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NONLINEAR UNILATERAL PROBLEMS

IN ORLICZ SPACES

Abstract. We prove the existence of solutions of the unilateral problem
for equations of the type Au − divφ(u) = µ in Orlicz spaces, where A
is a Leray–Lions operator defined on D(A) ⊂ W 1

0LM (Ω), µ ∈ L1(Ω) +
W−1EM (Ω) and φ ∈ C0(R,RN ).

1. Introduction. Let Ω be a bounded domain in R
N with the segment

property. Consider the following nonlinear Dirichlet problem:

Au− divφ(u) = µ,(1.1)

where Au = −div a(x, u,∇u) is a Leray–Lions operators defined on its do-

main D(A) = {u ∈W 1
0LM (Ω) : a(x, u,∇u) ∈ (LM (Ω))N} into W−1EM (Ω),

with M an N -function and φ ∈ C0(R,RN ). The right-hand side µ is assumed
to belong to L1(Ω) +W−1EM (Ω).

In the variational case (i.e. where µ ∈ W−1EM (Ω)), J.-P. Gossez and
V. Mustonen [14] solved (1.1) in the case where φ = 0. The case where
µ ∈ L1(Ω) is treated in [5, 6].

In [6], the authors deal with the case φ = 0. They prove the existence
and uniqueness of solution for the associated unilateral problem but under
some restriction on the N -function M (the ∆2-condition), and in [5] they
etablish the existence of an entropy solution of (1.1) without any restriction
on M .

It is our purpose in this paper to prove the existence of solution for the
unilateral problem associated to the equation (1.1) in the setting of Orlicz
spaces for general N -functions M .

Let us also mention the works of Elmahi and Meskine [11, 12] who stud-
ied the existence of solutions for equations of the form −div a(x, u,∇u) +
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g(x, u,∇u) = f where g is a nonlinearity having natural growth and satis-
fying the sign condition, and the term f belongs either to W−1EM (Ω) or
to L1(Ω). These results are generalized in [2, 3].

Let us briefly summarize the contents of the paper. After a section de-
voted to developing the necessary preliminaries, we introduce some technical
lemmas (Section 2). In Section 3, we give our main result and we prove it
in Section 4.

2. Preliminaries and some technical lemmas. In this section we
list briefly some definitions and well known facts about N -functions and
Orlicz–Sobolev spaces. Standard references are [1, 7, 15].

2.1. Let M : R
+ → R

+ be an N -function, i.e. M is continuous, convex,
with M(t) > 0 for t > 0, M(t)/t→ 0 as t→ 0 and M(t)/t→ ∞ as t→ ∞.

Equivalently, M admits a representation M(t) =
Tt
0 a(s) ds where a :

R
+ → R

+ is a nondecreasing, right continuous function, with a(0) = 0,
a(t) > 0 for t > 0 and a(t) → ∞ as t→ ∞.

The N -functionM conjugate toM is defined byM(t) =
Tt
0 a(s) ds, where

ā : R
+ → R

+ is given by a(t) = sup{s : a(s) ≤ t}.

The N -function M is said to satisfy the ∆2-condition if, for some k,

M(2t) ≤ kM(t) ∀t ≥ 0.(2.1)

It is readily seen that this is the case if and only if for every r > 0 there
exists a positive constant k = k(r) such that for all t > 0,

M(rt) ≤ kM(t) ∀t ≥ 0.(2.2)

If (2.1) and (2.2) hold only for t ≥ t0 for some t0 > 0 then M is said to
satisfy the ∆2-condition near infinity .

We extend N -functions to even functions on all of R.

Moreover, we have the following Young inequality:

∀s, t ≥ 0, st ≤M(t) +M(s).

Let P andQ be twoN -functions. We say that P grows essentially less rapidly

than Q near infinity , written P ≪ Q, if for every ε > 0, P (t)/Q(εt) → 0 as
t→ ∞. This is the case if and only if limt→∞Q−1(t)/P−1(t) = 0.

2.2. Let M be an N -function and Ω ⊂ R
N be an open and bounded

set. The Orlicz class KM (Ω) (resp. the Orlicz space LM (Ω)) is defined as
the set of (equivalence classes of) real-valued measurable functions u on Ω
such that\

Ω

M(u(x)) dx <∞
(

resp.
\
Ω

M(u(x)/λ) dx <∞ for some λ > 0
)

.
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LM (Ω) is a Banach space under the norm

‖u‖M,Ω = inf
{

λ > 0 :
\
Ω

M(u(x)/λ) dx ≤ 1
}

and KM (Ω) is a convex subset of LM (Ω) but not necessarily a linear space.
The closure in LM (Ω) of the set of bounded measurable functions with

compact support in Ω is denoted by EM (Ω).
The dual space of EM (Ω) can be identified with LM (Ω) by means of the

pairing
T
Ω
uv dx, and the dual norm of LM (Ω) is equivalent to ‖ · ‖M,Ω .

Let X and Y be arbitrary Banach spaces with a bilinear bicontinuous
pairing 〈 , 〉X,Y . We say that a sequence {un} ⊂ X converges to u ∈ X
with respect to the topology σ(X,Y ), written un → u (σ(X,Y )) in X, if
〈un, v〉 → 〈u, v〉 for all v ∈ Y . For example, if X = LM (Ω) and Y = LM (Ω),
then the pairing is defined by 〈u, v〉 =

T
Ω
u(x)v(x) dx for all u ∈ X, v ∈ Y .

2.3. We now turn to the Orlicz–Sobolev space W 1LM (Ω) [resp.
W 1EM (Ω)], which is the space of all functions u such that u and its distri-
butional derivatives of order 1 lie in LM (Ω) [resp. EM (Ω)]. It is a Banach
space under the norm

‖u‖1,M =
∑

|α|≤1

‖Dαu‖M .

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the
product of N +1 copies of LM (Ω). Denoting this product by

∏

LM , we will
use the weak topologies σ(

∏

LM ,
∏

EM ) and σ(
∏

LM ,
∏

LM ).
The space W 1

0EM (Ω) is defined as the (norm) closure of the Schwartz
space D(Ω) in W 1EM (Ω), and W 1

0LM (Ω) as the σ(
∏

LM ,
∏

EM ) closure
of D(Ω) in W 1LM (Ω).

