
APPLICATIONES MATHEMATICAE
33,2 (2006), pp. 195–216

Anna Marcinkowska (Bydgoszcz)

A NEW APPROACH TO THE ANALYSIS OF A DISCRETE

ROUND-ROBIN QUEUE

Abstract. We identify the regions of parameters of the arriving stream
in which the ergodic, critical, or supercritical properties of the branching
chain are established.

1. Introduction. In this paper we study a processor working under the
round-robin (RR) algorithm which is discussed, for example, in [2, 4, 9, 10].

In this section the standard model of a processor operating under the
RR discipline will be described. We give a concise presentation of most
important notions and results from the literature. In Subsections 1.3 and
1.4 we present our main notations concerning the RR processor and give a
short description of our results.

1.1. Description of the standard discrete time model of a round-robin

processor. The RR service works in such a way that out of a queue of sig-
nals awaiting in the buffer (which, it is assumed, has infinite capacity) the
one found at the very head of the queue is selected for service. That signal
receives one service time slice equal to q. If this exhausts the signal’s required
service time, the signal exits the system; otherwise, the signal positions it-
self at the tail of the queue with a service time diminished by q. Signals
enter the system from the outside at random moments and have random
required service times. The random variables describing these two values
can have discrete distribution as in the works of Schassberger, or continu-
ous distribution as proposed by Grishechkin, for example. A mathematical
model describing the status of the system is an appropriate Markov chain.

1.2. A brief overview of earlier papers on RR. In [1] Daduna analyzes
a discrete-time round-robin queue with the last-in-first-served rule: a newly
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arriving signal receives a quantum of service immediately and only thereafter
joins the tail of the queue. Signals are of different types, the set R of possible
types r ∈ R being at most countably infinite. At the end of each quantum
at most one arrival to the queue may occur, the sequence of arrivals being
Bernoulli with probability λ ∈ (0, 1) for an arrival. Each arrival presents a
request for service. The probability for a request of k quanta is πr(k), k ≤ 1,
for a type-r signal. The model is studied in terms of a discrete-time Markov
chain with state space {e} ∪ {(rn, . . . , r1) : n = 1, 2, . . . , ri ∈ R, 1 ≤ i ≤ n}
where R is finite or countably infinite. The element (rn, . . . , r1) represents
the state of the queue of signals, the signal at the head of the queue being
of type r1, . . . , at the tail of the queue of type rn. The element e represents
the empty queue. Daduna computes steady-state probabilities and the mean
sojourn time.

In [10] Schassberger analyzes a model with one type signals where
queue statuses at times 0, q, . . . are defined as either e (for empty) or else
(kn, . . . , k1) where ki ∈ {1, 2, . . . } and k1q is the residual demand of the
signal at the head of the queue, . . . , knq is the residual demand of the signal
at the tail of the queue. Schassberger examines the sojourn time of the sig-
nal with required service time kq, where k ∈ N, and utilizes the generating
function of the random variable that describes the sojourn time. Moreover,
he points out that as q → 0 (and with suitably selected parameters of the
input stream), the distribution of the sojourn time tends to the distribution
of the sojourn time of a signal in an appropriate system with a processor
working under the processor sharing (PS) discipline.

In [4], Grishechkin analyzes a processor model with continuous time and
RR rules, where the input stream is a Poisson stream and the required
service time has exponential distribution. He shows that the dynamics of the
Markov chain describing the queue status is tantamount to the dynamics of
an appropriate branching process with immigration. His main focus is also
on the sojourn time in the system of a distinguished signal which has a given
required service time. Application of the branching processes theory allows
him to prove limit theorems, for example, when the number of signals present
in the system at the moment of appearance of the distinguished signal tends
to ∞, or when the distinguished signal’s required service time tends to ∞.
Grishechkin’s analysis is quite difficult to follow.

In this paper we propose a more lucid model and a more intuitive ap-
plication of branching processes. To analyze the dynamics of a branching
process, the ideas put forward in [5, 6, 8] will be used. Parameter areas will
be indicated in which the Markov chain describing the system status ex-
hibits ergodic, critical, or supercritical behavior; this was never considered
in the above-mentioned works. The manner of describing the system status
proposed in this paper and the results arrived at also allow estimating the
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sojourn time and the departure process in each of the three indicated ar-
eas. However, detailed calculations have been omitted as they can easily be
deduced from the results obtained.

1.3. RR processor with apparent signals and the appropriated multitype

branching chain. The processor we consider has an unbounded waiting room
in which the currently served signals are ordered in a queue. The real signals
arrive one by one from the outside at successive times 0 < T1 < T2 < · · · ,
where

P ({T1 = lq}) = P ({Ti+1 − Ti = lq}) = (1 − γ)l−1γ

for i, l ∈ N; γ ∈ (0, 1) and q ∈ (0,∞) are parameters.

The signal arriving at time Ti presents a demand for service time of
size Si, where

P ({Si = lq}) = πl, l = 1, . . . , k + 1, i ≥ 1,
k+1∑

l=1

πl = 1.

We assume that the random variables

T1, S1, T2 − T1, S2, T3 − T2, S3, . . . are independent(1.1)

and are viewed as being defined on a suitably chosen probability space with
probability measure P .

We can associate to the arriving signal stream the Bernoulli chain {bn :
n ∈ N} (b1, b2, . . . are independent, P ({bn = 1}) = γ, P ({bn = 0}) = 1 − γ)
in the following way: if bn = 1, then the signal arrives at time nq. Apart
from real signals we will introduce apparent ones at times 0 < V1 < V2 < · · ·
with required service time q. The times V1, V2, . . . are random variables and
now we are going to describe their practical meaning. The formal definition
will be given later.

