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STABILITY OF CONSTANT SOLUTIONS TO THE
NAVIER–STOKES SYSTEM IN R3

Abstract. The paper examines the initial value problem for the Navier–
Stokes system of viscous incompressible fluids in the three-dimensional
space. We prove stability of regular solutions which tend to constant flows
sufficiently fast. We show that a perturbation of a regular solution is
bounded in W 2,1

r (R3× [k, k+ 1]) for k ∈ N. The result is obtained under the
assumption of smallness of the L2-norm of the perturbing initial data. We
do not assume smallness of the W 2−2/r

r (R3)-norm of the perturbing initial
data or smallness of the Lr-norm of the perturbing force.

Introduction. We consider the initial value problem for the Navier–
Stokes system in R3. We show that a class of solutions which tend to constant
flows is stable under perturbations of the initial data and of the external
force. We restrict our attention to the case when the perturbing force is po-
tential. In the proof we apply an Lr-estimate for the Stokes system; together
with global-in-time energy estimates, this makes it possible to control the
W 2,1
r -norm of the solutions in time. Similar methods have been used in [9].

The initial value problem for the Navier–Stokes system in R2 has been
solved for regular data [5, 10]. In three space dimensions global-in-time exis-
tence of weak solutions is proved [3]. The problem of regularity is still open.
Applying the theory of semigroups a unique regular solution for small data
has been obtained [4]. A stability result for special solutions in the whole
space has been proved in [1, 7].

We examine the motion of a viscous incompressible fluid described by
the Navier–Stokes system in R3
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(1)

vt + (v∇)v − ν∆v +∇q̃ = h+ f,

div v = 0,

v|t=0 = w0 + u0,

where v = (v1, v2, v3) is the velocity, q̃ is the pressure, h + f the external
force and ν the constant positive viscosity coefficient.

Problem (1) is treated as a perturbation of the system

(2)

wt + (w∇)w − ν∆w +∇q = h,

divw = 0,

w|t=0 = w0.

Put u = v − w and p = q̃ − q. Then from (1) and (2) we obtain

(3)

ut − ν∆u+∇p = f − w∇u− u∇u− u∇w,
div u = 0,

u|t=0 = u0.

We assume that system (2) has a unique global-in-time regular solution
such that w ∈W 1,0

∞ (R3 × [0,∞)), and moreover

w = w1 + w2,

where

(4) ‖∇w1(·, t)‖L∞(R3) ∈ L1(0,∞), ‖w2(·, t)‖L∞(R3) ∈ L2(0,∞).

Assumption (4) shows that w tends to a constant flow, but also we see
that (4) gives no condition on integrability in time or smallness for
‖w1(·, t)‖L∞(R3) or ‖∇w2(·, t)‖L∞(R3).

The main result of the paper is the following theorem.

Theorem. Let r ≥ 2, f = ∇ϕ ∈ Lr(loc)(R3× (0,∞)), u0 ∈W 2−2/r
r (R3)

∩ L2(R3), div u0 = 0 and

sup
k∈N
‖f‖Lr(R3×(k,k+1)) + ‖u0‖W 2−2/r

r (R3) + ‖u0‖L2(R3) ≤M0,

‖u0‖L2(R3) ≤ δ.
If δ ≤ δ0(M0), where δ0(M0) tends to zero as M0 → ∞, then a perturbed
solution (v, q̃) to problem (1) exists globally in time and

(5) ‖v − w‖W 2,1
r (R3×[k,k+1]) + ‖∇q̃ −∇q‖Lr(R3×[k,k+1]) ≤ K(M0)

for k ∈ N, where K(M0) is a function independent of k and tends to zero
as M0 → 0. Moreover ,

(6) ‖v − w‖W 2,1
r (R3×[k,k+1]) + ‖∇q̃ −∇q‖Lr(R3×[k,k+1])

≤ c(‖u0‖L2(R3) + ‖f‖Lr(R3×[k−1,k+1]))

for k ∈ N \ {0}.
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Remark. It is easily seen that we can reduce problem (3) to the case of
f ≡ 0. Since f = ∇ϕ it is possible to make the transformation p 7→ p − ϕ.
But we will not use it in our considerations.