We say that a sequence {un} ⊂ LM (Ω) converges to u ∈ LM (Ω) in the
modular sense, and write un → u (mod) in LM (Ω), if for some λ > 0,\

Ω

M(|un(x) − u(x)|/λ) dx→ 0 as n→ ∞.

If M satisfies the ∆2-condition (near infinity only when Ω has finite mea-
sure), then modular convergence coincides with norm convergence (see [15]).

We say that a sequence {un} ⊂ W 1LM (Ω) converges to u ∈ W 1LM (Ω)
in the modular sense, and write un → u (mod) in W 1LM (Ω), if there exists
λ > 0 such that\

Ω

M(|Dαun(x) −Dαu(x)|/λ) dx→ 0 for all |α| ≤ 1 as n→ ∞.

2.4. Let W−1LM (Ω) [resp. W−1EM (Ω)] denote the space of distribu-
tions on Ω which can be written as sums of derivatives of order ≤ 1 of
functions in LM (Ω) [resp. EM (Ω)]. It is a Banach space under the usual
quotient norm.
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We recall some lemmas introduced in [7] which will be used later.

Lemma 2.1. Let F : R → R be uniformly Lipschitzian with F (0) = 0.
Let M be an N -function and let u ∈ W 1LM (Ω) (resp. u ∈ W 1EM (Ω)).
Then F (u) ∈ W 1LM (Ω) (resp. F (u) ∈ W 1EM (Ω)). Moreover , if the set D
of discontinuity points of F ′ is finite, then

∂

∂xi
F (u) =

{

F ′(u)
∂

∂xi
u a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.2. Let F : R → R be uniformly Lipschitzian with F (0) = 0.
Suppose that the set of discontinuity points of F ′ is finite. Let M be an

N -function. Then the mapping TF : W 1LM (Ω) → W 1LM (Ω) defined by

TF (u) = F (u) is sequentially continuous with respect to the weak∗ topology

σ(
∏

LM ,
∏

EM ).

We now give the following lemma which concerns operators of the Ne-
mytskĭı type in Orlicz spaces (see [7]).

Lemma 2.3. Let Ω be an open subset of R
N with finite measure. Let

M,P and Q be N -functions such that Q≪ P , and let f : Ω × R → R be a

Carathéodory function such that , for a.e. x ∈ Ω and all s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c ∈ EQ(Ω). Then the Nemytskĭı op-

erator Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from

P(EM (Ω), 1/k2) = {u ∈ LM (Ω) : d(u,EM (Ω)) < 1/k2} into EQ(Ω).

We introduce the function spaces we will need later.

For an N -function M , T 1,M
0 (Ω) is defined as the set of measurable func-

tions u : Ω → R such that for all k > 0 the truncated functions Tk(u) are
in W 1

0LM (Ω), where Tk(s) = max(−k,min(k, s)).

We give the following lemma which is a generalization of [4, Lemma 2.1]
to Orlicz spaces and whose proof is a slight modification of the one in the
Lp case.

Lemma 2.4. For every u ∈ T 1,M
0 (Ω), there exists a unique measurable

function v : Ω → R
N such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in Ω, for every k > 0.

We will call v the gradient of u, and write v = ∇u.

Lemma 2.5. Let λ ∈ R and let u, v ∈ T 1,M
0 (Ω) be finite almost every-

where. Then
∇(u+ λv) = ∇u+ λ∇v a.e. in Ω,

where ∇ is the gradient introduced in Lemma 2.4.



Nonlinear unilateral problems in Orlicz spaces 221

The proof of this lemma is similar to the proof of [10, Lemma 2.12] in
the Lp case.

Below, we will use the following technical lemmas.

Lemma 2.6 ([7]). Let fn, f, γ ∈ L1(Ω) be such that

(i) fn ≥ γ a.e. in Ω,
(ii) fn → f a.e. in Ω,
(iii)

T
Ω
fn(x) dx→

T
Ω
f(x) dx.

Then fn → f strongly in L1(Ω).

Lemma 2.7 ([5]). Let Ω be an open bounded subset of R
N with the

segment property. If u ∈W 1
0LM (Ω), then\

Ω

div u dx = 0.

3. Statement of main results

3.1. Basic assumptions. Let Ω be an open bounded subset of R
N ,

N ≥ 2, with the segment property and M be an N -function.

Given a measurable obstacle function ψ : Ω → R, we consider the set

Kψ = {u ∈W 1
0LM (Ω) : u ≥ ψ a.e. in Ω}.

This convex set is sequentially σ(
∏

LM ,
∏

EM ) closed in W 1
0LM (Ω) (see

[14]). We now state our hypotheses on the differential operator A defined by

Au = −div(a(x, u,∇u)).

(A1) a(x, s, ξ) : Ω × R × R
N → R

N is a Carathéodory function.
(A2) There exists an N -function P with P ≪M, a function c ∈ EM (Ω),

and positive constants k1, k2, k3, k4 such that

|a(x, s, ζ)| ≤ c(x) + k1P
−1M(k2|s|) + k3M

−1M(k4|ζ|)

for a.e. x in Ω and for all s ∈ R, ζ ∈ R
N .

(A3) For a.e. x in Ω, s ∈ R and ζ, ζ ′ in R
N with ζ ′ 6= ζ,

[a(x, s, ζ) − a(x, s, ζ ′)](ζ − ζ ′) > 0.

(A4) For a.e. x in Ω and all ζ ∈ R
N ,

a(x, s, ζ)ζ ≥ αM(|ζ|/ν).

(A5) For each v ∈ Kψ ∩ L∞(Ω) there exists a sequence vj ∈ Kψ ∩
W 1

0EM (Ω) ∩ L∞(Ω) such that

vj → v for the modular convergence.



222 L. Aharouch et al.

Finally, we suppose that

(3.1) µ ∈ L1(Ω) +W−1EM (Ω),

(3.2) φ ∈ C0(R,RN ),

(3.3) Kψ ∩ L∞(Ω) 6= ∅.

Remark 3.1. Condition (A5) holds if one of the following conditions is
satisfied:

(a) There exists ψ ∈ Kψ such that ψ − ψ is continuous in Ω (see [14,
Proposition 9]).

