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ON UNIFORM TAIL EXPANSIONS OF MULTIVARIATE

COPULAS AND WIDE CONVERGENCE OF MEASURES

Abstract. The theory of copulas provides a useful tool for modeling de-
pendence in risk management. In insurance and finance, as well as in other
applications, dependence of extreme events is particularly important, hence
there is a need for a detailed study of the tail behaviour of multivariate
copulas. We investigate the class of copulas having regular tails with a uni-
form expansion. We present several equivalent characterizations of uniform
tail expansions. Next, basing on them, we determine the class of all possible
leading parts of such expansions; we compute the leading parts of copulas
popular in the literature, and discuss the statistical aspects of tail expansions.

1. Introduction. Copulas have recently become a very useful tool to
handle dependence in risk management both in finance and in actuarial
sciences. They enable specifying the marginal distributions to be decoupled
from the dependence structure of variables, which is vital when one abandons
the normality assumption in multidimensional problems (see for example
[3–5, 10, 11]). In this paper we go one step further and concentrate on the
tail behaviour of multivariate copulas, which is crucial in problems such
as determining the Value at Risk for a portfolio consisting of several risky
assets (see [9]) or dealing with extreme events in insurance (see [4]).

We investigate the class of copulas with regular tails, having a uniform
expansion. It so happens that copulas popular among researchers usually
belong to this class. Thus our study may help in the choice of a proper
copula, suitable for a given task. At the end we deal with the statistical
aspects of the tail behaviour of multivariate random data.
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2. Notation

2.1. Copulas. We recall that a function C : [0, 1]n → [0, 1] is called
a copula (see [13, §2.10], [3, §4.1]) if for every u = (u1, . . . , un) and v =
(v1, . . . , vn) (ui, vi ∈ [0, 1]) and every j ∈ {1, . . . , n},

(i) uj = 0 ⇒ C(u) = 0;
(ii) (∀i 6= j ui = 1) ⇒ C(u) = uj ;

(iii) u � v ⇒ VC(u, v) ≥ 0,

where u � v denotes the partial ordering on R
n,

u � v ⇔ ∀i ui ≤ vi,

and VC(u, v) is the C-volume of the rectangle I(u, v) with lower vertex u
and upper vertex v,

VC(u, v) = ∆1
v1−u1

. . . ∆n
vn−un

C(u1, . . . , un),

where

∆k
hC(t1, . . . , tn)

= C(t1, . . . , tk−1, tk + h, tk+1, . . . , tn) − C(t1, . . . , tk−1, tk, tk+1, . . . , tn).

The functions with property (iii) are called n-nondecreasing and those which
satisfy (i) are called grounded.

Note that every copula is nondecreasing not only with respect to each
variable but also with respect to the partial ordering �. Moreover it is
continuous and even Lipschitz ([13, Theorem 2.10.7], [3, Lemma 4.2]):

|C(v) − C(u)| ≤
n∑

i=1

|vi − ui|.

Remark 1 (cf. [1, Th. 12.5]). Every continuous, grounded, n-nondecre-
asing functionH : [0, a]n → R is the distribution function of a Borel measure
µH on [0, a]n:

H(u) = µH(I(0, u)), µH(I(u, v)) = µH(int(I(u, v))) = VH(u, v).

Due to condition (ii) every copula is the distribution function of a prob-
ability measure on the unit rectangle [0, 1]n with uniform margins (compare
[10, §1.6]). Furthermore, the above remark remains true if H is defined on
the whole multioctant [0,∞)n.

Let Xi, i = 1, . . . , n, be random variables defined on the same probability
space (Ω,M,P). Their joint cumulative distribution FX can be described
using an appropriate copula CX (see [13, Theorem 2.10.11], [3, Theorem
4.5]):

FX (x) = CX (FX1
(x1), . . . , FXn(xn)),

where FXi
are the cumulative distributions of Xi. Note that strictly increas-

ing transformations of the random variables Xi do not affect the copula.
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Indeed, if

X ′
i = fi(Xi), i = 1, . . . , n,

where fi is strictly increasing (and so invertible), then

FX ′(x) = FX (f−1
1 (x1), . . . , f

−1
n (xn))

= CX (FX1
(f−1

1 (x)), . . . , FXn(f−1
n (xn)))=CX (FX ′

1
(x1), . . . , FX ′

n
(xn)).

Therefore if one is interested in tail dependence of random variables rather
than in their individual distribution, then the proper choice is to study the
copula, and the more so since the copula is uniquely determined at every
point u such that the equations FXi

(xi) = ui have solutions.

In certain cases the copula CX is the joint cumulative distribution of
random variables defined on the same probability space as Xi. Indeed, let
Pi, i = 1, . . . , n, be the random variables defined by

Pi = FXi
(Xi).

Proposition 1. If the cumulative distributions FXi
are continuous then:

(i) The Pi have uniform distributions on [0, 1].
(ii) The copula CX is uniquely determined.
(iii) The n-dimensional cumulative distribution FP coincides with CX .

Proof of (iii). (The first two items are obvious.) We choose p=(p1, . . . , pn)
such that 0 ≤ pi ≤ 1. Since the FXi

are continuous, there exists x =
(x1, . . . , xn) such that for all i,

pi = FXi
(xi).

Hence

FP(p) = P

(∧

i

Pi ≤ pi

)
= P

(∧

i

FXi
(Xi) ≤ FXi

(xi)
)

= P

(∧

i

Xi ≤ xi

)
= CX (FX1

(x1), . . . , FXn(xn)) = CX (p).

In order to study the dependence of extreme events one has to deal
with the tail behaviour of a copula. Therefore it is useful to introduce some
regularity conditions.

We say that a copula has a uniform lower tail expansion if near the origin
it can be uniformly approximated by a homogeneous function of degree 1.
In more detail:

Definition 1. We say that a copula C : [0, 1]n → [0, 1] has a uniform
lower tail expansion if there exist a homogeneous function L : [0,∞)n → R

of degree 1, i.e.

∀t ≥ 0 L(tu) = tL(u),
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and a bounded function R : [0, 1]n → R with

lim
u→0

R(u) = 0

such that

∀u ∈ [0, 1]n C(u) = L(u) +R(u)(u1 + . . .+ un).

The function L will be called the leading part of the expansion. When
L ≡ 0 we shall say that the expansion is trivial.

Similarly we define the tail expansion at other vertices of the unit cube
[0, 1]n. Namely for any vertex e = (e1, . . . , en), ei = 0, 1, there is an associ-

ated copula Ĉe, defined by

Ĉe : [0, 1]n → [0, 1], Ĉe(v) = VC(u, u+ v),

where ui = ei(1 − vi). We say that C has a uniform tail expansion at the

vertex e if Ĉe has a uniform lower tail expansion. If e = (1, . . . , 1) then Ĉe is
called a survival copula and the expansion is called an upper tail expansion.

