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UNIFORM DECOMPOSITIONS OF POLYTOPES

Abstract. We design a method of decomposing convex polytopes into
simpler polytopes. This decomposition yields a way of calculating exactly
the volume of the polytope, or, more generally, multiple integrals over the
polytope, which is equivalent to the way suggested in [9], based on Fourier–
Motzkin elimination ([10, pp. 155–157]). Our method is applicable for finding
uniform decompositions of certain natural families of polytopes. Moreover,
this allows us to find algorithmically an analytic expression for the distribu-
tion function of a random variable of the form

∑d
i=1 ciXi, where (X1, . . . , Xd)

is a random vector, uniformly distributed in a polytope.

1. Introduction. The indefinite integral of a function is in general
“smoother” than the function itself. However, it is also usually more dif-
ficult to express. Thus, the integral of an elementary function is usually
non-elementary. The value of a definite integral may not be a “recogniz-
able” number even if the function is quite simple. The situation is even
more difficult for multiple integrals; these can be seldom evaluated exactly.
Therefore, there is an abundance of methods for approximating the values
of definite integrals.

One situation where multiple integrals may be exactly calculated is where
the region of integration is a polytope and the function very special. For
example, if the function is constant, the problem reduces to the computation
of the volume of the polytope. For the problem of calculating more general
multiple integrals see, for example, [2] and [8]. While the problem of finding
the exact volume of a polytope is ♯P -hard [4], which implies that no efficient
algorithm should be expected, there are nevertheless several algorithms for
it. These algorithms start with decomposing the given polytope into a union
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(or signed union [3]) of simpler polytopes, usually simplices. These polytopes
are disjoint up to lower dimensional faces, and the volume of each is easy to
calculate. We refer to [6] for updated information on the status of this and
numerous other problems concerning polytopes.

Our interest in the problem started from trying to generalize a certain
result, related to a problem in physics, where a certain distribution function
has to be evaluated [1, Th. 1]. The evaluation of distribution (and density)
functions often reduces to a problem of integration. For example, if X and
Y are independent random variables, with densities fX and fY , respectively,
then the density of the sum X + Y is given by

fX+Y (t) =

∞\
−∞

fX(x)fY (t − x) dx, −∞ < t < ∞.

The analytic expression for fX+Y (t), if there is one, is usually quite cum-
bersome, as it may be given by distinct formulas in distinct intervals. (See,
for example, the formula for the density of the sum of n independent U(0, 1)
variables [5, p. 27].)

In this paper we design a method for decomposing a polytope which,
in principle, transforms the problem of calculating a multiple integral on a
polytope into that of calculating the sum of (a huge number of) repeated
integrals. Although very different looking, our method is essentially equiv-
alent to the one presented in [9], which is based on the Fourier–Motzkin
elimination method. (However, it may be more amenable to certain compu-
tational improvements; see Remark 3.1 below.) It enables us tackling also
the following problem: Given a polytope P ⊆ R

d and a linear function L
of d arguments, find an expression for the volume of the sub-polytope P ,
consisting of those points of P at which the value of L does not exceed t,
as a function of t. Clearly, this solves the problem of finding the distribu-
tion function of a random variable of the form L( ~X), where L is the linear

function of several variables and ~X a random vector, uniformly distributed
in some polytope.

In Section 2 we present the main results. Section 3 is devoted to the
proofs.

We would like to express our gratitude to A. Barvinok, A. Enge, M.
Goldberg, V. Kaibel, K. Kedem, M. Pfetsch and T. Scot for the helpful
information they provided us on the subject matter.

2. Main results. Methods for finding the exact volume of a polytope
usually fall into one of three categories: those starting with the half-space

(H-) representation of the polytope, those starting from its vertex (V -)
representation, and those requiring both representations. Our method be-
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longs to the first of these. Thus, let P ⊆ R
d be a polyhedron, given in

H-representation, that is,

(1) P = {x ∈ R
d : Ax ≤ b}

for some m× d matrix A and m-vector b. Of course, calculation of volumes
is relevant only for polytopes, that is, bounded polyhedra, but multiple in-
tegration makes sense for general polyhedra as well.

It will be usually convenient for us to move the components of the vec-
tor b in the definition of P to the left-hand side, and write the system of
inequalities (1) defining P in the form

(2)





f1(x1, . . . , xd) ≤ 0,

. . .

fm(x1, . . . , xd) ≤ 0.

Here fi(x1, . . . , xd) = Aix− bi, where x = (x1, . . . , xd) and Ai is the ith row
of A. Also, for 1 ≤ i ≤ d, we write xi = (x1, . . . , xi).