(b) ψ ∈W 1
0EM (Ω) (see [14, Proposition 10]).

(c) The N -function M satisfies the ∆2-condition near infinity.
(d) ψ = −∞ (i.e., Kψ = W 1

0LM (Ω)).

3.2. Principal result. Since µ ∈ L1(Ω) +W−1EM (Ω), it can be written
as follows:

µ = f − divF with f ∈ L1(Ω), F ∈ (EM (Ω))N .

We consider the following unilateral problem:

(3.4)































u ∈ T 1,M
0 (Ω), u ≥ ψ a.e. in Ω,\

Ω

a(x, u,∇u)∇Tk(u− v) dx+
\
Ω

φ(u)∇Tk(u− v) dx

≤
\
Ω

fTk(u− v) dx+
\
Ω

F∇Tk(u− v) dx,

∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

We prove the following existence result.

Theorem 3.1. Under the assumptions (A1)–(A5) and (3.1)–(3.3), there

exists at least one solution of the problem (3.4).

Remark 3.2. In the previous result, we cannot replace Kψ ∩L∞(Ω) by
just Kψ, since in general the integral

T
Ω
φ(u)∇Tk(u− v) dx may not have a

meaning.

Remark 3.3. If we takeM(t) = |t|p in the previous statement, we obtain
an existence result in the classical Sobolev spaces (which seems to be new).

Remark 3.4. The statement of Theorem 3.1 holds when µ ∈ L1(Ω) +
W−1LM (Ω).

It suffices to approximate µ = f − divF with F = (F1, . . . , FN ) ∈
(LM (Ω))N by µn = fn − divFn where fn is a regular function such that
fn strongly converges to f in L1(Ω) and Fn = (Tn(F1), . . . , Tn(FN )).

We write ε(n, i, j) for any quantity such that

lim
j→∞

lim
i→∞

lim
n→∞

ε(n, i, j) = 0.
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The notations ε(n, j) etc. are defined similarly. Finally, we denote (for ex-
ample) by εj(n, i) a quantity that depends on n, i, j and is such that

lim
i→∞

lim
n→∞

εj(n, i) = 0

for any fixed value of j.

4. Proof of principal result. Without loss the generality we take
ν = 1 in condition (A4). We fix a function v0 ∈ Kψ ∩W 1

0EM (Ω) ∩ L∞(Ω)
(such a function exists by (A5) and (3.3)).

4.1. Approximate problem. We consider the sequence of approximate
problems

(4.1)























un ∈ Kψ,

〈Aun, un − v〉 +
\
Ω

φ(Tn(un))∇(un − v) dx

≤
\
Ω

fn(un − v) dx+
\
Ω

F∇(un − v) dx ∀v ∈ Kψ.

where fn is a regular function such that fn strongly converges to f in L1(Ω).
This approximate problem has a solution by the classical result of [14].

4.2. Some intermediate results. Let us prove the following lemma which
is needed below:

Lemma 4.1. Assume that (A1)–(A4) are satisfied , and let (zn)n be a

sequence in W 1
0LM (Ω) such that

(a) zn ⇀ z in W 1
0LM (Ω) for σ(

∏

LM (Ω),
∏

EM (Ω));

(b) (a(x, zn,∇zn))n is bounded in (LM (Ω))N ;

(c)
T
Ω

[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn −∇zχs] dx→ 0 as n, s→ ∞

(where χs is the characteristic function of Ωs = {x ∈ Ω : |∇z| ≤ s}).

Then

M(|∇zn|) →M(|∇z|) in L1(Ω).

Remark 4.1. Condition (b) is not necessary if M satisfies the ∆2-
condition.

Indeed, (a) implies that (zn)n is bounded inW 1
0LM (Ω), hence there exist

two positive constants λ,C such that\
Ω

M(λ|∇zn|) dx ≤ C.(4.2)

On the other hand, let Q be an N -function such that M ≪ Q and the
continuous embedding W 1

0LM (Ω) ⊂ EQ(Ω) holds (see [13]). Let ε > 0.
Then there exists Cε > 0, as in [7], such that

|a(x, s, ζ)| ≤ c(x) + Cε + k1M
−1
Q(ε|s|) + k3M

−1M(ε|ζ|)(4.3)
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for a.e. x ∈ Ω and all (s, ζ) ∈ R×R
N . From (4.2) and (4.3) we deduce that

(a(x, zn,∇zn))n is bounded in (LM (Ω))N .

Proof of Lemma 4.1. Fix r > 0 and let s > r. We have

0 ≤
\
Ωr

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx

≤
\
Ωs

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx

=
\
Ωs

[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn −∇zχs] dx

≤
\
Ω

[a(x, zn,∇zn) − a(x, zn,∇zχs)][∇zn −∇zχs] dx.

Together with (c) this implies

lim
n→∞

\
Ωr

[a(x, zn,∇zn) − a(x, zn,∇z)][∇zn −∇z] dx = 0.

So, as in [13],

∇zn → ∇z a.e. in Ω.(4.4)

On the one hand, we have\
Ω

a(x, zn,∇zn)∇zn dx =
\
Ω

[a(x, zn,∇zn) − a(x, zn,∇zχs)](4.5)

× [∇zn −∇zχs] dx

+
\
Ω

a(x, zn,∇zχs)(∇zn −∇zχs) dx

+
\
Ω

a(x, zn,∇zn)∇zχs dx.

Since (a(x, zn,∇zn))n is bounded in (LM (Ω))N , from (4.4), we obtain

a(x, zn,∇zn) ⇀ a(x, z,∇z) weakly in (LM (Ω))N for σ(
∏

LM ,
∏

EM ).

Consequently,\
Ω

a(x, zn,∇zn)∇zχs dx→
\
Ω

a(x, z,∇z)∇zχs dx(4.6)

as n→ ∞. Letting also s→ ∞, we get\
Ω

a(x, z,∇z)∇zχs dx→
\
Ω

a(x, z,∇z)∇z dx.(4.7)

On the other hand, it is easy to see that the second term on the right hand
side of (4.5) tends to 0 as n, s→ ∞.
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Moreover, from (c), (4.6) and (4.7) we have

lim
n→∞

\
Ω

a(x, zn,∇zn)∇zn dx =
\
Ω

a(x, z,∇z)∇z dx.