Note that if C describes the joint distribution of the Xi’s, then Ĉ does
the same for the (−1)eiXi’s.

There are several reasons why it is important to study copulas having
uniform tail expansions.

• The commonly used copulas have this property.
• Any copula can be approximated by copulas with this property.
• Copulas having uniform tail expansions fit to experimental data.
• The presence of a uniform tail expansion simplifies modeling.

Note that our conditions are a little stronger than the ones introduced
by P. Embrechts ([4]) and other authors, but they are still satisfied by nearly
all copulas studied in the literature.

There are also other ways of introducing the leading part L. For example
one may adopt the definition with a “strong” derivative. Indeed:

Lemma 1. For a copula C : [0, 1]n → [0, 1] the following conditions are
equivalent :

(i) C has a uniform lower tail expansion.
(ii) There exists a homogeneous function L : [0,∞)n → R, of degree 1,

such that

lim
u→0+

|C(u) − C(0) − L(u)|

‖u‖
= 0.

2.2. σ-finite measures. In order to study the tail behaviour of copulas
one has to deal with σ-finite measures on [0,∞)n—probability (i.e. finite)
measures are not enough.

We recall the basic facts.



Uniform tail expansions of copulas 163

2.2.1. Wide convergence of measures. The notion of wide convergence
of measures is based on the fact that every σ-finite Borel measure µ on
R

n may be considered as a continuous linear functional on the space of
continuous functions with compact support endowed with the topology of
uniform convergence (see [15, §2.2]):

µ(f) =
\

Rn

f dµ.

Definition 2 ([2, §III.1.9], [16, §IV.7]). We say that a one-parameter
family of measures µt, t > 0, converges to the measure µ in the wide sense
as t tends to 0 if for every continuous function f with compact support,

lim
t→0

µt(f) = µ(f).

2.2.2. Relatively invariant measures. Let Ξ denote the action of the
multiplicative group R+ on [0,∞)n,

Ξ : R+ × [0,∞)n → [0,∞)n, Ξ(t, u) = tu.

Definition 3. The Borel measure µ on [0,∞)n is called relatively in-
variant with respect to Ξ with multiplicator κ(t) = t if for any Borel set
A ⊂ [0,∞)n and any t > 0,

µ(tA) = tµ(A).

Following the ideas of [2, Chapter VII], one can construct the factor
measure on the space of orbits of the R+-action on [0,∞)n \ {0}. This orbit
space is homeomorphic to the unit simplex in [0,∞)n,

∆ = {x ∈ [0,∞)n : x1 + · · · + xn = 1}.

Furthermore, note that Ξ restricted to R+ × ∆ is a diffeomorphism onto
[0,∞)n \ {0}. Therefore every relatively invariant measure µ is a product of
the factor measure on ∆ and a relatively invariant measure on R+.

3. Main results. Let C be an n-dimensional copula and µC the asso-
ciated measure on the unit rectangle,

C(u) = µC(I(0, u)) and µC(∂[0, 1]n) = 0.

We extend both of them to [0,∞)n,

C1(u) = C(min(1, u1), . . . ,min(1, un)), µ1(A) = µC(A ∩ [0, 1]n).

Obviously C1(u) = µ1(I(0, u)) = µ1(cl I(0, u)).

We define a family of functions on [0,∞)n by

Ct(u) =
1

t
C1(tu), t > 0,
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and a family of measures on [0,∞)n by

µt(A) =
1

t
µ(tA), t > 0.

As above we have Ct(u) = µt(I(0, u)) = µt(cl I(0, u)). Note that for a func-
tion f we have

µt(f(u)) =
\
f(u) dµt(u) =

1

t

\
f

(
u

t

)
dµ1(u) =

1

t
µ1

(
f

(
·

t

))
.

The main result of this paper is the following theorem.

Theorem 1. Let C be an n-dimensional copula and L a homogeneous
function of degree 1. Then the following conditions are equivalent :

(i) L is the leading part of a uniform lower tail expansion of C.
(ii) Ct → L almost uniformly as t→ 0.
(iii) L is continuous, grounded , n-nondecreasing and µt → µL in the

wide sense as t→ 0.
(iv) For every u � 0 the ray-like limit limt→0+ C(tu)/t exists and equals

L(u).

We recall that two identically distributed random variables X1 and X2

are called lower tail asymptotically independent (cf. [12, p. 170] for the upper
tail case and [3, §§1.8.5, 3.1.5]) if

lim
x→x∗

P(X1 < x | X2 < x) = 0,

where x∗ is the lower bound of the support,

x∗ = inf{x ∈ R : P(Xj ≤ x) > 0}.

Now let C be a copula describing the dependence of identically dis-
tributed random variables X1, . . . ,Xn such that

lim
x→x∗

P(Xj < x) = 0.

Theorem 2. If any two Xi’s are asymptotically independent then the
copula C has a trivial uniform lower tail expansion.

Remark 2. For the bivariate case (n = 2) there is an equivalence: X1

and X2 are lower tail asymptotically independent if and only if the expansion
is trivial.

Next we deal with the leading part L. We show that the corresponding
measure µL is the product of the Lebesgue measure m on the real half-line
and a measure µ∆ on the unit simplex ∆. Basing on this we prove that L is
superadditive and concave.

Our second main result is the characterization of all possible leading
parts.
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Theorem 3. For a homogeneous function L : [0,∞)n → R of degree 1,
the following conditions are equivalent :

(i) L is the leading part of the lower tail of some copula C.
(ii) L is n-nondecreasing and

0 ≤ L(u) ≤ min(u1, . . . , un) for u � 0.

(iii) L is continuous, grounded , n-nondecreasing and µL = m × µ∆,
where \

∆

1

qi
dµ∆(q) ≤ 1 for i = 1, . . . , n.

In the next section we find the leading parts of the uniform tail expan-
sions for some copulas which are popular in the literature, like Gaussian,
Archimedean or MEV.

In the last part of the paper we deal with the statistical aspects of tail
expansions. We consider the following questions:

• How to detect the occurrence of a nontrivial uniform tail expansion?
• How to select the proper benchmark γ, past which the tail is close

enough to its uniform approximation?
• How to construct the estimator of the leading part L?

4. Proof of Theorem 1

(i)⇒(ii). We have

Ct(u) =
C1(tu)

t
=
L(tu) + ‖tu‖R1(tu)

t
= L(u) + ‖u‖R1(tu),

where R1 is an extension of R from the definition of the uniform expansion
(R1(u) = R(u) for u ∈ I(0, 1)) and

‖u‖ = u1 + · · · + un.