In the queue there are real signals whose residual request is greater than
zero. In the time period [0, q) an apparent signal is served. Next, if T1 = q,
then in the time period [q, 2q) the first real signal is served, otherwise V1 = q
and the second apparent signal is served in [q, 2q). In the next time periods
[kq, (k + 1)q), k ∈ N, the consecutive signal (real or apparent) from the
head of the queue (as at time kq) takes its one service quantum. One service
quantum is the processor’s work during a time period of length q. So suppose
the signal finishes taking its quantum of service at time (k+1)q. Then it goes
to the end of the queue if its remaining request is greater than zero, otherwise
it departs the system. If at time (k + 1)q a new real signal arrives from the
outside it takes its place at the head of the queue and the signals presently
waiting in the queue are moved one place backward. At time (k + 1)q the
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signal which is actually at the head of the queue goes to the processor and
it takes its service quantum in the interval [(k + 1)q, (k + 2)q).

Apparent signals are moved to the head of the queue only at times Vj ,
j ∈ N

∗ where N
∗ := {0} ∪ N, so that in the time interval [Vn, Vn+1) an

apparent signal as well as any other real signal from the queue will receive
exactly one quantum of service. The interval [Vn, Vn+1), n ∈ N

∗, will be
called the (n + 1)th period.

Let Zj(n), j ∈ {1, . . . , k}, represent the number of signals in the queue
with the residual service time at time Vn equal to jq. Set Z(n) := (Z1(n), . . . ,

Zk(n)). Then Z(n) =
∑k

j=1 Zj(n) is the length of the queue at time Vn.

Now we give the formal recurrent definition for the sequence {Vn, Z(n) :

n ∈ N}. Let {b
(m,n)
l : l ∈ N}, m, n ∈ N

∗, be a sequence of independent
Bernoulli chains defined on the same probability space as {Tj , Sj : j ∈ N}.
This sequence has the same distribution as the sequence {bn : n ∈ N}. For
m, n ∈ N

∗ we define

B(m)
n :=

{
0 if b

(m,n)
1 = 0,

inf{l : b
(m,n)
1 = · · · = b

(m,n)
l = 1, b

(m,n)
l+1 = 0} if b

(m,n)
1 = 1.

Notice that P ({B
(m)
n < ∞}) = 1.

Definition 1.1. We define

V1 := q(1 + B
(0)
0 )

and for l = 1, . . . , k,

Zl(1) :=





0 if B
(0)
0 = 0, l ∈ {2, . . . , k},

1 if B
(0)
0 = 0, l = 1,

1 + B
(0)
0 − #{j ∈ {1, . . . , B

(0)
0 } : Sj 6= (l + 1)q} if B

(0)
0 ≥ 1.

Having (V1, Z(1)), . . . , (Vn, Z(n)) we define

Z(n) =

k∑

l=1

Zl(n), Vn+1 = Vn + q
(
1 +

Z(n)∑

j=1

B(j)
n

)
.

Now in the case when
∑Z(n)

j=1 B
(j)
n = 0 we put Z1(n + 1) := 1 + Z2(n),

Zl(n + 1) := Zl+1(n) when l ∈ {2, . . . , k − 1} and Zk(n + 1) = 0.

When
∑Z(n)

j=1 B
(j)
n ≥ 1 we first define

A
(i)
(n) := B

(0)
0 +

n−1∑

l=1

(Z(l)∑

j=1

B
(j)
l

)
+ I(i > 1)

i−1∑

j=1

B(j)
n ,

where I(i > 1) = 0 when i = 0 or i = 1, and I(i > 1) = 1 when i > 1. Then
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we define for l = 1, . . . , k,

Zl(n + 1) = (1 − I(l > 1)) + Zl+1(n)

+

Z(n)∑

i=1

(B(i)
n − #{j ∈ {1, . . . , B(i)

n } : S
A

(i)
(n)

+j
6= (l + 1)q}).

For l ∈ {1, . . . , Z(n−1)}, n ∈ N, let T (l; n) denote the time when the lth
signal from the queue (i.e. lth at time Vn−1) finishes taking its one quantum
of service. Then ξn+1,l := q−1(T (l +1; n)− q−T (l; n)) equals the number of
new real signals which arrived from the outside one by one beginning from
time T (l; n).

For m ∈ N
∗ we have

(1.2) P ({ξn+1,l = m}) = P ({bj = 1, j ∈ {q−1T (l; n), . . . , q−1T (l; n)+m−1};

bj1 = 0, j1 := m + q−1T (l; n)}) = (1 − γ)γm.

Let ξ
(j)
n,l ∈ {0} ∪ N denote the number of signals in the set of all ξn,l

signals with the required service time jq, j ∈ {1, . . . , k + 1}. Obviously∑k+1
j=1 ξ

(j)
n,l = ξn,l.

According to the assumption (1.1) we can use the Bernoulli scheme to
conclude that for each i ∈ {1, . . . , k + 1},

(1.3) P ({ξ
(i)
n,l = j} | {ξn,l = m}) =





(
m

j

)
πj

i (1 − πi)
m−j, 0 ≤ j ≤ m,

1, m = j = 0.

Hence if ξn,l = m ≥ 1, then (ξ
(1)
n,l , . . . , ξ

(k+1)
n,l ) has multinomial distribution

with k + 1 components:

(1.4) P ({ξ
(1)
n,l = j1, . . . , ξ

(k+1)
n,l = jk+1} | {ξn,l = m}) =

(
m

j

) k+1∏

i=1

πji

i

where (
m

j

)
:=

m!

j1! · · · jk+1!
.

In view of the assumption (1.1) the random vectors

{(ξ
(1)
n,l , . . . , ξ

(k+1)
n,l ) : n ∈ N

∗, l ∈ {1, . . . , Z(n)}}

are independent.

From the description of the processor’s operation we can derive the fol-
lowing recurrence relation:



200 A. Marcinkowska

(1.5)

Zj(n + 1) = Zj+1(n) +

Z(n)∑

l=1

ξ
(j+1)
n+1,l + δj,1, j = 1, . . . , k − 1,

Zk(n + 1) =

Z(n)∑

l=1

ξ
(k+1)
n+1,l ,

and Z(0) = e1 := (1, 0, . . . , 0).