Notation. We will need the anisotropic Sobolev spaces Wm,n
r (QT )

where m,n ∈ R+ ∪ {0}, r ≥ 1 and QT = Q× (0, T ) with the norm

‖u‖rWm,n
r (QT ) =

T�

0

�

Q

|u(x, t)|r dx dt

+
∑

0≤|m′|≤[|m|]

T�

0

�

Q

|Dm′
x u(x, t)|r dx dt

+
∑

|m′|=[|m|]

T�

0

dt
�

Q

�

Q

|Dm′
x u(x, t)−Dm′

x u(x′, t)|r
|x− x′|s+r(|m|−[|m|]) dx dx′

+
∑

0≤|n′|≤[|n|]

T�

0

�

Q

|Dn′
t u(x, t)|r dx dt

+
�

Q

dx

T�

0

T�

0

|D[n]
t u(x, t)−D[n]

t (x, t′)|r
|t− t′|1+r(n−[n])

dt dt′,

where s = dimQ, [α] is the integral part of α, and Dl
x = ∂l1x1

. . . ∂lsxs , where
l = (l1, . . . , ls) is a multiindex.

For these spaces we have the following relations (see [2]). Let u ∈
Wm,n
r (ΩT ). If

3∑

i=1

(
αi +

1
r
− 1
q

)
1
m

+
(
β +

1
r
− 1
q

)
1
n
< 1

then

(7) ‖Dβ
t D

α
xu‖Lq(ΩT ) ≤ ε‖u‖Wm,n

r (ΩT ) + c(ε)‖u‖L2(ΩT ),

where q ≥ r ≥ 2 and ε ∈ (0, 1) and c(ε)→∞ with ε→ 0.
We use well known results such as the imbedding or trace theorems for

Sobolev spaces. All constants are denoted by c. By A,B,C, . . . we denote
constants which are fixed in each proof.

The main tool used in the proof is an estimate for solutions to the Stokes
system

(8)

ut − ν∆u+∇p = f,

div u = 0,

u|t=0 = u0.
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Lemma 1. Let f ∈ Lr(R3 × (0,∞)), u0 ∈ W 2−2/r
r (R3) and div u0 = 0.

Then there exists a unique solution of (8) such that u ∈W 2,1
r (R3 × (0, T )),

p ∈W 1,0
r (R3 × (0, T )) and

(9) ‖u‖W 2,1
r (R3×(0,T )) + ‖∇p‖Lr(R3×(0,T ))

≤ C(T )(‖f‖Lr(R3×(0,T )) + ‖u0‖W 2−2/r
r (R3)),

where C(T ) is an increasing positive function.

The proof can be found in [6] or in [8].
Next we prove local existence of solutions to problem (3).

Lemma 2. Let f ∈ Lr(R3 × (0, T )), u0 ∈ W 2−2/r
r (R3) and div u0 = 0.

Then there exists T0 > 0 such that for all T ≤ T0 system (3) has a unique
solution such that u ∈W 2,1

r (R3 × (0, T )), p ∈W 1,0
r(loc)(R

3 × (0, T )) and

(10) ‖u‖W 2,1
r (R3×(0,T )) + ‖∇p‖Lr(R3×(0,T ))

≤ C(T )(‖f‖Lr(R3×(0,T )) + ‖u0‖W 2−2/r
r (R3)).

Proof. We construct a sequence {um, pm}∞m=1 of approximations defined
by

(11)

um,t−ν∆um+∇pm = −um−1∇um−1 +f−w∇um−1−um−1∇w,
div um = 0,

um|t=0 = u0,

where u1 = 0 and p1 = 0.
Lemma 1 gives the following estimate for the solution of (11):

(12) ‖um‖W 2,1
r (R3×[0,T ]) + ‖∇p‖Lr(R3×[0,T ])

≤ A(‖f‖Lr(R3×[0,T ]) + ‖u0‖W 2−2/r
r (Ω) + ‖um−1∇um‖Lr(R3×[0,T ])

+ ‖w∇um−1‖Lr(R3×[0,T ]) + ‖um−1∇w‖Lr(R3×[0,T ])).