For u bounded, ‖u‖ ≤ δ, we get

sup
‖u‖≤δ

|Ct(u) − L(u)| = sup
‖u‖≤δ

‖u‖R1(tu) ≤ δ sup
‖u‖≤δ

|R1(tu)|.

Since R has limit 0 at the origin, R1(tu) tends uniformly to 0 as t → 0,
which finishes the proof of the implication.

(ii)⇒(iii). The Ct are continuous, grounded and n-nondecreasing, hence
their limit L has the same properties.

Next, we adapt the probabilistic approach from [1, Theorem 29.1]. For
every rectangle I(u, v), 0 � u � v, we get, as t→ 0,

µt(I(u, v)) = VCt(u, v) → VL(u, v) = µL(I(u, v)).



166 P. Jaworski

Now let G be an open bounded nonempty subset of [0,∞)n. We shall
show that

lim inf
t→0

µt(G) ≥ µL(G).

Indeed, for every ε > 0 there exists a finite sequence of rectangles Ik =
I(uk, vk) with disjoint interiors such that

G ⊃
K⋃

k=1

Ik and µL(G) ≤
K∑

k=0

µL(Ik) + ε.

Therefore

lim inf
t→0

µt(G) ≥ lim inf
t→0

µt

( K⋃

k=1

Ik

)
=

K∑

k=1

lim
t→0

µt(Ik) =
K∑

k=1

µL(Ik)

≥ µL(G) − ε.

Letting ε→ 0 we obtain the required inequality.

Next, let f be a continuous function on [0,∞)n with a compact sup-
port S. Let I be any closed bounded rectangle containing S. Then

µt(f) =
\
I

f(u) dµt(u) =
\
I

(f(u) − min f) dµt(u) + (min f)µt(I)

=
\
I

( f(u)\
min f

1 dx
)
dµt(u) + (min f)µt(I)

=
\
I

( max f\
min f

If(u)>x dx
)
dµt(u) + (min f)µt(I).

Hence by the Fubini theorem,

µt(f) =

max f\
min f

(\
I

If(u)>x dµt(u)
)
dx+ (min f)µt(I)

=

max f\
min f

µt({u ∈ I : f(u) > x}) dx+ (min f)µt(I).

The sets {f(u) > x} ∩ int I are open, hence applying the above and the
Fatou lemma ([1, Theorem 16.3]) we obtain

lim inf
t→0

µt(f) ≥

max f\
min f

µL({u ∈ int I : f(u) > x}) dx+ (min f)µL(I)

=
\
I

f(u) dµL(u) = µL(f).



Uniform tail expansions of copulas 167

Since −f is also a continuous function with compact support, we have

µL(f) = −µL(−f) ≥ − lim inf
t→0

µt(−f) = lim sup
t→0

µt(f).

Thus the upper and lower limits of µt(f) are equal and so

lim
t→0

µt(f) = µL(f).

This finishes the proof of the wide convergence.

(iii)⇒(iv). Basing on the fact that µL(∂I(0, u)) = 0 we get

C(tu)

t
= Ct(u) = µt(I(0, u)) → µL(I(0, u)) = L(u)

(cf. [16, §IV.7 Corollary 2] and [2, Theorem 29.1.iv]).

(iv)⇒(i) (this implication is based on the proof of the two-dimensional
case by M. Wawruszczak [17]).

Step 1. The quotient C(tv)/t satisfies the uniform Cauchy condition

∀ε > 0 ∃r > 0 ∀s, t ∈ (0, r) sup
v∈[0,1]n

∣∣∣∣
C(tv)

t
−
C(sv)

s

∣∣∣∣ < ε.

First for every ε > 0 we construct an ε/4-net Nε on the unit cube [0, 1]n.
Let m = [ε/4] + 1. We put

Nε = {(k1/m, . . . , kn/m) : ki ∈ {0, 1, . . . ,m}}.

Obviously for every v ∈ [0, 1]n there exists v∗ ∈ Nε such that

‖v − v∗‖ =
n∑

i=1

|vi − v∗i | < n
1

m
< n

ε

4n
=
ε

4
.

Next we choose r so small that for every v∗ ∈ Nε,

∀s, t ∈ (0, r)

∣∣∣∣
C(tv∗)

t
−
C(sv∗)

s

∣∣∣∣ <
ε

2
.

To finish the proof of the Cauchy condition we have to apply the Lipschitz
property of C (see [13, Theorem 2.10.7]). For s, t ∈ (0, r), v ∈ [0, 1]n and
v∗ ∈ Nε such that ‖v − v∗‖ < ε/4 we have

∣∣∣∣
C(tv)

t
−
C(sv)

s

∣∣∣∣

≤

∣∣∣∣
C(tv)

t
−
C(tv∗)

t

∣∣∣∣ +

∣∣∣∣
C(tv∗)

t
−
C(sv∗)

s

∣∣∣∣ +

∣∣∣∣
C(sv∗)

s
−
C(sv)

s

∣∣∣∣

≤
‖tv − tv∗‖

t
+
ε

2
+

‖sv − sv∗‖

s
≤
ε

4
+
ε

2
+
ε

4
= ε.



168 P. Jaworski

Step 2. R(u) tends to 0 as u → 0. Indeed, from the Cauchy condition
we find that for sufficiently small t,

sup
v∈[0,1]n

∣∣∣∣
C(tv)

t
− L(v)

∣∣∣∣ = sup
v∈[0,1]n

∣∣∣∣
C(tv)

t
− lim

s→0+

C(sv)

s

∣∣∣∣

= sup
v∈[0,1]n

lim
s→0+

∣∣∣∣
C(tv)

t
−
C(sv)

s

∣∣∣∣ ≤ ε.

Therefore setting v = u/‖u‖ and t = ‖u‖ we obtain

|R(u)| =
|C(u) − L(u)|

‖u‖
=

∣∣∣∣
C(tv)

t
− L(v)

∣∣∣∣ ≤ ε,

which finishes the proof of the theorem.

5. The asymptotic independence. First we prove the following pro-
position.

Proposition 2. For any copula C the following conditions are equiva-
lent :

(i) ∃v ≻ 0 limt→0+ C(tv)/t = 0.
(ii) ∀u � 0 limt→0+ C(tu)/t = 0.
(iii) C has a trivial lower tail expansion.

Proof. The equivalence (ii)⇔(iii) follows from Theorem 1. The implica-
tion (ii)⇒(i) is evident. Thus it is enough to show (i)⇒(ii).