So Z(n) describes the population of k types of individuals in genera-
tion n ∈ N

∗. In the next generation the individuals from the previous one
change their type from j to j − 1, j ∈ {2, . . . , k}, and there appears one
new individual of type 1. The number of individuals in the nth generation

is Z(n). For each individual l ∈ {1, . . . , Z(n)} in the nth generation, ξ
(i)
n+1,l

denotes the number of its children of type i. We showed that whenever
Z(0) = (1, 0, . . . , 0) then Z(n), n ∈ N, describes the state of the queue in the
buffer of the RR processor at the beginning of the (n + 1)th period.

Notice that

(1.6) Vn+1 − Vn = q
(
Z(n + 1) + Z1(n) +

Z(n)∑

l=1

ξ
(1)
n+1,l + 1

)
, n ∈ N

∗,

is the duration time of the (n + 1)th processor operation cycle.

Let t(m; n) denote the sojourn time for a signal of demand mq arriving
during the nth period. Then we have the estimate

(1.7) Vn+m−1 − Vn < t(m; n) < Vn+m−1 − Vn−1.

Finally, note that the number D(n + 1) of real signals departing the system
during the (n + 1)th period is equal to

(1.8) D(n + 1) = Z1(n) +

Z(n)∑

l=1

ξ
(1)
n+1,l.

So we conclude that whenever we find the chain Z(n), n ∈ N
∗, we obtain

information about the sojourn time of signals and about the departure pro-
cess.

1.4. Brief description of the results. In Section 2 we give a complete
Frobenius–Perron analysis for the matrix describing the dynamics of
E(Z(n)), n ∈ N

∗. This will allow us to divide the domain of parameters

D := {(γ, π1, . . . , πk+1) : γ ∈ (0, 1), πi ∈ (0, 1), i = 1, . . . , k + 1,
∑k+1

i=1 πi

= 1} into subdomains De, Dc, Dsup where the dynamics of the chain is er-
godic, critical and supercritical respectively.

The ergodicity will be proved in Subsection 4.1. We apply the Foster
theorem [3]. For the construction of the appropriate Lyapunov function we
use ideas from [5].
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In Subsection 4.2 we identify the subdomain Dl
c ⊂ Dc such that Z(n),

n ∈ N
∗, has a linear speed of explosion with respect to n when the parame-

ters are from Dl
c. The concepts from [5, 6] will be applied.

In Subsection 4.3 we give a result of Kesten–Stigum type when the pa-
rameters are from Dsup. Here we apply a classical argument from the book
[11].

In the relevant literature the question of ergodicity or the critical or
supercritical behavior of Markov chain models for RR systems has not been
studied. Our notion of the chain {Z(n) : n ∈ N} makes it possible to pose
such questions and give answers. It is the principal contribution of our paper
to the analysis of RR-systems.

2. Basic analysis of the chain Z(n), n ∈ N
∗. In view of (1.3), (1.4)

we find that

P ({ξ
(i)
n,l = j}) =

∞∑

m=j

P ({ξ
(i)
n,l = j} | {ξn,l = m}) · P ({ξn,l = m})

= (1 − γ)
∞∑

m=j

(
m

j

)
πj

i (1 − πi)
m−jγm

= (1 − γ)

(
πi

1 − πi

)j

gj((1 − πi)γ),

where

gj(s) :=

∞∑

m=j

(
m

j

)
sm, 0 < s < 1.

For the functions gj , j ∈ N, we derive

gj+1(s) =
1

j + 1
(sg′j(s) − jgj(s)), j ∈ N,

and we calculate immediately

g1(s) =
s

(1 − s)2
.

From these we obtain

gj(s) =
sj

(1 − s)j+1
, j ∈ N.

Hence

P ({ξ
(i)
n,l = j}) =

(1 − γ)(πiγ)j

(1 − γ(1 − πi))j+1
, j ≥ 1.

For j = 0 we deduce immediately

P ({ξ
(i)
n,l = 0}) =

1 − γ

1 − γ(1 − πi)
.
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Next we calculate

mj := E(ξ
(j)
n,l ) =

∞∑

m=1

E(ξ
(j)
n,l | {ξn,l = m}) · P ({ξn,l = m})

= (1 − γ)πj

∞∑

m=1

mγm =
γ

(1 − γ)
πj , j = 1, . . . , k + 1,

and similarly

cjj := D2(ξ
(j)
n,l ) =

γ

1 − γ
πj(1 − πj), j = 1, . . . , k + 1.

Because the conditional distribution of the random vector (ξ
(i)
n,l, ξ

(j)
n,l ), i 6= j,

conditioned on the event {ξn,l = m} is the trinomial distribution with the
generating function

gm(s1, s2) = (1 − πi − πj + s1πi + s2πj)
m,

for i 6= j we have

E(ξ
(i)
n,lξ

(j)
n,l | {ξn,l = m}) =

∂2

∂s1∂s2
gm(s1, s2)

∣∣∣∣
s1=s2=1

= m(m − 1)πiπj .

From this we obtain

cij := cov(ξ
(i)
n,l, ξ

(j)
n,l ) =

γ2

(1 − γ)2
πiπj , i 6= j, i, j ∈ {1, . . . , k + 1}.

We define the matrices

C := (cij)
k+1
i,j=2,

L =




0 0 0 0 · · · 0

1 0 0 0 · · · 0

0 1 0 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 1 0 0

0 0 · · · 0 1 0




, K =




m2 m3 · · · mk+1

m2 m3 · · · mk+1

...
...

...

m2 m3 · · · mk+1




,

M = L + K.

Notice that all entries of M are positive.

The recurrence (1.5) can be rewritten in the form

(2.1)
Z(n + 1) = Z(n)M + ζ(n + 1) + e1, n ≥ 0,

Z(0) = e1,
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where

ζ(n) := (ζ2(n), . . . , ζk+1(n)), ζj(n) :=

Z(n−1)∑

l=1

(ξ
(j)
n,l −mj), j = 2, . . . , k+1.

Iterations of (2.1) yield

(2.2) Z(n + 1) = e1

n+1∑

i=0

Mi +

n∑

i=0

ζ(n + 1 − i)Mi, n ≥ 0.

Lemma 2.1. The matrix M is irreducible.