Definition 2.1. (a) A polytope P ⊆ R
d is repetitive if it may be repre-

sented in the form

(3) P = {(x1, . . . , xd) : a ≤ x1 ≤ b, f−
1 (x1) ≤ x2 ≤ f+

1 (x1), . . . ,

f−
d−1(xd−1) ≤ xd ≤ f+

d−1(xd−1)}

for appropriate a, b ∈ R and linear functions f+
i , f−

i : R
i → R, 1 ≤ i ≤ d−1,

satisfying f−
i (xi) ≤ f+

i (xi) for every xi in the projection of P in (the space
corresponding to the first i coordinates) R

i, 1 ≤ i ≤ d − 1.
(b) A polyhedron is repetitive if it can be represented as in (3), where

some of the constraints xi ≤ f+
i (xi−1) (or xi ≥ f−

i (xi−1)) may be omitted
(and the same for the constraints x1 ≥ a and x1 ≤ b).

Remark 2.1. The property of being repetitive depends on the way the
polytope is embedded in R

d, and is not an inherent property. For example,
a rectangle with edges parallel to the coordinate axes is repetitive according
to our definition, but after a rotation it may become non-repetitive. Also,
the property depends on the order in which the coordinates are taken. For
example, the triangle defined by the system





−1 ≤ x ≤ 1,

0 ≤ y ≤ 1,

|x| + y ≤ 1,

is repetitive if we start with the variable y, but not if we start with x.

Theorem 2.1. Any polyhedron P is effectively decomposable into a union

of finitely many repetitive polyhedra, the intersection of any two of which is

contained in a (d − 1)-dimensional polytope.



246 D. Berend and L. Bromberg

Remark 2.2. As will be apparent from the proof, the number of polyhe-
dra in the decomposition is in general of the order of magnitude of (m2/4)d.
However, for the application to calculating multiple integrals, it will be pos-
sible to reduce the computation to about md repetitive polyhedra. (For
details, see Remark 3.1 infra.) As elaborated in [3], each method works well
for certain types of polyhedra and worse for others. Our method is clearly
much superior to methods based on decomposition into simplices for, say,
axis-parallel boxes or, more generally, repetitive polyhedra. It is much worse,
however, for simplices.

The decomposition shows immediately whether or not P is a polytope.
If it is one, we can find its volume Vol(P ) by summing the volumes of the
repetitive polytopes appearing in the decomposition of P . The volume of a
repetitive polytope as in (3) is calculated in a straightforward manner:

Vol(P ) =

b\
a

f+

1
(x1)\

f−

1
(x1)

. . .

f+

d−1
(xd−1)\

f−

d−1
(xd−1)

dxd . . . dx2 dx1.

Sometimes, we may want to find the volumes of all members in a param-
eterized family of polytopes as a function of the parameter. For example,
consider the following situation. Let (X1, . . . , Xd) be a d-dimensional ran-
dom variable, uniformly distributed in a polytope P of positive volume in R

d.
That is, the probability of (X1, . . . , Xd) to assume a value in some (mea-
surable) set A ⊆ P is Vol(A)/Vol(P ). Consider a 1-dimensional random
variable of the form T = c1X1 + · · ·+ cdXd for some constants c1, . . . , cd. To
find the value of the distribution function FT (t) at any point t, we need to
find the ratio

(4)
Vol(P ∩ {x ∈ R

d : c1x1 + · · · + cdxd ≤ t})

Vol(P )
.

The calculation of this expression for any specific value of t presents no
difficulty. However, we would like to obtain an explicit formula for it as a
function of t.

Example 2.1. Let P = {(x, y, z) ∈ R
3 : x, y, z ≥ 0, x + y + z ≤ 1} and

T = X + 2Y + 3Z. We would like to express FT (t) as a function of t.

To this end, it is natural to look for a way of writing the polyhedron

P ∩ {x ∈ R
d : c1x1 + · · · + cdxd ≤ t},

appearing in the numerator of (4), as a union of repetitive polyhedra in a
uniform way as t varies. In general, given a polyhedron P ⊆ R

d and a fixed
linear function L : R

d → R, denote

PL(t) = P ∩ {x ∈ R
d : L(x) ≤ t}.
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Example 2.2. Let P and T be as in Example 2.1. Thus, putting
L(x, y, z) = x + 2y + 3z, we want to express PL(t) as a function of t.
Let

P1,t = { 1 ≤ x ≤ t, 0 ≤ y ≤ t−x

2
, 0 ≤ z ≤ t−x−2y

3
},

P2,t = {2 − t ≤ x ≤ 3−t

2
, 3 − t − 2x ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y },

P3,t = { 0 ≤ x ≤ 2 − t, 0 ≤ y ≤ t−x

2
, 0 ≤ z ≤ t−x−2y

3
},

P4,t = {2 − t ≤ x ≤ 3−t

2
, 0 ≤ y ≤ 3 − t − 2x, 0 ≤ z ≤ t−x−2y

3
},

P5,t = { 3−t

2
≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y },

P6,t = { 0 ≤ x ≤ 3−t

2
, 3 − t − 2x ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y },

P7,t = { 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x − y }.