Let u be any point from the positive multioctant, u � 0. Since v ≻ 0,
there exists s ∈ R+ such that sv � u. Therefore for every sufficiently small,
positive t,

C(tsv) ≥ C(tu),

and we have

0 ≤
C(tu)

t
≤
C(tsv)

t
=
C(tsv)

ts
s

t→0+

−→ 0.

Hence limt→0+ C(tu)/t = 0.

Now we can prove Theorem 2.

Proof of Theorem 2. Let i 6= j. Then

P(Xi < x | Xj < x) =
P(Xi < x,Xj < x)

P(Xj < x)

≥
P(X1 < x, . . . ,Xn < x)

P(Xj < x)
=
C(F (x), . . . , F (x))

F (x)
,

where F is the cumulative distribution of the Xi’s. Since

lim
x→x∗

F (x) = 0,
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passing to the limit we get

lim
x→x∗

P(Xi < x | Xj < x) ≥ lim
x→x∗

C(F (x), . . . , F (x))

F (x)
= lim

t→0+

C(t, . . . , t)

t
.

As C is nonnegative, limx→x∗ P(Xi < x | Xj < x) = 0 yields

lim
t→0+

C(t, . . . , t)

t
= 0.

Note that in the two-dimensional case

P(X1 < x | X2 < x) =
P(X1 < x,X2 < x)

P(X2 < x)
=
C(F (x), F (x))

F (x)
,

hence we get the equivalence from Remark 2.

6. Properties of the leading part L

6.1. Basics. Let L be the leading part of a uniform lower tail expan-
sion of a given copula C. From Theorem 1 we know that L is continuous,
grounded and n-nondecreasing. Moreover since all copulas satisfy the esti-
mate

0 ≤ C(u) ≤ min(u1, . . . , un)

([13, Th. 2.10.12]), we have:

Proposition 3. L is nonnegative and bounded by the smallest of its
arguments,

0 ≤ L(u) ≤ min(u1, . . . , un).

From the above and the homogeneity of L we obtain its further properties
(cf. [7, Cor. 4]).

Corollary 1. Let L be grounded , n-nondecreasing , bounded by its ar-
guments and homogeneous of degree 1. Then for all u, v � 0, L satisfies the
following :

(i) L is nondecreasing with respect to the partial ordering �,

u � v ⇒ L(u) ≤ L(v).

(ii) L is Lipschitz with Lipschitz constant 1,

|L(v) − L(u)| ≤
∑

i

|vi − ui|.

(iii) L is continuous.

6.2. Measures with homogeneous distribution functions. For the action
of the multiplicative group R+ on [0,∞)n,

Ξ : R+ × [0,∞)n → [0,∞)n, Ξ(t, u) = tu,
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we denote by Ξu the parametrization of the orbit of the point u,

Ξu : R+ → [0,∞)n, Ξu(t) = Ξ(t, u) = tu,

and by Ξ∆ the diffeomorphism

Ξ∆ : R+ ×∆→ [0,∞)n \ {0}, Ξ∆(t, x) = tx.

Lemma 2. If L is grounded , n-nondecreasing and homogeneous of de-
gree 1 then the corresponding measure µL is relatively invariant with respect
to Ξ, i.e. for any Borel set A ⊂ [0,∞)n and any t > 0,

µL(tA) = tµL(A).

Proof. Since L is homogeneous of degree 1, for every segment I(u, v)
with vertices u, v (u � v) and any t > 0 we have

µL(tI(u, v)) = VL(tu, tv) = tVL(u, v) = tµL(I(u, v)).

The above equality remains true for Borel sets (see [1, Theorem 10.3]).
Let µ∆ be the factor measure on ∆ defined by

µ∆(A) = µL

(⋃

t≤1

tA
)

for any Borel subset A of ∆. Since µL vanishes on the boundary of [0,∞)n,
µ∆ vanishes on all faces of the simplex ∆,

∀i µ∆({x ∈ ∆ : xi = 0}) = 0.

Since Ξ∆ is a diffeomorphism, the measure µL is the product of µ∆ and
a relatively invariant measure on R+. It turns out that the latter is the
Lebesgue measure m. Indeed,

m((ta, tb]) = tm((a, b]).

Two relatively invariant measures with the same multiplicator are propor-
tional (see [2, Chapter VII]), but our choice of µ∆ determines only one of
them. Indeed, only m satisfies the product rule

µL

(⋃

t≤1

t∆
)

= µ∆(∆) ·m((0, 1]).

Thus, by the Fubini theorem ([15, Th.7.8]) we get (cf. also [2, §VII.2]):

Corollary 2. For any bounded Borel set A ⊂ [0,∞)n,

µL(A) =
\
∆

m(Ξ−1
ξ (A)) dµ∆(ξ).

Furthermore setting A = I(0, u) we obtain

Corollary 3.

L(u) = µL(I(0, u)) =
\
∆

min(u1/q1, . . . , un/qn) dµ∆(q).
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Now we are able to continue the characterization of the leading parts.

Proposition 4. Any grounded , n-nondecreasing , homogeneous function
L : [0,∞)n → R of degree 1 is

(i) superadditive:
L(u+ v) ≥ L(u) + L(v).

(ii) concave:

∀λ1, λ2 ≥ 0, λ1 + λ2 = 1 L(λ1u+ λ2v) ≥ λ1L(u) + λ2L(v).

Proof. (i) We have

L(u+ v) − (L(u) + L(v)) = µL(I(0, u+ v)) − µL(I(0, u)) − µL(I(0, v)) = ∗.

Next we apply Corollary 3 and the inequality min(ai+bi) ≥ min(ai)+min(bi)
to get

∗ =
\
∆

m(Ξ−1
ξ (I(0, u+ v))) dµ∆(ξ) −

\
∆

m(Ξ−1
ξ (I(0, u))) dµ∆(ξ)

−
\
∆

m(Ξ−1
ξ (I(0, v))) dµ∆(ξ)

=
\
∆

(min{(ui + vi)/ξi : i = 1, . . . , n} − min{ui/ξi : i = 1, . . . , n}

− min{vi/ξi : i = 1, . . . , n}) dµ∆(ξ) ≥ 0.

(ii) is a direct consequence of (i). Indeed, let λ1, λ2 ≥ 0 and λ1 +λ2 = 1.
Then

L(λ1u+ λ2v) ≥ L(λ1u) + L(λ2v) = λ1L(u) + λ2L(v).

Remark 3. Since any n-nondecreasing, homogeneous function H of de-
gree 1 is a sum of a linear function H1 and a grounded, n-nondecreasing,
homogeneous function H2 of degree 1, Proposition 4 remains valid without
the “grounded” assumption.

One can also characterize the factor measures corresponding to leading
parts.