Finally, using (A4), by Lemma 2.6 and Vitali’s theorem, one obtains the
assertion.

Proposition 4.1. Assume that (A1)–(A5) and (3.1)–(3.3) hold and let

un be a solution of the approximate problem (4.1). Then for all k > 0, there

exists a constant c(k) (which does not depend on n) such that\
Ω

M(|∇Tk(un)|) ≤ c(k).

Proof. Let k > 0. Taking un−Tk(un− v0) as a test function in (4.1), we
obtain, for n large enough,\

Ω

a(x, un,∇un)∇Tk(un − v0) dx+
\
Ω

φ(un)∇Tk(un − v0) dx

≤
\
Ω

fnTk(un − v0) dx+
\
Ω

F∇Tk(un − v0) dx.

Since ∇Tk(un−v0) is identically zero on the set where |un−v0| > k, we can
write\

Ω

a(x, un,∇un)∇Tk(un − v0) dx

≤
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇un| dx

+
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇v0| dx

+
\
Ω

fnTk(un − v0) dx+
\
Ω

F∇Tk(un − v0) dx.

Now observe that (for 0 < c < 1)

(4.8)
\

{|un−v0|≤k}

a(x, un,∇un)∇un dx ≤ c
\

{|un−v0|≤k}

a(x, un,∇un)
∇v0
c

dx

+
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇un| dx

+
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇v0| dx+
\
Ω

fnTk(un − v0) dx

+
\
Ω

F∇Tk(un − v0) dx.
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By using (A3), we get

c
\

{|un−v0|≤k}

a(x, un,∇un)
∇v0
c

dx

≤ c

{ \
{|un−v0|≤k}

a(x, un,∇un)∇un dx

−
\

{|un−v0|≤k}

a

(

x, un,
∇v0
c

)(

∇un −
∇v0
c

)

dx

}

,

which yields, thanks to (4.8),

(1 − c)
\

{|un−v0|≤k}

a(x, un,∇un)∇un dx

≤
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇un| dx

+
\

{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))| |∇v0| dx+
\
Ω

fnTk(un − v0) dx

+
\
Ω

F∇Tk(un − v0) dx− c
\

{|un−v0|≤k}

a

(

x, un,
∇v0
c

)(

∇un −
∇v0
c

)

dx.

Since ∇v0
c

∈ (EM (Ω))N , using (A2) and the Young inequality, we have

(4.9) (1 − c)
\

{|un−v0|≤k}

a(x, un,∇un)∇un dx

≤
α(1 − c)

2

\
{|un−v0|≤k}

M(|∇un|) dx+ c3(k)

where c3(k) is a positive constant which depends only on k.
Using also (A4) we obtain

α(1 − c)

2

\
{|un−v0|≤k}

M(|∇un|) dx ≤ c3(k).

Moreover, from {|un| ≤ k} ⊂ {|un − v0| ≤ k + ‖v0‖∞}, we conclude that\
Ω

M(|∇Tk(un)|) dx ≤ c4(k).(4.10)

Proposition 4.2. Assume that (A1)–(A5) and (3.1)–(3.3) hold , and

let un be a solution of the approximate problem (4.1). Then there exists a

measurable function u such that for all k > 0 we have (for a subsequence

still denoted by un),
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(i) un → u a.e. in Ω,
(ii) Tk(un) ⇀ Tk(u) weakly in W 1

0LM (Ω) for σ(
∏

LM ,
∏

EM ),
Tk(un) → Tk(u) strongly in EM (Ω) and a.e. in Ω.

Before proving this proposition, we begin with the following estimate:

Lemma 4.2. If un is a solution of (4.1), then for k > h > ‖v0‖∞, we

have \
Ω

M(|∇Tk(un − Th(un))|) dx ≤ kC,

where C is a constant that does not depend of n, k and h.

Proof. By Proposition 4.1, there exists some vk ∈W 1
0LM (Ω) such that

Tk(un) ⇀ vk weakly in W 1
0LM (Ω) for σ(

∏

LM ,
∏

EM ),

Tk(un) → vk strongly in EM (Ω) and a.e. in Ω.
(4.11)

On the other hand, let k > h ≥ ‖v0‖∞. By using v = un − Tk(un − Th(un))
as a test function in (4.1) we obtain\
Ω

a(x, un,∇un)∇Tk(un − Th(un)) dx+
\
Ω

φ(Tn(un))∇Tk(un − Th(un)) dx

≤
\
Ω

fnTk(un − Th(un)) dx+
\
Ω

F∇Tk(un − Th(un)) dx.

The second term on the left hand side vanishes for n large enough. Indeed,
by Lemma 2.7,\
Ω

φ(Tn(un))∇Tk(un − Th(un)) dx =
\
Ω

φ(un)∇Tk(un − Th(un)) dx

=
\
Ω

div
[

un\
0

φ(s)χ{h≤|s|≤k+h} ds
]

dx = 0

(since
Tun

0 φ(s)χ{h≤|s|≤k+h} ds lies in W 1
0LM (Ω)). Thus,\

Ω

a(x, un,∇un)∇Tk(un − Th(un)) dx

≤
\
Ω

fnTk(un − Th(un)) dx+
\
Ω

F∇Tk(un − Th(un)) dx,

which yields the conclusion by using (A4) and Young’s inequality.

Proof of Proposition 4.2. (i) We prove that un converges to some func-
tion u in measure (and hence a.e. by passing to a suitable subsequence). We
shall show that un is a Cauchy sequence in measure.
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Let k > h > ‖v0‖∞ be large enough. Thanks to Lemma 5.7 of [13], there
exist two positive constants C7 and C8 independent of k and h such that\

Ω

M(C7|Tk(un − Th(un))|) dx ≤ C8

\
Ω

M(|∇Tk(un − Th(un))|) dx.

By Lemma 4.2 this yields

M(C7k) meas{|un − Th(un)| > k}

=
\

{|un−Th(un)|>k}

M(C7|Tk(un − Th(un))|) dx

≤ C8

\
Ω

M(|∇Tk(un − Th(un))|) dx ≤ kC9.