Since r ≥ 3, we have the imbeddings W
2−2/r
r (R3) ⊂ L3r(R3) and

W
1−2/r
r (R3) ⊂ L(3/2)r(R3) with the estimate

(13) sup
t≤T
‖∇um−1(·, t)‖L(3/2)r(R3) + sup

t≤T
‖u(·, t)‖L3r(R3)

≤ sup
t≤T
‖u(·, t)‖

W
2−2/r
r (R3)

≤ α(‖um−1‖W 2,1
r (R3×[0,T ]) + ‖u0‖W 2−2/r

r (R3)),

where α does not depend on T . By (13) and the Hölder inequality with
1/r = 1/(3r) + 2/(3r), we get
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(14) ‖um−1∇um‖Lr(R3×[0,T ])

+ ‖w∇um−1‖Lr(R3×[0,T ]) + ‖um−1∇w‖Lr(R3×[0,T ])

≤ BT 1/r(‖um−1‖W 2,1
r (R3×[0,T ]) + ‖um−1‖2W 2,1

r (R3×[0,T ])

+ ‖u0‖W 2−2/r
r (R3) + ‖u0‖2W 2−2/r

r (R3)
).

If 2 ≤ r < 3 to obtain (14) we have to use the parabolic imbedding.
Let T ≤ 1 and assume that

(15) ‖uk‖W 2,1
r (R3×[0,T ]) + ‖∇pk‖Lr(R3×[0,T ])

≤ 4A(‖f‖Lr(R3×[0,T ]) + ‖u0‖W 2−2/r
r (R3)) ≡M

for k = 1, . . . ,m− 1.
By (12) and (14) we see that we can choose T so small that (15) is

satisfied for k = m. Since u1 = 0 and p1 = 0, by induction we obtain (15)
for all k ∈ N.

Next we prove convergence of the sequence.
From (11) we get the following system for Um = um − um−1 and Pm =

pm − pm−1:

(16)

Um,t − ν∆Um +∇Pm
= −w∇Um−1 − Um−1∇w − um−1∇Um − Um−1∇um−1,

divUm = 0,

Um|t=0 = 0.

By Lemma 1 we obtain the estimate

(17) ‖Um‖W 2,1
r (R3×[0,T ]) + ‖∇Pm‖Lr(R3×[0,T ])

≤ A(‖um−1∇Um‖Lr(R3×[0,T ]) + ‖Um−1∇um−1‖Lr(R3×[0,T ])

+ ‖w∇Um−1‖Lr(R3×[0,T ]) + ‖Um−1∇w‖Lr(R3×[0,T ])).

By the same argument as in (14) we have

(18) ‖w∇Um−1‖Lr(R3×[0,T ]) + ‖Um−1∇w‖Lr(R3×[0,T ])

≤ cT 1/r‖Um−1‖W 2,1
r (R3×[0,T ]).

By (7) with r ≥ 2 we have W 2,1
r (R3 × [0, T ]) ⊂⊂ L3r(R3 × [0, T ]) and

DxW
2,1
r (R3 × [0, T ]) ⊂⊂ L3r/2(R3 × [0, T ]), hence applying the Hölder in-

equality (1/r = 1/(3r) + 2/(3r)) we get

(19) ‖Um−1∇um−1‖Lr(R3×[0,T ]) + ‖um−1∇Um−1‖Lr(R3×[0,T ])

≤ c(ε‖Um−1‖W 2,1
r (R3×[0,T ]) + c(ε)‖Um−1‖Lr(R3×[0,T ]))

≤ c(ε‖Um−1‖W 2,1
r (R3×[0,T ]) + c(ε)T 1/r‖Um−1‖W 2,1

r (R3×[0,T ]))
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by (13). From (17)–(19) we get

(20) ‖Um‖W 2,1
r (R3×[0,T ]) + ‖∇Pm‖Lr(R3×[0,T ])

≤ C(ε‖Um−1‖W 2,1
r (R3×[0,T ]) + c(ε)T 1/r‖Um−1‖W 2,1

r (R3×[0,T ])).

Taking ε and T small enough, we conclude that

‖Um‖W 2,1
r (R3×[0,T ]) ≤ 1

2‖Um−1‖W 2,1
r (R3×[0,T ]),

which gives

Um → 0 in W 2,1
r (R3 × [0, T ]) and ∇Pm → 0 in Lr(R3 × [0, T ]).

Thus {(um, pm)}∞m=1 is convergent to a solution of (3), and (10) comes
from (15). The proof of Lemma 2 is complete.

The next result enables us to control in time the L2-norm of solutions
only by the L2-norm of initial data.

Lemma 3. The solution of problem (3) on [0, T ] satisfies the estimate

‖u‖L∞(0,T ;L2(R3)) ≤ A‖u0‖L2(R3),

where A does not depend on T .

Proof. Multiplying (3)1 by u and integrating over R3 we get

(21)
1
2
d

dt

�
u2 dx+ ν

�
|∇u|2 dx = −

�
∇q · u+

�
f · u dx

−
�
(u∇)w · u dx−

�
(u∇)u · u dx−

�
(w∇)u · u dx.