Proposition 5. For a grounded , n-nondecreasing , homogeneous func-
tion L : [0,∞)n → R of degree 1 the following conditions are equivalent :

(i) L(u) ≤ min(u1, . . . , un) for u � 0.
(ii)

T
∆

(1/qi) dµ∆(q) ≤ 1 for i = 1, . . . , n.

Proof. (ii)⇒(i). By Corollary 3 we have

L(u) = µL(I(0, u)) =
\
∆

min(u1/q1, . . . , un/qn) dµ∆(q)

≤ min

(
u1

\
∆

1

q1
dµ∆(q), . . . , un

\
∆

1

qn
dµ∆(q)

)
≤ min(u1, . . . , un).
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¬(ii)⇒¬(i). Assume that \
∆

1

q1
dµ∆(q) > 1.

Consider the half-line u = (1, t, . . . , t), t > 1. From the Fatou lemma we get

lim inf
t→∞

L(u) = lim inf
t→∞

\
∆

min

(
1

q1
,
t

q2
, . . . ,

t

qn

)
dµ∆(q)

≥
\
∆

1

q1
dµ∆(q) > 1.

So for large t,
L(1, t, . . . , t) > 1 = min(1, t).

6.3. Copulas with prescribed leading part L. In this section we show that
Proposition 3 completely describes all possible leading parts.

Proposition 6. Let L : [0,∞)n → R be an n-nondecreasing function,
homogeneous of degree 1, such that

∀u 0 ≤ L(u) ≤ min(u1, . . . , un).

Then there exists a copula C having L as the leading part of a uniform
expansion of its lower tail.

Proof. If L(1, . . . , 1) = 1 then, by concavity, L(u) = min(u1, . . . , un) and
L restricted to the unit rectangle is a copula. In this case we put C(u) =
L|cl I(0,(1,...,1))(u).

Now assume that L(1, . . . , 1) < 1. Let wi, i = 1, . . . , n, be the parametr-
izations of the edges of the unit rectangle which end at the point (1, . . . , 1),

wi : [0, 1] → [0, 1]n, wi(t)j =

{
1 if j 6= i,

t if j = i.

We consider the function

G(t) =

n∑

i=1

Gi(t), Gi(t) = t− L(wi(t)), t ∈ [0, 1].

For all t and i we have L(wi(t)) ≤ min(1, t) = t, hence each Gi is non-
negative. Furthermore, if s > t then L(wi(s)) − L(wi(t)) ≤ s − t, hence
each Gi is nondecreasing. Moreover G(0) = 0 < 1 − L(1, . . . , 1) and G(1) =
n(1 − L(1, . . . , 1)) ≥ 1 − L(1, . . . , 1). Since G is continuous, there is t0,
0 < t0 < 1, such that

G(t0) = 1 − L(1, . . . , 1), ∀t < t0 G(t) < 1 − L(1, . . . , 1).

We define a new singular Borel measure µ+ on [0,∞)n. The support of µ+

consists of n segments joining the point (t0, . . . , t0) and the vertices wi(0)
of the unit rectangle, i = 1, . . . , n. The mass is distributed according to the
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rule
µ+(I(0, wi(t))) = Gi(t) for 0 ≤ t ≤ t0.

Note that for such t the rectangle I(0, wi(t)) intersects only one segment,
the one ending at wi(0).

Let µ be the restriction of the sum of the measures µL and µ+ to the
unit rectangle I. Then

µ(I) = µL(I) + µ+(I) = L(1, . . . , 1) +
n∑

i=1

Gi(t0) = 1.

Thus µ is a probability measure on I. Furthermore, for each i and 0 ≤ t ≤ t0
we have

µ(I(0, wi(t))) = µL(I(0, wi(t))) + µ+(I(0, wi(t))) = L(wi(t)) +Gi(t) = t,

and for t0 < t ≤ 1,

µ(I(0, wi(t))) = µL(I(0, wi(t))) + µ+(I(0, wi(t)))

= L(wi(t)) +Gi(t0) +
∑

j 6=i

(
Gj(t0) −Gj

(
t0

1 − t

1 − t0

))

= 1 − (L(1, . . . , 1) − L(wi(t))) −
∑

j 6=i

Gj

(
t0

1 − t

1 − t0

)
.

Let Xi be the projection onto the ith axis restricted to the unit rectan-
gle I,

Xi(u1, . . . , un) = ui.

Since Xi is µ-measurable, it is a random variable. Moreover its distribution
function Fi is continuous and Fi(t) = t for 0 ≤ t ≤ t0.

The copula C we are looking for is the joint distribution function of the
random variables Fi(Xi) (see Proposition 1). For u � (t0, . . . , t0) we have

C(u) = µ
(∧

i

Fi(Xi) ≤ ui

)
= ∗,

but Fi(t) = t for t < t0, thus

∗ = µ
(∧

i

Xi ≤ ui

)
= µ(I(0, u)) = µL(I(0, u)) + µ+(I(0, u)) = L(u) + 0.

This finishes the proof: the lower tail of C equals L.

The above results remain valid for pairs of tails and pairs of functions.

Proposition 7. Any two n-nondecreasing functions Li : [0,∞)n → R,
i = 1, 2, homogeneous of degree 1, and such that

0 ≤ Li(u) ≤ min(ui),

are the leading parts of the lower and upper tail expansion of the same copula.
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Proof. We apply the patchwork technique (cf. [13, §3.2.2]). For i = 1, 2
let Ci be copulas having Li as lower tails (as in the proof of the previous
proposition). Then the function C : [0, 1]n → [0, 1], defined by

C(u)

=





C1(2u)/2 for 0 � u � (1/2, . . . , 1/2),

(1+Ĉ2(2u1−1, . . . , 2un−1))/2 for (1/2, . . . , 1/2)�u�(1, . . . , 1),

C1(min(1, 2u1), . . . ,min(1, 2un))/2 otherwise,

is a copula.
Indeed, for the lower subrectangle we apply the measure induced by

C1, for the upper one the measure induced by Ĉ2 and for the rest the null
measure.

Therefore for u enough small

C(u) =
C1(2u)

2
= L1(u), Ĉ(u) =

C2(2u)

2
= L2(u).

This finishes the proof: the lower tail of C equals L1 and the upper one
equals L2.

6.4. Proof of Theorem 3. Theorem 3 follows from Proposition 3 (i)⇒(ii),
Proposition 5 (ii)⇔(iii) and Proposition 6 (ii)⇒(i).

7. Examples

7.1. Examples of trivial expansions

• Assume that the Xi are independent. Then

C(u) =
∏

i

ui.

In this case L(u) = 0 and R(u) = u1 . . . un/(u1 + · · · + un). Hence the ex-
pansion of the lower tail is trivial. The same is valid for the survival copula.
Hence the expansion of the upper tail is also trivial.