Consequently,

meas({|un − Th(un)| > k}) ≤
kC9

M(kC7)

for all n and all k > h > ‖v0‖∞. Hence,

meas{|un| > k} ≤ meas{|un−Th(un)| > k−h} ≤
(k − h)C9

M((k − h)C7)
for all n.

Therefore, since t/M(t) → 0 as t→ ∞, we obtain

meas{|un| > k} → 0 uniformly in n as k → ∞.(4.12)

Now, for λ > 0, we have

meas({|un−um|>λ}) ≤ meas({|un|>k})+meas({|um|>k})(4.13)

+ meas({|Tk(un) − Tk(um)| > λ}).

From (4.11), we can assume that Tk(un) is a Cauchy sequence in measure
in Ω.

Let ε > 0. By (4.12), (4.13) and the fact that Tk(un) is a Cauchy sequence
in measure, there exists some k(ε) > 0 such that meas({|un−um| > λ}) < ε
for all n,m ≥ n0(k(ε), λ). This proves that (un)n is a Cauchy sequence
in measure in Ω, thus it converges almost everywhere to some measurable
function u.

(ii) It suffices to combine assertion (i) and (4.11).

Proposition 4.3. Assume that (A1)–(A5) and (3.1)–(3.3) hold and let

un be a solution of the approximate problem (4.1). Then for all k > 0,

(i) (a(x, Tk(un),∇Tk(un)))n is bounded in (LM (Ω))N ,
(ii) ∇un → ∇u a.e. in Ω.

Proof. (i) Let w ∈ (EM (Ω))N . By condition (A3) we have

(a(x, un,∇un) − a(x, un, w))(∇un − w) ≥ 0.
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Consequently,\
{|un|≤k}

a(x, un,∇un)w dx ≤
\

{|un|≤k}

a(x, un,∇un)∇un dx(4.14)

+
\

{|un|≤k}

a(x, un, w)(w −∇un) dx.

Combining (4.9) and (4.10) and using the fact that {|un| ≤ k} ⊂ {|un−v0| ≤
k + ‖v0‖∞}, we get\

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) dx ≤ C10,

where C10 is a positive constant.
On the other hand, by (A2) we have

|a(x, Tk(un), w)| ≤ c(x) + k1P
−1M(k2|Tk(u)|) + k3M

−1M(k4|w|).

Therefore,\
Ω

M

(

a(x, Tk(un), w)

λ

)

dx ≤
\
Ω

M

(

c(x)

λ

)

+
\
Ω

k3

λ
M(k4|w|) + C11 ≤ C12

when λ > 0 is large enough. Hence {a(x, Tk(un), w)} is bounded in
(LM (Ω))N . This implies that the second term on the right in (4.14)
is also bounded. By the theorem of Banach–Steinhaus, the sequence
(a(x, Tk(un),∇Tk(un)))n remains bounded in (LM (Ω))N .

(ii) Let k > ‖v0‖∞. By (A5) there exists a sequence vj ∈ Kψ∩W
1
0EM (Ω)

∩ L∞(Ω) such that

vj → Tk(u) (mod) in W 1
0LM (Ω).(4.15)

Fix r and let s > r. Let Ωr = {x ∈ Ω : |∇Tk(u(x))| ≤ r} and denote by χr
the characteristic function of Ωr. Consider the expression

In,r =
\
Ωr

{[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u))]

× [∇Tk(un) −∇Tk(u)]}
θ dx

where 0 < θ < 1. Let An be the expression in braces above. Then for any
0 < η < 1,

In,r =
\

Ωr∩{|Tk(un)−Tk(vj)|≤η}

Aθn dx+
\

Ωr∩{|Tk(un)−Tk(vj)|>η}

Aθn dx.

Since (a(x, Tk(un),∇Tk(un)))n is bounded in (LM (Ω))N , while ∇Tk(un) is
bounded in (LM (Ω))N , by applying Hölder’s inequality, we obtain

In,r ≤ c1

( \
Ωr∩{|Tk(un)−Tk(vj)|≤η}

An dx
)θ

(4.16)

+ c2 meas{x : |Tk(un) − Tk(vj)| > η}1−θ.
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Now observe that

(4.17)
\

Ωr∩{|Tk(un)−Tk(vj)|≤η}

An dx

≤
\

{|Tk(un)−Tk(vj)|≤η}

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un) −∇Tk(u)χs] dx

=
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))(∇Tk(un) −∇Tk(vj)) dx

−
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(u)χs)(∇Tk(un) −∇Tk(u)χs) dx

+
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(vj) dx

−
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(u)χs dx,

and since (a(x, Tk(un),∇Tk(un)))n is bounded in (LM (Ω))N by Proposi-
tion 4.3(i), there exists ̺k ∈ (LM (Ω))N such that

(4.18) a(x, Tk(un),∇Tk(un)) ⇀ ̺k

weakly in (LM (Ω))N for σ(
∏

LM ,
∏

EM )

as n→ ∞. Letting n tend to infinity, we obtain\
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(u)χs dx

=
\

{|Tk(u)−Tk(vj)|≤η}

̺k∇Tk(u)χs dx+ ε(n),\
{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(vj) dx

=
\

{|Tk(u)−Tk(vj)|≤η}

̺k∇Tk(vj) dx+ ε(n),

and hence by letting j → ∞ and using (4.15),

(4.19)
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(u)χs dx

=
\
Ω

̺k∇Tk(u)χs dx+ ε(n, j),
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and

(4.20)
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(un))∇Tk(vj) dx

=
\
Ω

̺k∇Tk(u) dx+ ε(n, j).

Starting with the second term on the right hand side of (4.17), we have, by
letting n→ ∞,

(4.21)
\

{|Tk(un)−Tk(vj)|≤η}

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs] dx = ε(n)

since

a(x, Tk(un),∇Tk(u)χs)χ{|Tk(un)−Tk(vj)|≤η}

→ a(x, Tk(u),∇Tk(u)χs)χ{|Tk(u)−Tk(vj)|≤η}

strongly in (EM (Ω))N by using Lemma 2.3 while ∇Tk(un) ⇀ ∇Tk(un)
weakly in (LM (Ω))N by (4.11) and Proposition 4.3(ii).