We recall from [2] that an m×m matrix M is called irreducible if for every

pair (i, j) of indices there exists an integer n = n(i, j) such that m
(n)
ij > 0,

where (m
(n)
ij )m

i,j=1 ≡ Mn.
The Perron–Frobenius theorem for irreducible matrices states that the

eigenvalue of M having the largest absolute value is simple and positive.
We denote this eigenvalue by ̺. Moreover, if v and u denote left and right
eigenvectors of M corresponding to ̺, then all the coordinates of v and u
are positive.

We choose v, u such that v · u = 1, and
∑k

j=1 uj = 1. Define

λ := E(T1) =
1 − γ

γ
, r := λ−1(µ − 1), µ := E(Sn) =

k+1∑

j=1

jπj .

Theorem 2.2. If r ∈ (0, 1), then ̺ < 1; if r = 1, then ̺ = 1; and if

r > 1, then ̺ > 1.

Proof. Let (v1, . . . , vk) ≡ v. Rewrite the equation ̺v = vM in the form

(2.3) ̺(v1, . . . , vk) = (v2, . . . , vk, 0) + λ−1V · (π2, . . . , πk+1),

where V :=
∑k

i=1 vi. From (2.3) we successively calculate

vk =
1

̺
λ−1πk+1V, vi−1 = ̺−1(vi + λ−1V πi), i = 2, . . . , k.

For j = 1, . . . , k we obtain

(2.4) vj = λ−1V

(
1

̺k+1−j
πk+1 +

1

̺k−j
πk + · · · +

1

̺
πj+1

)
.

Adding up (2.4) yields

k∑

i=1

vi = V = λ−1V
(
πk+1

k∑

i=1

̺−i + πk

k−1∑

i=1

̺−i + · · · + π2̺
−1

)
.

Hence we obtain

(2.5) ̺k = λ−1(π̃2̺
k−1 + π̃3̺

k−2 + · · · + π̃k̺ + πk+1),
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where π̃n :=
∑k+1

j=n πj for n = 2, . . . , k + 1. We set

f(̺) := λ−1(π̃2̺
−1 + π̃3̺

−2 + · · · + π̃k̺
−(k−1) + πk+1̺

−k).

Then the equation (2.5) takes the form f(̺) = 1. We see that f(1) = r.
The function f is strictly decreasing and continuous. Hence if r = 1 then
f(1) = 1, that is, ̺ = 1. If f(1) = r < 1, then because f(x) → ∞ as
x → 0+, the Darboux theorem shows that the ̺ which satisfies f(̺) = 1 is
in the interval (0, 1). Likewise, if r > 1, then ̺ > 1.

Remark 2.3. If γ → 0+ and π2, . . . , πk+1 → 0+, then ̺ → 0+.

Proof. If we put γ = 0 or π2 = π3 = · · · = πk+1 = 0 into equation
(2.5), it takes the form ̺k = 0. Then the only solution is ̺ = 0. By the
continuous dependence of polynomial roots on the coefficients ̺ is close to 0
when (γ, π2, . . . , πk+1) ∈ D is close to (0, . . . , 0) ∈ R

k+1.

Proposition 2.4. The coordinates of the vector u satisfy

(a) u1 < · · · < uk,

(b) if ̺ = 1, then

ul = lu1, l = 2, . . . , k; u1 =
2

k(k + 1)
.

Proof. The equation Mu = ̺u can be written as

k+1∑

j=2

mjuj−1 = ̺u1,

k+1∑

j=2

mjuj−1 + ul−1 = ̺ul, l = 2, . . . , k.(2.6)

Because uj > 0, j = 1, . . . , k, (a) is obvious.

Now, for ̺ = 1, we add up all equations in (2.6). In view of
∑k

j=1 uj = 1

we get k
∑k

j=1 mj+1uj = uk. Hence the first equation in (2.6) gives uk = ku1,
and successively ul = lu1, l = 2, . . . , k − 1. The proof is complete.

Definition 2.5. The subsets De, Dc, Dsup ⊂ D are defined by

De := {r < 1}, Dc := {r = 1}, Dsup := {r > 1}.

It will turn out that these are the areas of parameters with ergodic, critical
and supercritical chain behavior, respectively.

For the usual model of the RR processor (k = ∞ and there are no
apparent signals) Daduna and Schassberger [2] proved the existence of an
invariant probability measure when λ−1µ < 1. For our model we find that
for {Z(n)} ergodicity occurs when λ−1µ < 1 + λ−1.
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Set

(2.7) Q(w) := E
(( k∑

j=1

wj(ξ
(j+1)
n+1,l − mj+1)

)2)
, w ∈ R

k.

Then

(2.8) Q(w) = wT Cw = λ−1
[ k∑

j=1

(πj+1 + π2
j+1)w

2
j − 2

( k∑

j=1

πj+1wj

)2]
.

We define Fn to be the σ-algebra of random events generated by {Z(j) :
j = 0, 1, . . . , n}. We find that

(2.9) E(ζ(n + 1) | Fn) = 0, E(ζ(n + 1)) = 0, n ≥ 0.

Hence from (2.2),

(2.10) E(Z(n) · w) = e1 ·
n∑

i=0

Miw, n ≥ 0, w ∈ R
k.

We also find that

(2.11) E((ζ(m) · w)(ζ(n) · w)) = 0, m 6= n, w ∈ R
k,

and

(2.12) E((ζ(n + 1) · w)2 | Fn) = Q(w)Z(n), n ≥ 0, w ∈ R
k.

From (2.10) and (2.12) we get

(2.13) E((ζ(n) · w)2) = Q(w)e1

n∑

i=0

Mi1.

From (2.2), (2.11), (2.13) we deduce

(2.14) E((Z(n) · w)2) =
(
e1

n∑

i=0

Miw
)2

+
n−1∑

i=0

(
Q(Miw)

(
e1

n−i∑

j=0

Mj1
))

.

We define

Xn := Z(n) · u, n ≥ 0.

By (2.1) we find that

(2.15)
Xn+1 = ̺Xn + ζ(n + 1) · u + u1, n ≥ 0,

X0 = u1.