• Assume that X2 = −X1. Then

C(u) ≤ max(0, u1 + u2 − 1) and Ĉ(u) ≤ max(0, u1 + u2 − 1).

Once more the expansions of both tails are trivial.
• The Gaussian copula. Let Xi have the same standard normal distribu-

tion N(0, 1) and normal joint distribution. Then their copula

CN (u) = FX (F−1(u1), . . . , F
−1(un)),

where F is the distribution function of the standard normal distribution
(N(0, 1)), is called Gaussian.

Proposition 8. The Gaussian copula CN has trivial expansions at all
vertices of the unit cube.
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Proof. Note that the random variable Z = X1 + · · ·+Xn has the normal
distribution,

E(Z) = 0, D2(Z) = c2 =
∑

i,j

ci,j < n2, 0 < c < n,

where ci,j = cov(Xi,Xj) (if i 6= j then −1 < ci,j < 1).
Let ui = F (xi) and xi ≤ x1 < 0 for every i (due to symmetry we may

renumber the variables). Then

0 ≤
CN (u)

u1 + · · · + un
=

FX (x)

F (x1) + · · · + F (xn)
=

P(
∧

i Xi ≤ xi)

F (x1) + · · · + F (xn)

≤
P(X1 + · · · + Xn ≤ x1 + · · · + xn)

F (x1) + · · · + F (xn)
=
F ((x1 + · · · + xn)/c)

F (x1) + · · · + F (xn)

≤
F (nx1/c)

F (x1)
.

Next we apply the de l’Hospital rule:

lim
x1→−∞

F (nx1/c)

F (x1)
= lim

x1→−∞

n

c

exp
(
−

n2x2
1

2c2

)

exp
(
−

x2
1

2

) = lim
x1→−∞

n

c
exp

((
1

2
−
n2

2c2

)
x2

1

)
.

Since c < n, the argument of the exponential function is negative and

lim
x1→−∞

exp

((
1

2
−
n2

2c2

)
x2

1

)
= 0.

By the theorem of three limits we get L(u) = 0. This finishes the proof
for the lower tail. The other cases are quite similar.

Remark 4. The above result shows that the phenomenon of the non-
trivial tail expansions does not exist in the “world ruled by the paradigm of
normality of all distributions”.

7.2. Simple examples of nontrivial expansions. Assume that X1 = · · · =
Xn. Then

C(u) = min(u1, . . . , un).

In this case L(u) = min(ui) and R(u) = 0. The factor measure is concen-
trated at one point q = (1/n, . . . , 1/n):

µ∆({q}) = µL(I(0, q)) = L(q) = 1/n.

The same is true for the survival copula.
Note that the above remains true if we only assume that the Xi are

comonotonic.
The above copula has a singular support (the diagonal {(t, . . . , t) : t ∈

[0, 1]}). Consider the singular copulas Cp, where p = (p1, . . . , pn), p1 + · · ·+
pn = 1 + (n− 1)a and 0 < a < pi < 1, defined by
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Cp(u) = amin(1, u1/p1, . . . , un/pn)

+

n∑

i=1

(pi − a)

(
min

{
(uj − pj)

+

1 − pj
: j 6= i

}
−

(pi − ui)
+

pi

)+

.

The support consists of n + 1 segments, one joining p and the origin, and
n segments joining p and the vertices of the unit rectangle having n − 1
coefficients equal to 1. On each of them the distribution of mass is uniform.
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The upper tail has a trivial expansion. But the lower tail always has a
nonzero leading part:

L(u) =
̺− 1

n− 1
min

(
u1

p1
, . . . ,

un

pn

)
, ̺ = p1 + · · · + pn.

The factor measure is concentrated at one point q = (1/̺)p:

µ∆({q}) = µL(I(0, q)) = L(q) =
̺− 1

̺(n− 1)
<

1

n
.

7.3. Archimedean copulas

7.3.1. Basics

Definition 4. A copula C : [0, 1]n → [0, 1] is called Archimedean if
there exists a strictly decreasing, convex and continuous function ϕ : [0, 1] →
[0,∞] with ϕ(1) = 0 and ϕ(0) = ϕ0 ≤ ∞ such that

C(u) = ϕ−1(min(ϕ0, ϕ(u1) + · · · + ϕ(un)))

(see [13, §4.6], [3, §4.8.4] or [10, §4.2]).
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Lemma 3. Let ϕ : [0, 1] → [0,∞] be a strictly decreasing and continuous
function such that ϕ(1) = 0 and ϕ(0) = ϕ0 ≤ ∞ and the function

ψ : [0,∞] → [0, 1], ψ(x) = ϕ−1(min(ϕ0, x)),

is n− 2-times differentiable on (0,∞) and (−1)nψ(n−2)(x) is convex. Then
the function

Cϕ : [0, 1]n → [0, 1], Cϕ(u) = ψ
( n∑

i=1

ϕ(ui)
)
,

is a copula.

Proof. We check the axioms.
(i) Cϕ is grounded. Indeed, if uj = 0 then

∑
ϕ(ui) ≥ ϕ(uj) = ϕ0.

Hence

ψ
(∑

ϕ(ui)
)

= ϕ−1(ϕ0) = 0.

(ii) The marginal distributions are uniform. Let ui = 1 for i 6= j. Then
ϕ(ui) = 0 and ∑

ϕ(ui) = ϕ(uj).

Hence

ψ
(∑

ϕ(ui)
)

= ϕ−1(ϕ(uj)) = uj .

(iii) Cϕ is n-nondecreasing. If ψ is n-times differentiable and ψ(n) is
continuous then the nth mixed derivative of C exists and

∂nCϕ

∂u1 . . . ∂un
(u) = ψ(n)

(∑
ϕ(ui)

)
·

n∏

i=1

ϕ′(ui) ≥ 0,

and for v � u,

VCϕ(u, v) =
\

I(u,v)

∂nCϕ

∂u1 . . . ∂un
(q) dq1 . . . dqn ≥ 0.

The general case is a bit more complicated. For fixed u = (u1, . . . , un)
we put

G(s) = (−1)nψ(n−2)
(
s+

n∑

i=3

ϕ(ui)
)
.

Let 0 ≤ s1 ≤ s2 and 0 ≤ s3 ≤ s4. Then

s1 + s3 ≤ min(s1 + s4, s2 + s3) ≤ max(s1 + s4, s2 + s3) ≤ s2 + s4.

Since G is convex, we have

G(s1 + s3) +G(s2 + s4) ≥ G(s1 + s4) +G(s2 + s3).