We now study the first term on the right hand side of (4.17). By using
the test function un − Tη(un − Tk(vj)) in (4.1), we get

(4.22)
\
Ω

a(x, un,∇un)∇Tη(un−Tk(vj)) dx+
\
Ω

φ(un)∇Tη(un−Tk(vj)) dx

≤
\
Ω

fnTη(un − Tk(vj)) dx+
\
Ω

F∇Tη(un − Tk(vj)) dx.

Splitting the first integral on the left hand side into the regions where
|un| ≤ k and |un| > k, we can write\

Ω

a(x, un,∇un)∇Tη(un − Tk(vj)) dx

=
\

{|un|≤k}

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un) − Tk(vj)) dx

+
\

{|un|>k}

a(x, un,∇un)∇Tη(un − Tk(vj)) dx,

which implies, by using (A4),

(4.23)
\
Ω

a(x, un,∇un)∇Tη(un − Tk(vj)) dx

≥
\
Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un) − Tk(vj)) dx

−
\

{|un|>k}

|a(x, Tk+1(un),∇Tk+1(un))| |∇vj| dx.



232 L. Aharouch et al.

Combining (4.22) and (4.23), we deduce\
Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un) − Tk(vj)) dx

+
\
Ω

φ(un)∇Tη(un − Tk(vj)) dx

≤
\

{|un|>k}

|a(x, Tk+1(un),∇Tk+1(un))| |∇vj| dx

+
\
Ω

F∇Tη(un − Tk(vj)) dx+ c1η.

Using the boundedness of {|a(x, Tk+1(un),∇Tk+1(un))|}n in LM (Ω) and rea-
soning as above, it is easy to see that\

{|un|>k}

|a(x, Tk+1(un),∇Tk+1(un))| |∇vj| dx =
\

{|u|>k}

hk|∇vj| dx,

where hk is some function in LM (Ω) such that

|a(x, Tk+1(un),∇Tk+1(un))|⇀ hk for σ(LM (Ω), EM (Ω)) as n→ ∞.

Moreover, by (4.15) and the fact that hkχ{|u|>k} ∈ LM (Ω), we get\
{|un|>k}

|a(x, Tk+1(un),∇Tk+1(un))| |∇vj| dx = ε(n, j).

Similarly, we have\
Ω

φ(un)∇Tη(un − Tk(vj)) dx =
\
Ω

φ(u)∇Tη(u− Tk(u)) dx+ ε(n, j) = ε(n, j),\
Ω

F∇Tη(un − Tk(vj)) dx =
\

{|u−Tk(u)|≤η, |u|>k}

F∇Tη(u− Tk(u)) dx+ ε(n, j)

≤ c3‖Fχ{|u−Tk(u)|≤η, |u|>k}‖M‖∇T1(u− Tk(u))‖M + ε(n, j).

Consequently, we deduce

(4.24)
\
Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un) − Tk(vj)) dx

≤ c3‖Fχ{|u−Tk(u)|≤η, |u|>k}‖M‖∇T1(u− Tk(u))‖M + ε(n, j).

Hence, from (4.17), (4.19), (4.20), (4.21) and (4.24), we get

(4.25)
\

Ωr∩{|Tk(un)−Tk(vj)|≤η}

An dx

≤ c3‖Fχ{|u−Tk(u)|≤η, |u|>k}‖M‖∇T1(u− Tk(u))‖M

+
\

Ω\Ωs

̺k∇Tk(u) dx+ C1η + ε(n, j).
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Finally, in virtue of (4.16) and (4.2), we deduce

In,r ≤ C4 meas{x : |Tk(un) − Tk(vj)| > η}1−θ +
{

C2

\
Ω\Ωs

̺k∇Tk(u) dx

+ c3‖Fχ{|u−Tk(u)|≤η, |u|>k}‖M‖∇T1(u−Tk(u))‖M +C1η + ε(n, j)
}θ

.

Consequently,

lim sup
n→∞

In,r ≤ c4 meas{x : |Tk(u) − Tk(vj)| > η}1−θ +
{

C2

\
Ω\Ωs

hk∇Tk(u) dx

+ c3‖Fχ{|u−Tk(u)|≤η, |u|>k}‖M‖∇T1(u− Tk(u))‖M + C1η + ε(n, j)
}θ

,

in which we let successively j → ∞, s→ ∞ and η → 0 to obtain

lim sup
n→∞

In,r = 0.

As in [13], this implies that there exists a subsequence also denoted by un
such that ∇un → ∇u a.e. in Ω.

Proposition 4.4. Assume that (A1)–(A5) and (3.1)–(3.3) hold and let

un be a solution of the approximate problem (4.1). Then for all k > 0,

M(|∇Tk(un)|) →M(|∇Tk(u)|) in L1(Ω).

Proof. We fix k > ‖v0‖∞. Then by (A5) there exists a sequence vj ∈
Kψ ∩W

1
0EM (Ω)∩L∞(Ω) which converges to Tk(u) for the modular conver-

gence in W 1
0LM (Ω). We define

whn,j = T2k(un − Th(un) + Tk(un) − Tk(vj)),

whj = T2k(u− Th(u) + Tk(u) − Tk(vj)),

wh = T2k(u− Th(u)),

where h > 2k.
We choose v = un − whn,j as a test function in (4.1) to obtain

(4.26)
\
Ω

a(x, un,∇un)∇w
h
n,j dx+

\
Ω

φ(un)∇w
h
n,j dx

≤
\
Ω

fnw
h
n,j dx+

\
Ω

F∇whn,j dx.

By the strong convergence of fn and since whn,j converges to whj in the weak∗

topology of L∞(Ω) as n→ ∞, we have\
Ω

fnw
h
n,j dx =

\
Ω

fwhj dx+ ε(n) =
\
Ω

fwh dx+ ε(n, j).

The last passage is due to the fact that whj converges to zero in the weak∗

topology of L∞(Ω) as j → ∞.
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Finally, letting h→ ∞, Lebesgue’s theorem yields
T
Ω
fwhn,j dx→ 0, so\

Ω

fnw
h
n,j dx = ε(n, j, h).

We now study the first integral on the left hand side of (4.26):

(4.27)
\
Ω

a(x, un,∇un)∇w
h
n,j dx

=
\

{|un|≤k}

a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(vj)] dx

+
\

{|un|>k}

a(x, un,∇un)∇w
h
n,j dx.