Next, from (2.10) we get

(2.16) E(Xn) = u1

n∑

i=0

̺i.
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From (2.14) we obtain

(2.17) E(Xn)2 = u2
1

( n∑

i=0

̺i
)2

+ Q
n−1∑

i=0

(
̺2i

(
e1

n−i∑

j=0

Mj1
))

.

where we have set Q ≡ Q(u).

3. Main results

3.1. Ergodicity of Z(n), n ∈ N
∗, when λ−1(µ − 1) < 1

Theorem 3.1. If r < 1 then the chain {Z(n) : n ∈ N} is ergodic.

3.2. Asymptotics of Z(n) as n → ∞ in the critical case ̺ = 1. We
define the event F := {ω : limn→∞ Z(n)(ω) = ∞} and denote by IF its
characteristic function.

Theorem 3.2. Let the parameters (γ, π1, . . . , πk+1) be such that ̺ = 1
and D2(Sl) < µ−1. Then for every w ∈ R

k such that v ·w > 0 the sequence
{

1

n
IF Z(n) · w : n ∈ N

}

converges in distribution.

3.3. Theorem of Kesten–Stigum type when the parameters belong to Dsup.

Set Yn := ̺−nXn, n ∈ N
∗; here ̺ > 1.

Theorem 3.3. There exists a random variable Y ∈ L2(Ω, P ) such that

limn→∞ Yn = Y a.e.

4. Proofs

4.1. Around Theorem 3.1. The main goal here is to prove the ergodicity
of the chain {Z(n) : n ∈ N} when r < 1. Because our chain {Z(n) : n ∈ N}
is irreducible and homogeneous with respect to n ∈ N, we can use the Foster
theorem [3].

By ergodicity we mean the following property of the chain Z(n) : n ∈ N
∗

(see Theorems 1.2.3 and 1.2.4 in [3]). Set p(y|x) := P ({Z(n + 1) = y} |
{Z(n) = x}), x, y ∈ S. Then there exists a unique probability measure P0

on S such that:

(i) P0(y) =
∑

x∈S p(y|x)P0(x) for y ∈ S,

(ii) limn→∞ P ({Z(m + n) = y} | {Z(m) = x}) = P0(y) for x, y ∈ S,
(iii) P0(y) > 0 for each y ∈ S.

Theorem (Foster). A homogeneous Markov chain {yn : n ∈ N} with

states in Z
n
+ is ergodic if there exists a finite subset A ⊂ Z

n
+, a function

f : Z
n
+ → (0,∞) and a number ε > 0 such that
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(i) E((f(yk+1) − f(yk)) | {yk = x}) ≤ −ε for each x /∈ A,

(ii) E(f(yk+1) | {yk = x}) < ∞ for each x ∈ A.

Proof of Theorem 3.1. We show that as A in the Foster theorem we can
take A := {w ∈ S : w · u ≤ M} with M sufficiently large. For f we take

f(w) := ln(3 + w · u), w ∈ S.

We define

yn := 3 + Z(n) · u = 3 + Xn, n ∈ N.

From the recurrence (2.15) we obtain

yn+1 = ̺yn + ηn + α, n ∈ N
∗,

y0 = u1 + 3,

where α = u1 + 3(1− ̺) > 0 and ηn := ζ(n + 1)u (we recall that ̺ ∈ (0, 1)).
Then f(Z(n)) := ln(yn). Now we use the following inequality (see Kersting
[5, inequality (2)]):

(4.1) ln(x + h) ≤ lnx +
h

x
−

1

2
(δ + 1)−1 h2

x2
I{h≤δx}(h),

which is true for h > −x and δ > 0. We substitute x ≡ yn and h ≡
(̺ − 1)yn + α + ηn into (4.1). We notice that h = yn+1 − yn > −yn. Then

E(ln(yn+1) | Fn)

≤ ln(yn) + (̺ − 1) +
α

yn
−

1

2(1 + δ)

(
(α + (̺ − 1)yn)2

y2
n

+ Q
Z(n)

y2
n

)

+
1

2(1 + δ)
y−2

n E((α + (̺ − 1)yn + ηn)2I{α+(̺−1)yn+ηn≥δyn} | Fn)

Let M1 ≥ 0 be such that α + (̺ − 1)y ≤ 0 for y ≥ M1. If yn ≥ M1, then

E((α + (̺ − 1)yn + ηn)2I{α+(̺−1)yn+ηn≥δyn} | Fn)

≤ (α + (̺ − 1)yn)2P ({ηn ≥ δyn} | Fn) + E(η2
nI{ηn≥δyn} | Fn)

By Chebyshev’s inequality,

P ({ηn ≥ δyn} | Fn) ≤
1

δ2y2
n

E(η2
n | Fn) =

QZ(n)

δ2y2
n

≤
u−1

1 Q

δ2yn
.

It follows from Hölder’s and Chebyshev’s inequalities that

E(η2
nI{ηn≥δyn} | Fn) ≤

1

δyn
E(|ηn|

3 | Fn) ≤
Cy

3/2
n

δyn
=

C

δ
y1/2

n .

Now, for yn ≥ M1,

E(ln(yn+1) | Fn) ≤ ln yn + ̺ − 1 + αy−1
n

+
Qu−1

1

2δ2(1+δ)

(
(1 − ̺)2 +

(
α

M1

)2)
y−1

n +
C

2δ(1+δ)
y−3/2

n .



208 A. Marcinkowska

Choose 0 < ε < 1 − ̺ and M ≥ M1 such that

αy−1 +
Qu−1

1 [(1 − ̺)2 + α2M−2
1 ]

2δ2(1 + δ)
y−1 +

C

2δ(1 + δ)
y−3/2 < 1 − ̺ − ε

for all y ≥ M . Then, if yn ≥ M , we obtain the estimate

E(ln(yn+1) − ln(yn) | Fn) ≤ −ε.

In this way we have proved that condition (i) in the Foster theorem is
satisfied. Next

E(ln(yn+1) | Fn) ≤ E(2 + Xn+1 | Fn) = 2 + α + ̺Xn = 2 + α − 3̺ + ̺yn.