One can verify that

(5) PL(t) =





∅, t < 0,

P1,t, 0 ≤ t ≤ 1,

P2,t ∪ P3,t ∪ P4,t ∪ P5,t, 1 < t ≤ 2,

P5,t ∪ P6,t, 2 < t ≤ 3,

P7,t, 3 < t.

We want to develop an algorithm for obtaining representations of PL(t)
of the form (5). More precisely, we start with

Definition 2.2. Let {Pt : t ∈ I} be a family of polyhedra, where I is
some interval (finite or infinite). The family is uniformly repetitive if there
exist linear functions f+

i , f−
i : R

i+1 → R, 0 ≤ i ≤ d−1, satisfying f−
i (t, xi) ≤

f+
i (t, xi) for every t ∈ I and xi in the projection of Pt onto (the space

corresponding to the first i coordinates) R
i, such that

(6) Pt = {x ∈ R
d : f−

0 (t) ≤ x1 ≤ f+
0 (t), f−

1 (t, x1) ≤ x2 ≤ f+
1 (t, x1), . . . ,

f−
d−1(t, xd−1) ≤ xd ≤ f+

d−1(t, xd−1)}

(where some of the functions f+
i or f−

i may be replaced by ∞ or −∞,
respectively).

Theorem 2.2. Let P ⊆ R
d be a polyhedron and L : R

d → R a linear

function. Then we can effectively find a decomposition of R, say R =
⋃k

j=1 Ij ,
into a union of finitely many (finite and infinite) intervals, and uniformly

repetitive families {Pj,i,t : t ∈ Ij}, 1 ≤ j ≤ k, 1 ≤ i ≤ lj , such that

(7) PL(t) =

lj⋃

i=1

Pj,i,t, t ∈ Ij , 1 ≤ j ≤ k.
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Example 2.3. Let P and T be as in Examples 2.1 and 2.2. Employing
(5), it is easy to verify that the distribution function of T is given by

(8) FT (t) =





0, t ≤ 0,

t3/3, 0 < t ≤ 1,

1/2 − 3t/2 + 3t2/2 − t3/3, 1 < t ≤ 2,

−7/2 + 9t/2 − 3t2/2 + t3/6, 2 < t ≤ 3,

1, 3 < t.

Now we shall see how a formula like (8) may be obtained algorithmically
in general. To state our result, we need

Definition 2.3. A function g : R → R is piecewise polynomial if there
exist intervals (finite or infinite) Ij ⊆ R and polynomials Qj, 1 ≤ j ≤ k,
such that

g(x) = Qj(x), x ∈ Ij , 1 ≤ j ≤ k.

The degree of g is max1≤j≤k deg Qj.

Remark 2.3. To avoid trivialities, we require that, if the length of some
interval Ij is 0, then the corresponding polynomial Qj is constant.

Theorem 2.3. Let (X1, . . . , Xd) be a d-dimensional random variable,
uniformly distributed in a polytope P of positive volume in R

d. Given any

constants c1, . . . , cd, the distribution function of the 1-dimensional random

variable T = c1X1+· · ·+cdXd is a continuous piecewise polynomial function

of degree at most d, and can be effectively computed.

3. Proofs

Proof of Theorem 2.1. We use induction on the dimension d. For d = 1
the polyhedron is an interval (finite or infinite), and we easily find its end-
points to write P = {x : a ≤ x ≤ b} (where possibly a = −∞ or b = ∞).

Assume the theorem holds for (d− 1)-dimensional polyhedra, and let P
be a d-dimensional polyhedron given, say, by (2). Without loss of generality,
any two of the fi’s (not including free terms) are linearly independent.