Set m = 4k + h. By using (A3) and the fact that ∇whn,j = 0 if |un(x)| > m,
we get

(4.28)
\

{|un|>k}

a(x, un,∇un)∇w
h
n,j dx

≥ −
\

{|un|>k}

|a(x, Tm(un),∇Tm(un))| |∇vj| dx.

Since (|a(x, Tm(un),∇Tm(un))|)n is a bounded sequence in LM (Ω), for some
subsequence still denoted un and for some lm ∈ LM (Ω) we have

|a(x, Tm(un),∇Tm(un))|⇀ lm in LM (Ω) for σ(LM (Ω), EM (Ω))

as n → ∞, and since ∇vjχ{|un|>k} → ∇vjχ{|u|>k} strongly in EM (Ω) as
n→ ∞, we get

−
\

{|un|>k}

|a(x, Tm(un),∇Tm(un))| |∇vj| dx = −
\

{|u|>k}

lm|∇vj| dx+ ε(n).

We let j → ∞ to obtain

−
\

{|u|>k}

lm|∇vj| dx = −
\

{|u|>k}

lm|∇Tk(u)| dx+ ε(n, j) = ε(n, j).(4.29)

Combining (4.27)–(4.29), we deduce\
Ω

a(x, un,∇un)∇w
h
n,j dx

≥
\
Ω

a(x, Tk(un),∇Tk(un))[∇Tk(un) −∇Tk(vj)] dx

+ ε(n, h) + ε(n, j) + εh(n, j),
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which implies that

(4.30)
\
Ω

a(x, un,∇un)∇w
h
n,j dx

≥
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(vj)χ
j
s)]

× [∇Tk(un) −∇Tk(vj)χ
j
s] dx

+
\
Ω

a(x, Tk(un),∇Tk(vj)χ
j
s)[∇Tk(un) −∇Tk(vj)χ

j
s] dx

−
\

Ω\Ωj
s

a(x, Tk(un),∇Tk(un))∇Tk(vj) dx

+ ε(n, h) + ε(n, j) + εh(n, j)

where χjs is the characteristic function of Ωj
s = {x ∈ Ω : |∇Tk(vj)| ≤ s}.

By (4.18) and the fact that ∇Tk(vj)χΩ\Ωj
s
∈ (EM (Ω))N , the third term

on the right hand side of (4.30) tends to
T
Ω
̺k∇Tk(vj)χΩ\Ωj

s
dx as n → ∞.

Letting j → ∞ we obtain, by (4.15),\
Ω

̺k∇Tk(vj)χΩ\Ωj
s
dx =

\
Ω\Ωs

̺k∇Tk(u) dx+ ε(n, j).(4.31)

The second term on the right hand side of (4.30) goes to zero as first

n → ∞ and then j → ∞. Indeed, since a(x, Tk(un),∇Tk(vj)χ
j
s) →

a(x, Tk(u),∇Tk(vj)χ
j
s) strongly in (EM (Ω))N by using (A2) and the Lebes-

gue theorem while ∇Tk(un) ⇀ ∇Tk(u) in (LM (Ω))N , we have\
Ω

a(x, Tk(un),∇Tk(vj)χ
j
s)[∇Tk(un) −∇Tk(vj)χ

j
s] dx

=
\
Ω

a(x, Tk(u),∇Tk(vj)χ
j
s)[∇Tk(u) −∇Tk(vj)χ

j
s] dx+ ε(n).

Letting j → ∞, one has\
Ω

a(x, Tk(u),∇Tk(vj)χ
j
s)[∇Tk(u) −∇Tk(vj)χ

j
s] dx

=
\
Ω

a(x, Tk(u),∇Tk(u)χs)[∇Tk(u) −∇Tk(u)χs] dx+ ε(j).

Finally,

(4.32)
\
Ω

a(x, Tk(un),∇Tk(vj)χ
j
s)[∇Tk(un) −∇Tk(vj)χ

j
s] dx = εm(n, j).
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Combining (4.30)–(4.32), we deduce

(4.33)
\
Ω

a(x, un,∇un)∇w
h
n,j dx

≥
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(vj)χ
j
s)]

× [∇Tk(un) −∇Tk(vj)χ
j
s] dx−

\
Ω\Ωs

̺k∇Tk(u) dx+ ε(n, j, h).

On the other hand, by using Proposition 4.2(ii) and (4.15) we can easily
find that

(4.34)
\
Ω

φ(un)∇w
h
n,j dx =

\
Ω

φ(u)∇T2k(u−Th(u)) dx+ εh(n, j) = εh(n, j)

and \
Ω

F∇whn,j dx =
\
Ω

F∇T2k(u− Th(u)) dx+ ε(n, j).(4.35)

Combining (4.26) and (4.33)–(4.35), we get

(4.36)
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(vj)χ
j
s)]

× [∇Tk(un) −∇Tk(vj)χ
j
s] dx

≤
\

Ω\Ωs

̺k∇Tk(u) dx+
\
Ω

F∇T2k(u− Th(u)) dx+ ε(n, j, h).

Now, we remark that\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)][∇Tk(un) −∇Tk(u)χs] dx

−
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(vj)χ
j
s)]

× [∇Tk(un) −∇Tk(vj)χ
j
s] dx

=
\
Ω

a(x, Tk(un),∇Tk(vj)χ
j
s)[∇Tk(un) −∇Tk(vj)χ

j
s] dx

−
\
Ω

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un) −∇Tk(u)χs] dx

+
\
Ω

a(x, Tk(un),∇Tk(un))[∇Tk(vj)χ
j
s −∇Tk(u)χs] dx,

and, as can be easily seen, each integral on the right hand side is of the form
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ε(n, j), implying that

(4.37)
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un) −∇Tk(u)χs] dx

=
\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(vj)χ
j
s)]

× [∇Tk(un) −∇Tk(vj)χ
j
s] dx+ ε(n, j),

and thanks to (4.36) and (4.37), we deduce\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)][∇Tk(un) −∇Tk(u)χs] dx

≤
\

Ω\Ωs

̺k∇Tk(u) dx+
\
Ω

F∇T2k(u− Th(u)) dx+ ε(n, j, h).