Hence condition (ii) in the Foster theorem is also satisfied. The result follows.

4.2. Around Theorem 3.2. We know that ̺ = 1 if and only if

(4.2) λ−1(µ − 1) = 1.

Set

d2 := D2(Sl) =
k+1∑

j=1

j2πj − µ2.

Proposition 4.1. If ̺ = 1, then Q < 2λ−1u2
1d

2.

Proof. We substitute ul = lu1, l = 1, . . . , k (see Proposition 2.4) into the
formula describing Q:

Q =
γ

1 − γ
u2

1

( k∑

j=1

j2(πj+1 + π2
j+1) − 2

( k∑

j=1

jπj+1

)2)

< 2
γ

1 − γ
u2

1

( k∑

j=1

j2πj+1 −
( k∑

j=1

jπj+1

)2)
= 2

γ

1 − γ
u2

1d
2.

Proposition 4.2. There exists a nonempty subset A ⊂ D such that

̺ = 1 and d2 < µ − 1.

Proof. The inequality d2 < µ−1 is satisfied when π0
k+1 = 1, π0

j = 0, j =

1, . . . , k. Then µ = k+1 and in view of (4.2) with γ0 = 1/(k + 1) the equality
̺ = 1 holds. By continuity A also contains a nonempty neighbourhood of
the point (γ0, π0

1, . . . , π
0
k+1).

Proposition 4.3. If ̺ = 1 and d2 < µ−1 then P ({limn→∞ Z(n) = ∞})
> 0 and for some c > 0,

P ({ lim
n→∞

Z(n) = ∞ or lim sup
n→∞

Z(n) ≤ c}) = 1.

Proof. We prove the equivalent fact that P ({limn→∞ Xn = ∞}) > 0
and that for some c > 0, P ({limn→∞ Xn = ∞ or lim supn→∞ Xn ≤ c}) = 1.
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We have a recurrent equality (see (2.15))

Xn+1 = Xn + ηn + u1, n ≥ 0,

X0 = u1,

where ηn := ζ(n + 1)u. Without losing generality we assume that Xn ≥ 3
for n ∈ N, otherwise we consider Xn + 3 instead of Xn. Thus, with f(x) :=
(lnx)−1 we have 0 ≤ f(Xn) ≤ 1.

We use the following estimate (see [5, (6)]): there exists a constant C > 0
such that

(4.3) f(x + h) ≤ f(x) + f ′(x)h +
1

2
f ′′(x)h2 + C

|h|3

x3(lnx)2
+ I{h≤− 1

2
x}(h)

for all x ≥ 3 and h ≥ 3 − x.
After inserting

f ′(x) = −
1

x(lnx)2
, f ′′(x) =

1

x2(lnx)2
+

2

x2(lnx)3

we derive from (4.3) for x ≥ 3 and h ≥ 3 − x that

(4.4) x(lnx)2[f(x) − f(x + h)]

≥ h −
1

2

[
1

x
+

2

x lnx

]
h2 − C

|h|3

x2
− x(lnx)2I{h≤− 1

2
x}(h).

In (4.4) we now substitute Xn for x and Xn+1 −Xn for h. Because Xn+1 −
Xn = u1 + ηn, we derive

(4.5) Xn(lnXn)2E[(f(Xn) − f(Xn+1)) | Fn]

≥ u1 −
1

2

(
1

Xn
+

2

Xn lnXn

)
(Qu−1

1 Xn + u2
1)

− C1X
−1/2
n − Xn(lnXn)2P ({Xn+1 − Xn ≤ −Xn/2} | Fn).

From Chebyshev’s inequality we obtain

(4.6) P ({Xn+1 − Xn ≤ −Xn/2} | Fn) ≤ 8X−3
n E(|Xn+1 − Xn|

3 | Fn).

Now we have

E(|Xn+1 − Xn|
3 | Fn) = E(|u1 + ηn|

3 | Fn)

≤ u3
1 + 3u2

1E(|ηn| | Fn) + 3u1E(η2
n|Fn) + E(|ηn|

3 | Fn)

≤ u3
1 + 3u2

1(QZ(n))1/2 + 3u1QZ(n) + E(|ηn|
3 | Fn).

In deriving the last inequality we have taken into account first E(|ηn| | Fn) ≤
(E(η2

n | Fn))1/2 and then (2.12) with Q ≡ Q(u).
From the Cauchy inequality we estimate

E(|ηn|
3 | Fn) = E(η2

n|ηn| | Fn) ≤
√

E(η4
n | Fn) ·

√
E(η2

n | Fn)

=
√

E(η4
n | Fn) ·

√
QZ(n).



210 A. Marcinkowska

We write

η4
n =

( k∑

j=1

ujζj+1(n + 1)
)4

=
k∑

l1,l2,l3,l4=1

ul1ζl1+1(n + 1) · ul2ζl2+1(n + 1)

× ul3ζl3+1(n + 1) · ul4ζl4+1(n + 1)

≤
k∑

l1,l2,l3,l4=1

4∑

m=1

(ulmζlm+1(n + 1))4 = k4
k∑

j=1

(ujζj+1(n + 1))4.

Next, we write

(ζj+1(n + 1))4 =
(Z(n)∑

l=1

ξ̊
(j+1)
n,l

)4

=

Z(n)∑

l=1

(ξ̊
(j+1)
n,l )4 +

Z(n)∑

l1,l2=1,l1 6=l2

(ξ̊
(j+1)
n,l1

)2(ξ̊
(j+1)
n,l2

)2 + r

where ξ̊
(j)
n,l := ξ

(j)
n,l − mj and E(r | Fn) = 0 because {ξ̊

(j)
n,1, . . . , ξ̊

(j)
n,Z(n)} are

independent. Collecting these together we obtain

E(η4
n | Fn) ≤ k4

k∑

j=1

u4
j [C

(4)
j+1Z(n) + (C

(2)
j+1)

2(Z(n))2] = c1Z(n) + c2(Z(n))2,

where C
(2)
j := E((ξ̊

(j)
n,l )

2) and C
(4)
j := E((ξ̊

(j)
n,l )

4) are independent of n, l (see

Section 1).