Reordering the fi’s, we may assume that, for some 0 ≤ k ≤ l ≤ m,
the coefficient of xd in f1, . . . , fk is positive, in fk+1, . . . , fl negative, and in
fl+1, . . . , fm zero. The first k inequalities provide a “ceiling” for xd,





xd ≤ g+
1 (x1, . . . , xd−1) = g+

1 (xd−1),

. . .

xd ≤ g+
k (x1, . . . , xd−1) = g+

k (xd−1),
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and the next l − k provide a “floor”,



xd ≥ g−k+1(x1, . . . , xd−1) = g−k+1(xd−1),

. . .

xd ≥ g−l (x1, . . . , xd−1) = g−l (xd−1).

Given a point (x1, . . . , xd−1), the maximal value of xd (if any) for which
(x1, . . . , xd) belongs to P is one of the values g+

1 (xd−1), . . . , g
+
k (xd−1) (the

minimal of them, i.e., g+(xd−1) = min{g+
1 (xd−1), . . . , g

+
k (xd−1)}).

We want to split P into subsets, according to which of the g+
i ’s is the

actual ceiling:

P+
i = {(x1, . . . , xd) ∈ P : g+

i (xd−1) ≤ g+
i′ (xd−1), i′ = 1, . . . , k}, 1 ≤ i ≤ k.

Similarly, we may split P according to the prevalent floor:

P−
j = {(x1, . . . , xd) ∈ P : g−j (xd−1) ≥ g−j′ (xd−1), j′ = k + 1, . . . , l},

k + 1 ≤ j ≤ l.

Finally, put

Pij = P+
i ∩ P−

j , 1 ≤ i ≤ k, k + 1 ≤ j ≤ l.

Obviously, P =
⋃k

i=1

⋃l
j=k+1 Pij, and the intersection of any two of the

Pij ’s is contained in some hyperplane in R
d. (If k = 0 or l = k, namely xd is

unbounded from above or below, the splitting of P is only according to the
prevalent floor or ceiling, respectively. If l = k = 0, then we do not split P
at all. In the following we shall disregard these simpler cases.)

Denote by π : R
d → R

d−1 the projection given by π(xd) = xd−1. The set
π(Pij) is the polyhedron in R

d−1 determined by the (m − 1) inequalities

g−j (xd−1) ≤ g+
i (xd−1),

g+
i (xd−1) ≤ g+

i′ (xd−1), i′ = 1, 2, . . . , i − 1, i + 1, . . . , k,

g−j (xd−1) ≥ g−j′ (xd−1), j′ = k + 1, k + 2, . . . , j − 1, j + 1, . . . , l,

fs(xd) ≤ 0, l + 1 ≤ s ≤ m.

(Recall that the fs’s do not depend on the dth coordinate, so the inequalities
involving them make sense in R

d−1.)
According to the induction hypothesis, each π(Pij) may be expressed

as a finite union of repetitive polyhedra. For typical i, j, write π(Pij) =⋃
h∈Hij

Qijh, where Hij is a finite index set and the Qijh’s are repetitive

and intersect each other in sets of dimension d − 2 (or smaller). The set
Pij∩π−1(Qijh) is also repetitive, as it is determined by the same inequalities
defining Qijh and the additional inequality g−j (xd−1) ≤ xd ≤ g+

i (xd−1).

Hence the decomposition P =
⋃k

i=1

⋃l
j=k+1

⋃
h∈Hij

(Pij∩π−1(Qijh)) provides

a decomposition of P as required.
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Remark 3.1. The number of polyhedra in the decomposition may be
(almost) as large as (m2/4)d. In fact, the first decomposition of P in the
proof is into k(l − k) polyhedra with common floors and ceilings. If the
m constraints are divided roughly evenly between xd-floors and xd-ceilings,
then after this stage we have about m2/4 polyhedra. Each of these will be
divided at the second stage into about (m − 1)2/4 polyhedra, and so forth,
leaving us at the end of the process with a union of

m2

4
·
(m − 1)2

4
· · ·

(m − d + 1)2

4
≈

(
m2

4

)d

polyhedra. Note that there are explicit examples of polytopes for which the
decomposition will yield exponentially many components [10, p. 156].

One may try to reduce this number by splitting each region according to
that variable which gives as many floors and few ceilings (or vice versa) as
possible. In the best case, this might lead to a decomposition into about md

polyhedra. However, for “random” constraints it is unlikely that the gain
achieved by this heuristic will be significant.

If we allow signed decompositions (which is suitable in particular for
the application to calculating volumes and multiple integrals), we can do
much better. In fact, let P ′ be the projection of P on the subspace deter-
mined by the first d − 1 coordinates. Suppose P is bounded above by a
(piecewise linear) surface g+ and below by a surface g−, that is, for each
(x1, . . . , xd−1) ∈ P ′,

{x ∈ R : (x1, . . . , xd−1, x) ∈ P} = [g−(xd−1), g
+(xd−1)].