Hence,

(4.38) lim sup
n→∞

\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un) −∇Tk(u)χs] dx

≤
\

Ω\Ωs

̺k∇Tk(u) dx+
\
Ω

F∇T2k(u− Th(u)) dx+ lim
n→∞

ε(n, j, h).

We shall now prove that\
Ω

F∇T2k(u− Th(u)) dx→ 0 as h→ ∞.(4.39)

If we take un − T2k(un − Th(un)) as a test function in (4.1) we obtain\
{h≤|un|≤2k+h}

a(x, un,∇un)∇un dx+
\
Ω

φ(un)∇T2k(un − Th(un)) dx

≤
\

{h≤|un|≤2k+h}

F∇un dx+
\
Ω

fnT2k(un − Th(un)) dx.

Since
T
Ω
φ(un)∇T2k(un − Th(un)) dx = 0, we get\

{h≤|un|≤2k+h}

a(x, un,∇un)∇un dx

≤
\

{h≤|un|≤2k+h}

F∇un dx+
\
Ω

fnT2k(un − Th(un)) dx,

which yields, thanks to (A4) and Young’s inequality,

α

2

\
{h≤|un|≤2k+h}

M(|∇un|) dx≤C1

\
{|un|>h}

M(|F |) dx+
\
Ω

fnT2k(un−Th(un)) dx.
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Letting n→ ∞, by using the Fatou lemma, we get
α

2

\
{h≤|u|≤2k+h}

M(|∇u|) dx ≤ C1(k)
\

{|u|>h}

M(|F |) dx+
\

{|u|>h}

|f | dx.

Consequently,

lim sup
h→∞

\
{h≤|u|≤2k+h}

M(|∇u|) dx = 0,

so that
lim
h→∞

\
Ω

F∇T2k(u− Th(u)) dx = 0,

which implies (4.39).
Thanks to (4.38) and (4.39), we can write

lim sup
n→∞

\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un) −∇Tk(u)χs] dx

≤
\

Ω\Ωs

̺k∇Tk(u) dx+ lim
n→∞

ε(n, j, h),

in which we can pass to the limit as j, h, s→ ∞ to obtain

lim sup
s→∞

lim sup
n→∞

\
Ω

[a(x, Tk(un),∇Tk(un)) − a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un) −∇Tk(u)χs] dx = 0.

Finally, Lemma 4.1 yields the conclusion of Proposition 4.4.

4.3. Proof of Theorem 3.1. Let v ∈ Kψ ∩W 1
0EM (Ω) ∩ L∞(Ω). Taking

un − Tk(un − v) as a test function in (4.1), we can write\
Ω

a(x, un,∇un)∇Tk(un − v) dx+
\
Ω

φ(Tn(un))∇Tk(un − v) dx

≤
\
Ω

fnTk(un − v) dx+
\
Ω

Fn∇Tk(un − v) dx,

which implies that

(4.40)
\

{|un−v|≤k}

a(x, un,∇un)∇un dx

−
\

{|un−v|≤k}

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇v dx

+
\
Ω

φ(Tk+‖v‖∞(un))∇Tk(un − v) dx

≤
\
Ω

fnTk(un − v) dx+
\
Ω

Fn∇Tk(un − v) dx.
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By Fatou’s lemma and the fact that

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un)) ⇀ a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))

weakly in (LM (Ω))N for σ(
∏

LM ,
∏

EM ) one easily sees that

(4.41) lim
n→∞

{ \
{|un−v|≤k}

a(x, un,∇un)∇un dx

−
\

{|un−v|≤k}

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇v dx
}

≥
\

{|u−v|≤k}

a(x, u,∇u)∇u dx

−
\

{|u−v|≤k}

a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))∇v dx.

On the other hand, by using Proposition 4.2, we can easily see that\
Ω

φ(Tn(un))∇Tk(un − v) dx→
\
Ω

φ(u)∇Tk(u− v) dx,(4.42) \
Ω

F∇Tk(un − v) dx→
\
Ω

F∇Tk(u− v) dx,(4.43) \
Ω

fnTk(un − v) dx→
\
Ω

fTk(u− v) dx(4.44)

as n→ ∞.

Combining (4.40)–(4.44), we have

(4.45)
\
Ω

a(x, u,∇u)∇Tk(u− v) dx+
\
Ω

φ(u)∇Tk(u− v) dx

≤
\
Ω

fTk(u− v) dx+
\
Ω

F∇Tk(u− v) dx

∀v ∈ Kψ ∩W 1
0EM (Ω) ∩ L∞(Ω).

Now, let v ∈ Kψ∩L
∞(Ω). By (A5) there exists vj ∈ Kψ∩W

1
0EM (Ω)∩L∞(Ω)

such that vj converges to v in the modular sense. Let h > max(‖v0‖∞, ‖v‖∞).
Taking v = Th(vj) in (4.45), we have\

Ω

a(x, u,∇u)∇Tk(u− Th(vj)) dx+
\
Ω

φ(u)∇Tk(u− Th(vj)) dx

≤
\
Ω

fTk(u− Th(vj)) dx+
\
Ω

F∇Tk(u− Th(vj)) dx.
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We can easily pass to the limit as j → ∞ to get\
Ω

a(x, u,∇u)∇Tk(u− Th(v)) dx+
\
Ω

φ(u)∇Tk(u− Th(v)) dx

≤
\
Ω

fTk(u− Th(v)) dx+
\
Ω

F∇Tk(u− Th(v)) dx ∀v ∈ Kψ ∩ L∞(Ω).

Finally, since h ≥ max(‖v0‖∞, ‖v‖∞), we deduce\
Ω

a(x, u,∇u)∇Tk(u− v) dx+
\
Ω

φ(u)∇Tk(u− v) dx

≤
\
Ω

fTk(u− v) dx+
\
Ω

F∇Tk(u− Th(v)) dx ∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

Thus, the proof of Theorem 3.1 is complete.
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Faculté des Sciences Dhar-Mahraz
B.P. 1796 Atlas, Fès, Maroc
E-mail: l−aharouch@yahoo.fr

azroul−elhoussine@yahoo.fr
rhoudaf−mohamed@yahoo.fr

Received on 14.11.2005;

revised version on 27.6.2006 (1776)