Notice that u−1
1 Xn ≥ Z(n). Thus, coming back to (4.6), we have proved

(4.7) P ({Xn+1 − Xn ≤ −Xn/2}|Fn)

≤ 8X−3
n [u3

1 + 3u
3/2
1 Q1/2X1/2

n + 3QXn

+ Q1/2u
−1/2
1 X1/2

n (c1u
−1
1 Xn + c2u

−2
1 X2

n)1/2]

≤ 8[u3
1X

−3
n + 3u

3/2
1 Q1/2X−5/2

n

+ (3Q + Q1/2u−1
1 c

1/2
1 )X−2

n + c
1/2
2 Q1/2u

−3/2
1 X−3/2

n ].

In view of Propositions 4.1 and 4.2 we get

Q

2
u−1

1 < u1.

From this and (4.7) we conclude that there exists M > 0 such that the right
side in (4.5) is positive when Xn ≥ M . Taking into account the form of the
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left side in (4.5) we derive

f(Xn) ≥ E(f(Xn+1) | Fn) if Xn ≥ M.

This in turn leads to the conclusion that the sequence

Wn := min{f(Xn), f(M)}, n ∈ N,

is a nonnegative supermartingale such that E(Wn) ≤ 1, n ∈ N. Thus, the
sequence {Wn : n ∈ N} is convergent almost everywhere and the expected
values {E(Wn) : n ∈ N} are also convergent.

Further the proof runs exactly in the same way as the end of the proof
of Theorem 2 in [5]. This completes the proof of Proposition 4.3.

Proposition 4.4. If ̺ = 1, then

lim
n→∞

n−1E(Z(n) · w) = u1(v · w),

lim
n→∞

n−2E((Z(n) · w)2) = u1(v · w)2
(

u1 +
Q

2

k∑

i=1

vi

)
,

where w ∈ R
k is a column vector.

Proof. We know (see e.g. [7, Theorem 6.1, p. 14]) that Ml = ̺luv+M
(l)
1 ,

where ‖M
(l)
1 ‖ ≤ Cαl with α independent of l, and 0 < α < ̺. Then for ̺ = 1

we obtain directly from (2.10)

lim
n→∞

n−1E(Z(n) · w) = u1(v · w).

Using (2.10) and (2.14) we obtain

E((Z(n + 1) · w)2) =
(
e1

n+1∑

l=0

Mlw
)2

+
n∑

l=0

E((ζ(n + 1 − l)Mlw)2),

E((ζ(n + 1 − l)Mlw)2) = Q(Mlw)E(Z(n + 1 − l)).

For ̺ = 1 we have

Q(Mlw) = (v · w)2Q + 2(v · w)(uTCM
(l)
1 w) + Q(M

(l)
1 w).

This yields

lim
n→∞

n−2
n∑

l=0

E((ζ(n + 1 − l)Mlw)2)

= (v · w)2Q lim
n→∞

n−2
n∑

l=0

E(Z(n + 1 − l)) = (v · w)2Q
u1

2

n∑

j=1

vj .

Here we have used the fact that

lim
n→∞

n−1E(Z(n)) = u1

k∑

j=1

vj .

The proof is complete.
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Before we derive Theorem 3.2, we recall the following auxiliary lemma
from [6].

Lemma 4.5. Let the sequences {al : l ∈ N}, {bl; l ∈ N} ⊂ (0,∞) satisfy :
n∑

i=1

ai = A(n) ր ∞, lim
n→∞

A(n − m)

A(n)
= 1 for each m ∈ N,

and

lim
n→∞

bn = b.

Then ∣∣∣
n∑

i=1

aibi − b

n∑

i=1

ai

∣∣∣ = o
( n∑

i=1

ai

)
.

Proof of Theorem 3.2. Let w ∈ R
k (column vector) be as in the statement

of the theorem. We will prove that for all such w and all m ∈ N the limit

lim
n→∞

n−mE(IF (Z(n) · w)m) =: µ(w, m)

exists. From the recurrence (2.1) we obtain

(4.8) Z(n + 1)w = Z(n)Mw + ηn(w) + w1

where ηn(w) := ζ(n + 1) ·w. We know that the limits µ(w, 1), µ(w, 2) exist
(see Propositions 4.3 and 4.4). Now we use induction on j. Assume that the
limits µ(w, j), 1 ≤ j ≤ m − 1, m ≥ 3 exist. We will prove the existence of
µ(w, m).

From (4.8) we derive the expansion

(4.9) E((Z(n + 1)w)m | Fn) = (w1 + Z(n)Mw)m

+ Q(w)

(
m

2

)
(w1 + Z(n)Mw)m−2Z(n) + rn,m(w)

where

rn,m(w) :=
m−3∑

j=0

(
m

j

)
(w1 + Z(n)Mw)jE(ηn(w)m−j | Fn).

Now we insert into (4.9):

(w1 + Z(n)Mw)m = (Z(n)Mw)m + mw1(Z(n)Mw)m−1 + r1n,m(w),

(w1 + Z(n)Mw)m−2 = (Z(n)Mw)m−2 + r2n,m(w),

where

r1n,m(w) :=
m−2∑

j=0

(
m

j

)
(Z(n)Mw)jwm−j

1 ,

r2n,m(w) :=

m−3∑

j=0

(
m − 2

j

)
(Z(n)Mw)jwm−2−j

1 .
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We obtain

(4.10) E((Z(n + 1)w)m)

= E((Z(n)Mw)m) + mw1E((Z(n)Mw)m−1)

+ Q(w)

(
m

2

)
E[(Z(n)Mw)m−2Z(n)]

+ E

[
rn,m(w) + r1n,m(w) + Q(w)

(
m

2

)
Z(n)r2n,m(w)

]
.