Set ai = minxd∈P xi for i = 1, . . . , d. (Note that the ai’s are easily found by
solving suitable linear programming problems.) Put

P+ = {(x1, . . . , xd) ∈ R
d : (x1, . . . , xd−1) ∈ P ′, ad ≤ xd ≤ g+(xd−1)},

P− = {(x1, . . . , xd) ∈ R
d : (x1, . . . , xd−1) ∈ P ′, ad ≤ xd ≤ g−(xd−1)}.

Then P = P+ − P− (up to (d − 1)-dimensional boundaries). Decomposing
P+ and P− similarly, we finally arrive at a signed decomposition consisting
of about md repetitive polyhedra.

Proof of Theorem 2.2. Let P be given by (2) and L(x) = c1x1+· · ·+cdxd.
Write the system of inequalities defining PL(t) in the form

(9)





f1(x1, . . . , xd) ≤ 0,

. . .

fm(x1, . . . , xd) ≤ 0,

−t + c1x1 + · · · + cdxd ≤ 0.

The system (9), with t varying rather than fixed, defines a (d+1)-dimensional

polyhedron. Denote this polyhedron by P̃ . By Theorem 2.1 we can write
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P̃ =
⋃r

i′=1 Pi′ , where the polyhedra Pi′ intersect in lower dimensional sets
and are repetitive:

(10) Pi′ = {(t, x1, . . . , xd) : ai′ ≤ t ≤ bi′ , f−
0,i′(t) ≤ x1 ≤ f+

0,i′(t), . . . ,

f−
d−1,i′(t, x1, . . . , xd−1) ≤ xd ≤ f+

d−1,i′(t, x1, . . . , xd−1)}.

(Note that the ai′ ’s and bi′ ’s, as well as the functions f−
j′,i′ and f+

j′,i′ , may be

infinite.) By splitting the polyhedra Pi′ if necessary, we may assume that the
t-intervals (and rays) [ai′ , bi′ ] belonging to distinct Pi′ ’s either coincide or
are disjoint (except for their endpoints). Denote these intervals by I1, . . . , Ik.

Now group the polyhedra Pi′ according to the t-intervals they lie over.
That is, for 1 ≤ j ≤ k, let

(11) Pji = {(t, x1, . . . , xd) : t ∈ Ij , f−
0,i(t) ≤ x1 ≤ f+

0,i(t), . . . ,

f−
d−1,i(t, xd−1) ≤ xd ≤ f+

d−1,i(t, xd−1)}, i = 1, . . . , lj ,

be the polyhedra Pi′ lying over Ij .

For 1 ≤ j ≤ k, 1 ≤ i ≤ lj and any t ∈ Ij , set

(12) Pj,i,t = {(x1, . . . , xd) : f−
0,i(t) ≤ x1 ≤ f+

0,i(t), . . . ,

f−
d−1,i(t, x1, . . . , xd−1) ≤ xd ≤ f+

d−1,i(t, x1, . . . , xd−1)}.

Each of the families {Pj,i,t : t ∈ Ij}, 1 ≤ j ≤ k, 1 ≤ i ≤ lj , is uniformly
repetitive, and the required decomposition (7) clearly holds.

Proof of Theorem 2.3. Let

L(x) = c1x1 + · · · + cdxd, x = (x1, . . . , xd) ∈ R
d,

and denote

PL(t) = P ∩ {x ∈ R
d : L(x) ≤ t}, −∞ < t < ∞.

The distribution function of T is given by

FT (t) =
Vol(PL(t))

Vol(P )
, −∞ < t < ∞.

The denominator is constant and we want to find the numerator. According
to Theorem 2.2 we define a decomposition of the t-interval (−∞,∞) into
a union of finitely many (finite and infinite) intervals Ij , and uniformly
repetitive families Pj,i,t as in (7). By representation (12) of Pj,i,t we can
write

Vol(PL(t)) = Vj(t) =

lj∑

i=1

f+

0,i(t)\
f−

0,i(t)

. . .

f+

d−1,i
(t,xd)\

f−

d−1,i
(t,xd)

dxd . . . dx1, t ∈ Ij , 1 ≤ j ≤ k.

(Note that the functions f−
j,i and f+

j,i may be only finite.) Obviously, each
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Vj(t) is a polynomial of degree at most d. Hence FT (t) is a piecewise poly-
nomial of degree at most d. The continuity of FT (t) is clear.
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