The first, fourth and fifth terms vanish by (2)2 and (3)2. The second term
vanishes by the assumption that f is potential (f = ∇ϕ). Thus, since w =
w1 + w2 (see (4)), we obtain

d

dt

�
u2 dx+ ν

�
|∇u|2 dx ≤ A1‖∇w1‖L∞(R3)

�
u2 dx+

�
u∇w2 · u dx,

but∣∣∣
�
u∇w2 · u dx

∣∣∣ =
∣∣∣

�
u∇u ·w2 dx

∣∣∣ ≤ ν
�
|∇u|2 dx+A2‖w2(·, t)‖2L∞(R3)

�
u2 dx.

Hence we get

(22)
d

dt

�
u2 dx ≤ (A1‖∇w1(·, t)‖L∞(R3) + A2‖w2(·, t)‖2L∞(R3))

�
u2 dx.

By the Gronwall inequality we obtain

‖u(·, t)‖2L2(R3)

≤ exp
{ t�

0

(A1‖∇w1(·, s)‖L∞(R3)+A2‖w2(·, s)‖2L∞(R3)) ds
}
‖u0‖2L2(R3).

By assumption (4) we get the assertion of the lemma.
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Lemma 4. The solution of problem (3) on [0, T ] satisfies the estimate

(23) ‖u‖W 2,1
r (Ok) + ‖∇p‖Lr(Ok)

≤ C(‖f‖Lr(Ok−1∪Ok) + ‖u0‖L2(R3) + ‖u0‖W 2−2/r
r (R3)),

where Ok = R3 × [kQ, (k + 1)Q], Q ≤ T and C is independent of T , if
‖u0‖L2(R3) is small enough.

Proof. We introduce a smooth function ζk : R+ → R such that

ζk(t) =
{

1 for t ≥ kQ,
0 for t ≤ (k − 1)Q,

for k ∈ N \ {0}, 0 ≤ ζ ≤ 1, ζ ′ ≥ 0 and |ζ ′| ≤ 2/Q.
Multiplying (3) by ζk and setting Uk = ζku, P k = ζkp, we get

(24)

Ukt − ν∆Uk −∇P k = ζkf − Uk∇w − w∇Uk − u∇Uk + ζ ′ku,

divUk = 0,

Uk|t=(k−1)Q = 0.

Applying Lemma 1 with T = 2Q we obtain

(25) ‖Uk‖W 2,1
r (Ok−1∪Ok) + ‖∇P k‖Lr(Ok−1∪Ok)

≤ C(2Q)(‖f‖Lr(Ok−1∪Ok) + ‖Uk∇w‖Lr(Ok−1∪Ok)

+ ‖w∇Uk‖Lr(Ok−1∪Ok) + ‖u∇Uk‖Lr(Ok−1∪Ok) + ‖ζ ′ku‖Lr(Ok−1∪Ok)).

Using (7) we estimate the unknown terms of the r.h.s. of (25):

‖Uk∇w‖Lr(Ok−1∪Ok)

≤ ‖∇w‖L∞(ε‖Uk‖W 2,1
r (Ok−1∪Ok) + c(ε)‖Uk‖L2(Ok−1∪Ok)),

‖w∇Uk‖Lr(Ok−1∪Ok)

(26) ≤ ‖w‖L∞(ε‖Uk‖W 2,1
r (Ok−1∪Ok) + c(ε)‖Uk‖L2(Ok−1∪Ok)),

‖u∇Uk‖Lr(Ok−1∪Ok) ≤ ‖Uk−1‖L3r(Ok−1)(ε‖Uk‖W 2,1
r (Ok−1∪Ok)

+ c(ε)‖Uk‖L2(Ok−1∪Ok)) + ‖Uk∇Uk‖Lr(Ok),

‖ζ ′ku‖Lr(Ok−1∪Ok) ≤ ε|ζ ′k| · ‖Uk−1‖W 2,1
r (Ok−1) + |ζ ′k|c(ε)‖u‖L2(Ok−1).