Denote the last expectation by ̺n,m(w). Iterating (4.10) with respect to n
gives

(4.11) E((Z(n + 1)w)m)

= E(Z(1)Mnw)m) + m ·
n∑

l=1

(Ml−1w)1E((Z(n + 1 − l)Mlw)m−1)

+

(
m

2

) n∑

l=1

Q(Ml−1w)E((IF Z(n + 1 − l)Mlw)m−2Z(n + 1 − l))

+
n∑

l=1

̺n−l,m(Ml−1w).

We find directly that

(4.12) ̺n−l,m(Ml−1w) = o(E((IF Z(n))m−1)) as IF Z(n) → ∞,

which leads to

n−m
n∑

l=1

̺n−l,m(Ml−1w) → 0 as n → ∞.

Next, analogously to [6, (1.18), (1.19)], basing on Lemma 4.5 we find that

(4.13)
n∑

l=1

(Ml−1w)1E((Z(n + 1 − l)Mlw)m−1)

= (e1s)
n∑

l=1

E(Z(l)s)m−1 + o(nm),

and

(4.14)

n∑

l=1

Q(Ml−1w)E((Z(n + 1 − l)Mlw)m−2Z(n + 1 − l))

= Q(s)
n∑

l=1

E((Z(l)s)m−2Z(l)) + o(nm),

where s := (v · w)u. For details see [6].
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Using now the induction assumption we obtain

(4.15) n−m
n∑

l=1

E(IF (Z(l)s)m−1) → µ(s, m − 1) as n → ∞.

Using the induction assumption once more, for 0 < r ≤ m− 1, we infer that

lim
n→∞

n−rE((Z(n))l) = a(l, r)

where (Z)l = Z l1
1 · · ·Z lk

k ,
∑n

j=1 lj = r, lj ≥ 0, j = 1, . . . , k. For details see

the proof of Theorem 1 in [6].

We can write

µ(w, r) =
∑

{l : lj≥0,
∑k

j=1 lj=r}

(
r

l

)
a(l, r)wl, 0 < r ≤ m − 1,

where wl := wl1
1 · · ·wlk

k . From this we derive

(4.16) lim
n→∞

n−(m−1)E(IF (Z(n)s)m−2Z(n))

= u1 − (v · w)m−2
k∑

i=1

∑

{l : lj≥0,
∑k

j=1 lj=m−2}

(
k − 2

l

)
a(l + ei, m − 1)ul.

Now by (4.13), (4.14), (4.16) we deduce from (4.11) that

µ(w, m) ≡ lim
n→∞

n−mE(IF (Z(n + 1)w)m)(4.17)

= u1(v · w)µ(s, m − 1) + (v · w)mQ
m − 1

2

×

k∑

i=1

∑

{l : lj≥0,
∑k

j=1 lj=m−2}

(
m − 2

l

)
a(l + ei, m − 1)ul

= (v · w)mu1µ(u, m − 1) + (v · w)m Q(m − 1)

2

k∑

i=1

u−1
i

×
∑

{l : lj≥0,
∑k

j=1 lj=m−2}

(
m − 2

l

)
a(l + ei, m − 1)ului.

Because v · u = 1, from (4.17) we obtain

(4.18) µ(u, m) ≤

(
u1 + Qu−1

1

m − 1

2

)
µ(u, m − 1).

Thus

µ(u, m) ≤

(
Qu−1

1

2

)m

Γ

(
2u2

1

Q
+ m

)
·

2u2
1

QΓ (2u2
1/Q)

.
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This estimate shows that the series
∞∑

m=0

(−1)m µ(u, m)

m!
tm

is convergent on some t-interval containing 0.
Thus the sequence of moments {µ(u, m) : m ∈ N} defines exactly a cer-

tain probability distribution. Since (4.17) yields µ(w, m) = (v ·w)mµ(u, m),
m ∈ N, also the sequence {µ(w, m) : m ∈ N} defines a probability distri-
bution. In particular, if w = 1 then the sequence {n−1IF Z(n) : n ∈ N}
is convergent in distribution and the limiting distribution has moments
{µ(1, m) : m ∈ N}. The proof is complete.

Let Z denote the random variable with distribution

lim
n→∞

P

({
IF

1

n
Z(n) < x

})
, x ∈ R.

We note that

D2(Z) =
Q

2
u1

( k∑

j=1

vj

)3
> 0,

which yields

Remark 4.6. The random variable Z is not constant a.e.

4.3. Proof of Theorem 3.3. Everywhere in this section ̺ > 1. From
(2.15) we get

(4.19)
Yn+1 = Yn + ̺−(n+1)ηn + ̺−(n+1)u1, n ≥ 0,

Y0 = u1.

It is not difficult to obtain

(4.20) lim
n→∞

E(Yn) = u1
̺

̺ − 1
.

We use the scheme of proof from [11]. Set ∆Yn := Yn+1 − Yn, n ∈ N
∗. We

calculate
E(∆Yi∆Yj) = ̺−(i+j+2)u2

1, i 6= j,
and

E((∆Yi)
2) = ̺−2(i+1)(u2

1 + QE(Z(i)))

≤ ̺−2(i+1)u2
1 + Qu−1

1 ̺−2(i+1)E(Yi)

= ̺−2(i+1)

(
u2

1 + Q
̺i+1 − 1

̺ − 1

)
< C̺−(i+1),

where C > 0 is a constant. Now we can estimate

E((Yn+m − Yn)2) =
n+m−1∑

i=n

E((∆Yi)
2) + 2

n+m−1∑

i,j=n, i6=j

E(∆Yi∆Yj)(4.21)
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< C
n+m−1∑

i=n

̺−(i+1) + 2u2
1

(n+m−1∑

i=n

̺−(i+1)
)2

.

Therefore limn→∞ E((Yn+m − Yn)2) = 0, uniformly in m ∈ N. Hence there
exists Y ∈ L2(Ω, P ) such that limn→∞ E((Yn − Y )2) = 0. If we let m → ∞
on both sides of (4.21) we get

E((Yn − Y )2) < C1̺
−(n+1), n ∈ N.

Hence the series
∑∞

n=1 E((Yn − Y )2) converges. This gives P ({limn→∞ Yn

= Y }) = 1. The proof is finished.
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