178 P. Jaworski

Therefore since ψ(n−2) is continuous, we get

VCϕ(u, v) =

v3\
u3

. . .

vn\
un

(
ψ(n−2)

(
ϕ(u1) + ϕ(u2) +

n∑

i=3

ϕ(qi)
)

+ ψ(n−2)
(
ϕ(v1) + ϕ(v2) +

n∑

i=3

ϕ(qi)
)
− ψ(n−2)

(
ϕ(v1) + ϕ(u2) +

n∑

i=3

ϕ(qi)
)

− ψ(n−2)
(
ϕ(u1) + ϕ(v2) +

n∑

i=3

ϕ(qi)
)) n∏

i=3

ϕ′(qi) dq3 . . . dqn ≥ 0.

7.3.2. Tails. We shall show that the lower (resp. upper) tail expansion
of the Archimedean copula depends on the limit elasticity of ϕ(x) (resp.
ϕ(1 − x)) at 0, defined by

Ex(0) = lim
x→0+

xϕ′(x)

ϕ(x)
, Ex(1) = lim

x→0+

−xϕ′(1 − x)

ϕ(1 − x)
.

The only exception concerns the lower tail expansion. Namely if ϕ0 is
finite than Cϕ(u) vanishes in some neighbourhood of the origin, so L(u) = 0.

Proposition 9. If the limit Ex(1) exists then the Archimedean copula
Cϕ has a uniform upper tail expansion. Moreover if Ex(1) = d, 1 < d < ∞,
then

L(u) = (−1)n−1VL∗(0, u), L∗(u) = d

√
ud

1 + · · · + ud
n;

if Ex(1) = ∞, then L(u) = min(ui); and if Ex(0) = 1, then L(u) = 0.

The proof is the same as the proof of Theorem 5 in [8]. Roughly speaking,
it is based on the fact that if Ex(1) = d, then for x close to 1,

ϕ(x) ≈ c(1 − x)d, c > 0.

Proposition 10. If ϕ0 = ∞ and the limit Ex(0) exists then the Archi-
medean copula Cϕ has a uniform lower tail expansion. Moreover if Ex(0) =
−d, 0 < d <∞, then

L(u) =
1

d

√
u−d

1 + · · · + u−d
n

;

if Ex(0) = −∞, then L(u) = min(ui); and if Ex(0) = 0, then L(u) = 0.

The proof is the same as the proof of Theorem 6 in [8]. Roughly speaking
it is based on the fact that if Ex(0) = −d, then for x close to 0,

ϕ(x) ≈ cx−d, c > 0.

Proposition 11. If ϕ0 = ∞ then at any intermediate vertex e the
Archimedean copula C has trivial tail expansion.
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Proof. Assume that e1 = 1 and e2 = 0. Since ϕ is convex, we have

lim
t→∞

ψ′(t) = 0.

We get

C(1 − v1, v2, ũ) − C(1, v2, ũ) = ψ(ϕ(1 − v1) + ϕ(v2) + · · ·) − ψ(ϕ(v2) + · · ·)

= ψ′(ϕ(v2) + · · ·)ϕ′(1)(−v1) + o(v1)

= o(v1 + v2)

(at points where ψ or ϕ are not differentiable we take the left derivative).
Therefore

Ĉe(v) = VC((1 − v1, 0, . . .), (1, v2, . . .)) = o(v1 + v2),

and
Ĉe(tv)

t
=
o(t)

t
→ 0.

7.4. Multivariate extreme value copulas. In modelling the multivariate
extreme value distribution many authors based on the following family of
copulas ([12], [6]):

CW (u1, . . . , un) =

{
exp(−W (− ln(u1), . . . ,− ln(un))) if

∏
ui > 0,

0 if
∏
ui = 0,

W (z1, . . . , zn) =
\
∆

max(w1z1, . . . , wnzn) dH(w),

where ∆ is the unit simplex in R
n, w1 + · · · + wn = 1, and H is a positive

dependence measure subject to\
∆

wj dH(w) = 1, j = 1, . . . , n.

We shall show that the copulas of this family have uniform expansions at
all corners.

Proposition 12. Every copula CW has a nontrivial upper tail expansion
with leading term

L(u) = (−1)n+1VW (0, u) =
\
∆

min(w1u1, . . . , wnun) dH(w).

Proof. Let e be the upper vertex of the unit rectangle, e = (1, . . . , 1).

The copula Ĉe associated to CW at e equals

Ĉe(u) = VCW
(e− u, e).

Therefore

lim
t→0+

Ĉe(tu)

t
= lim

t→0+

VCW
(e− tu, e)

t
= lim

t→0+

(−1)dVexp(−W ())(0, tu)

t
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= lim
t→0+

(−1)dV1−W ()(0, tu)

t
= lim

t→0+

(−1)n+1VtW ()(0, u)

t
= (−1)n+1VW (0, u).

Thus Ĉe has a uniform expansion. Furthermore

L(u) = (−1)n+1VW (0, u) = (−1)n+1
\
∆

Vmax(0, (w1u1, . . . , wnun)) dH(w)

=
\
∆

min(w1u1, . . . , wnun) dH(w).

Proposition 13. If W (1, . . . , 1) > 1 then the copula CW has a trivial
lower tail expansion.

Proof. We have

lim
t→0+

CW (tu)

t
= lim

t→0+

exp(−W (− ln(tu1), . . . ,− ln(tun)))

t

= lim
t→0+

exp(−W (− ln(t)(1 + ln(t)−1 ln(u1)), . . .))

t

= lim
t→0+

exp(ln(t)W (1 + ln(t)−1 ln(u1), . . .))

t

= lim
t→0+

tW (1+ln(t)−1 ln(u1),...)−1 = 0.

Remark 5. The exceptional case W (1, . . . , 1) = 1 occurs only when the
measure H is concentrated at one point (the centre of the simplex). In this
case W (z) = max(zi) and CW (u) = min(ui), hence the lower tail expansion
is uniform.

Proposition 14. At any intermediate vertex e the MEV copula CW has
a trivial tail expansion.

Proof. Assume that e1 = 1 and e2 = 0. Then

0 ≤ C(1, v2, ũ) − C(1 − v1, v2, ũ)

= C(1, v2, ũ)(1 − exp(−W (− ln(1 − v1), . . .) +W (0, . . .)))

≤ v2(1 − exp(ln(1 − v1))) = v2v1.

Therefore

Ĉe(v) = VCW
((1 − v1, 0, . . .), (1, v2, . . .)) = O(v1v2),

and
Ĉe(tv)

t
=
O(t2)

t
→ 0.

