = I'(t,u) (see Propo-
sition 1, formula (7)). Furthermore ®(u,t); denotes the ith row of &(u,t),
and ¢(u, 1) is the last entry in the last row of @(u,t). For simplicity we
set 0y = o(u, t)k,k-

Let F be the d x d matrix

1 0 O
9271 1 0o .
0 0 1 0
Fe 31 032
0
0a1 Oa2 . . Oga—1 1

In case k < d, we define a d x d matrix ®(d, 0) whose ith row is

D(d,0); =[0,...,0,6(d,0)i1,...,6(d,0);x], 1<i<d.
d—k

In case k > d, with k = (p— 1)d+r, 0 < r < d, we define d x d matrices
Uy,...,¥, formed from the k x k matrix @(d,0) in the following way. The
1th row of ¥, denoted by ¥;;, equals

Wi = [0(d,0)i k—jar1, #(d; 0)i k—jav2, - -, A(d, 0)s k—(j—1ya]  for j <p,
and
Epp,i == 0, e 70, ¢(d, O)i,la P ,QS(d, O)i,k—(p—l)]‘
k—r

If {X;} is a WM (k)PC(d) process then E(X; | z¢_1) = ®(t,t—1)pz4—1. Hence
X = &(t,t — 1)gxi—1 + &1, where {g;} is a white noise such that ¢; is uncor-
related with X;, s < t, and Fe; = 0, Ee% = 01-2 for 1 <i <d.

THEOREM 5. Let {X:} be a WM(k)PC(d) process. Then the stationary
process {Y;} is a d-dimensional AR(1) process in the cases (a) k = d and
(b) k < d, while it is a d-dimensional AR(p) process in the case (c¢) k > d,
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where p = [k/d] (t.e. k= (p—1)d+r, 0<r <d). Moreover
Y, = é(da O)thfl + et fO’I” k= d7
Y =®(d,0)Yi_1+ e for k <d,

and

Yi =Y 1+ WY o +"'+&_ppY;5_p+6t for k> d,

with k = (p—1)d+1r, 0 <1 < d ork = pd. Here {e; = (et1,...,e1a)’,
t € Z}, in all cases, is a d-dimensional white noise with mean vector Fe,
= 0, covariance matriz EetetT = C, and such that e; 1s uncorrelated with Yy
for s < t, and C. = Fdiag(o?,...,02)FT, where o2 is the variance of &;,
1 <i<d.

Proof. Case k = d. Since {Y;} is stationary and x4 = Y%, it follows that
{z4,t € Z} is stationary. Since {X;} is a WM(d) process, {z;} is a WM(1)
process, which in turn implies that

~ ~

E(zq(41) | Tas, s < 1) = E(xg(y1) | var) = P(d(t + 1), dt)var = D(d, 0)z gy,
where the last equality follows by periodicity of @(u,t). Hence {xg,t € Z}
is a d-dimensional AR(1) process, i.e. Y; = @(d,0)Y;—1 + e;, where {e;} is
a white noise such that e; is uncorrelated with Yy, s < t. The form of the
covariance matrix of e; will be given later. The proof in the case k < d is
similar.

Case k > d. Notice that
E(Yt,i |Ys,s <t)= E(Yt,z’ ’l“d(t—l)a Ld(t—2) - )= E(Yt,i |$d(t—1))a

where the last equality follows from the fact that {z:} is a (k-dimensional)
MWM(1) process. But from Proposition 1 and periodicity of ®(u,t) we get

~

E(Yeilzai-1)) = (dt, d(t — 1))szai—1) = P(d, 0)sZai—1),

where @(d, 0)s is the sth row of the k x k matrix #(d,0) and s =k — d + i.
Now notice that

k
B(d, 0)szqe—1) = > &(d,0)sj Xa(t—1)—t
j=1

=ViYia+ %Yo+ .+ 1Y po1) T piYip +eri
This proves the asserted autoregressive structure of {Y;} in case k > d.
To find the covariance matrix for e; define (0,...,0,1)T = a and notice
——

that 1

X1 =2(1,0)kx0 + €1,

Xy = @(2, 1)kl'1 +e9 = @(2, 1)k(¢(1, 0)13[) + CL€1) + &9

= @(2, O)kwo + @(2, 1)ka51 + 9 = @(2, O)kxo + 92,151 + g9,
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where in the last equalities we used the triangular property @(2,1)®(1,0) =
®(2,0). Using the above idea we can write the following relations:

yn—1)k(@(n—1,n—2)x,_9+ ac,_1) +&n
S(n,n—1)p@(n—1,n—2)zp_2+P(n,n—1)gacn—1 +¢p
=&(n,n — 2)k$n 2+9nn 1€n—1 + En.

Finally, we get

n
Xn =®(n,00pz0+ Y _Onjej, n=1,....d
j=1
where {e;} is a white noise such that Eep = 0, Ez—:,zl = U,QL, 1< h<d, and

g¢ is uncorrelated with X, s < t. Hence eg ,, = Z?:l Onjejformn=1,...,d.
Since eg = (€g,1,..-,€04)7, it follows that Fegel = Fdiag(o?,...,0%)F,

which finishes the proof of the theorem. m
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