8. Tests and estimators for nontrivial tail expansions. In practice
one is not only interested whether an empirical distribution has a uniform
tail expansion, but also how big part of the tail can be approximated by
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the leading part of the tail expansion. Therefore in this section we shall
discuss the tests which tell us whether past a given benchmark γ the tail of
an empirical copula Ce is close enough to some n-nondecreasing, grounded
function Le homogeneous of degree 1.

Model. Xi, i = 1, . . . , n, are random variables defined on the same prob-
ability space (Ω,M,P), with continuous distribution functions Fi and a
copula C. Assume that we have a sample consisting of N n-tuples of obser-
vations xt,i, t = 1, . . . , N , i = 1, . . . , n.

We consider a new random variable

R =
n∑

i=1

Fi(Xi).

Theorem 4. If C has a nontrivial uniform lower tail expansion then for
γ → 0 the conditional distributions of γ−1R|R ≤ γ converge in distribution
to the uniform distribution on the unit interval.

Proof. Let Fγ be the distribution functions of the conditional distribu-
tions of γ−1R|R ≤ γ. For 0 < x < 1 we have

Fγ(x) = P(γ−1R ≤ x |R ≤ γ) =
P(R ≤ xγ)

P(R ≤ γ)

=
µC(

⋃
t≤1 txγ∆)

µC(
⋃

t≤1 tγ∆)
=
µγ(

⋃
t≤1 tx∆)

µγ(
⋃

t≤1 t∆)
.

Since µL(∂(
⋃

t≤1 tγ∆)) = µL(∂(
⋃

t≤1 txγ∆)) = 0, from Theorem 1 and [1,
Theorem 29.1] or [16, Corollary IV.7.2] we get

lim
γ→0

Fγ(x) =
µL(

⋃
t≤1 tx∆)

µL(
⋃

t≤1 t∆)
=
xµL(

⋃
t≤1 t∆)

µL(
⋃

t≤1 t∆)
= x.

This finishes the proof.

Thus we should first check whether, for a given benchmark γ, the con-
ditional distribution R|R ≤ γ is uniform on the interval [0, γ]. This can be
easily done with the help of some classical test like the Kolmogorov test.
Note that if we approximate Fi’s by empirical distributions then we get a
sample r1, . . . , rN from R, where rt are just sums of ranks divided by the
size of the sample,

rt =
rank(xt,1) + · · · + rank(xt,n)

N
.

Let Q be an n-dimensional random variable with values in the unit sim-
plex ∆,

Qi =
Fi(Xi)

R
.
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Theorem 5. If C has a nontrivial uniform lower tail expansion then for
γ → 0 the conditional distributions of Q|R ≤ γ converge in distribution to
the factor measure µ∆ divided by µ∆(∆).

Proof. Since C has a nontrivial tail expansion, we have µ∆(∆) > 0. We
denote by P∆ the probabilility measure on R

n induced by the factor measure
µ∆,

P∆(A) =
µ∆(A ∩∆)

µ∆(∆)
.

Let Pγ be the conditional distribution of Q|R ≤ γ. For any open subset G
of R

n we have

Pγ(G) = Pγ(G ∩∆) = P(Q ∈ G ∩∆ |R ≤ γ) =
P(Q ∈ G ∩∆ ∧R ≤ γ)

P(R ≤ γ)

=
P(RQ ∈

⋃
t≤1 tγG ∩∆)

P(R ≤ γ)
=
µC(γ

⋃
t≤1 t(G ∩∆))

µC(γ
⋃

t≤1 t∆)
=
µγ(

⋃
t≤1 t(G ∩∆))

µγ(
⋃

t≤1 t∆)
.

Since µL(∂(
⋃

t≤1 tγ∆)) = 0, we get (cf. [1, Theorem 29.1])

lim inf
γ→0

Pγ(G) = lim inf
γ→0

µγ(
⋃

t≤1 t(G ∩∆))

µγ(
⋃

t≤1 t∆)
≥

lim infγ→0 µγ(
⋃

t<1 t(G ∩∆))

limγ→0 µγ(
⋃

t≤1 t∆)

≥
µL(

⋃
t<1 t(G ∩∆))

µL(
⋃

t≤1 t∆)
=
µ∆(G ∩∆)

µ∆(∆)
= P∆(G).

This finishes the proof.

Thus we should next check whether, for a given benchmark γ, the con-
ditional distributions of Q|R ≤ t, 0 < t ≤ γ, depend on t.

Furthermore, we know that the factor measure is concentrated at the
centre of the simplex (Theorem 3). This should also be tested.

Theorem 6. If C has a nontrivial uniform lower tail expansion then

lim
γ→0

E

(
1

γQi
IR≤γ

)
≤ 1.

Proof. We have

lim
γ→0

E

(
1

γQi
IR≤γ

)
= γ−1E(Q−1

i |R ≤ 1)P(R ≤ γ)

= γ−1E(Q−1
i |R ≤ 1)µC

(⋃

t≤1

tγ∆
)

= E(Q−1
i |R ≤ 1)µγ

(⋃

t≤1

t∆
)

γ→0
−→ EP∆

(Qi)µ∆(∆) =
\
∆

1

qi
dµ∆(q) ≤ 1.
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So the required test should check whether for a benchmark γ the expected
values of γ−1Q−1

i IR≤γ are not greater than 1. Note that the statistics

Tγ,i =
1

γN

∑

t: rt≤γ

1

qt,i
, where qt,i =

rank(xt,i)

Nrt
,

are natural estimators of these expected values.
Having selected a proper benchmark γ, we may start to estimate the

leading part L. We first estimate the factor measure µ∆. The simplest ap-
proach is to take either the discrete estimator or the kernel estimator. To
every t = 1, . . . , N , we associate a measure µ̂t on the unit simplex ∆ as
follows.

If rt > γ, we put µ̂t = 0.
If rt ≤ γ then either µ̂t is the measure concentrated at a point qt, qt,i =

rank(xt,i)/Nrt, such that µ̂t({qt}) = 1/γN , or its kernel smoothing.
The estimator µ̂∆,γ,N is the sum of µ̂t’s,

µ̂∆,γ,N =
N∑

t=1

µ̂t.

Having estimated µ∆, we have natural estimators of µL and L. Namely we
take as µ̂L,γ,N the product of µ̂∆,γ,N and the Lebesgue measure m on the
real half-line. For any Borel set A ⊂ [0,∞)n, we get

µ̂L,γ,N (A) =
\
∆

m(Ξ−1
q (A)) dµ̂∆,γ,N(q).

Finally, we put

L̂γ,N (u) = µ̂L,γ,N (I(0, u)).

By construction the estimator L̂ is homogeneous of degree 1, grounded
and n-nondecreasing. Moreover if for all i the statistics Tγ,i are not greater

than 1 then the discrete estimator L̂γ,N is the leading part of some copula
(see Theorem 3).
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