Assumption (4) gives an estimate on ‖∇w‖L∞(R3×[0,T ]) and ‖w‖L∞(R3×[0,T ]).
Choosing sufficiently small ε and applying (26) to (25), we obtain

(27) ‖Uk‖W 2,1
r (Ok) + ‖∇P k‖Lr(Ok)

≤ A(‖Uk∇Uk‖2Lr(Ok) + ‖f‖Lr(Ok−1∪Ok) + ε|ζ ′k| · ‖Uk−1‖W 2,1
r (Ok−1)

+ (c(ε)‖Uk−1‖W 2,1
r (Ok−1)|ζ ′k|+ c(ε)W )‖u‖L2(Ok−1∪Ok)),

where W = ‖∇w‖L∞(R3×[0,T ]) + ‖w‖L∞(R3×[0,T ]).
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By the same argument as in (19) we obtain

‖Uk∇Uk‖Lr(Ok) ≤ ‖Uk‖L3r‖∇Uk‖L(3/2)r(Ok)(28)

≤ σ‖Uk‖2
W 2,1
r (Ok) + c(σ)‖u‖2L∞((k−1)Q,kQ;L2(R3)).

Let

Xm = ‖Um‖W 2,1
r (Om) + ‖∇Pm‖Lr(Om), F = sup

m
B‖f‖Lr(Om−1∪Om).

We prove estimate (23) by induction. For k = 0 the functions U 0 and
P 0 are defined as the local solution given by Lemma 2. We assume that
Xk−1 ≤M , where M is so large that M ≥ 16F .

By (27) and (28) we get

Xk ≤ F +BεM + c(ε)(M +W )‖u‖L2(Ok−1∪Ok)(29)

+ c(σ)‖u‖2L∞((k−1)Q,kQ;L2(R3)) +BσX2
k ≡ α+ βX2

k .

To obtain a uniform estimate for Xk we need two relations:

(30) 1− 4αβ > 0 and
1−√1− 4αβ

2β
≤M,

which give Xk ≤ M . Taking σ, ε and ‖u0‖L2(R3) sufficiently small, by
Lemma 3, we get the first condition of (30). To obtain the second one we
note that (1−√1− 4αβ)/(2β) ≤ 2α. So we have to prove that 2α ≤ M ;
but this is satisfied, because

F ≤ 1
16
M, c(σ)‖u‖2L∞((k−1)Q,kQ;L2(R3)) ≤

1
4
M,

Bε ≤ 1
16
, c(ε)(M +W )‖u‖L2(Ok−1∪Ok) ≤

1
8
M,

assuming that ‖u0‖L2(R3) is small enough (see Lemma 3). This way we get
Xk ≤M . Lemma 4 has been proved.

Lemma 4 gives estimates which enable one to continue the solution using
the local existence result from Lemma 2. Thus we get the first part of the
Theorem concerning the existence of global-in-time solutions. Inequality (5)
comes from (23).

To finish the proof of the Theorem we need the following lemma.

Lemma 5. Solutions of (3) satisfy the estimate

‖v − w‖W 2,1
r (R3×[k,k+1]) + ‖∇q̃ −∇q‖Lr(R3×[k,k+1])

≤ c(‖u0‖L2(R3) + ‖f‖Lr(R3×[k,k+1]))

for k ∈ N \ {0}.
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Proof. We take a smooth function ηl : R+ → R such that

ηl(t) =
{

1 for t ≥ t0 + l,
0 for t ≤ t0 + l/2,

and 0 ≤ ηl ≤ 1, |Dηl| ≤ 3/l, l ∈ (0, 1].
Now we repeat the considerations from the proof of Lemma 4. We mul-

tiply (3) by ηl, and applying Lemma 1 we find estimates on the functions
Ul = ηlu and Pl = ηlp:

(31) ‖Ul‖W 2,1
r (R3×[t0,t0+2]) + ‖∇Pl‖Lr(R3×[t0,t0+2])

≤ A
(
‖f‖Lr(R3×[t0,t0+2]) +B‖u0‖L2(R3) + 3

l ‖Ul/2‖Lr(R3×[t0,t0+2])
)
.

To obtain (31) we repeat all steps ((25)–(27)) of the considerations for (24)
omitting (26)3.

From [2, Chap. 18] we have the interpolation inequality

(32) ‖u‖Lr(R3) ≤ ε‖u‖W 2
r (R3) + cε−(3/2)(1/2−1/r)‖u‖L2(R3),

where ε ∈ (0, 1). From (32) and Lemma 3 we get

(33) 3
l ‖Ul/2‖Lr(R3×[t0,t0+2])

≤ ε0‖Ul/2‖W 2,1
r (R3×[t0,t0+2])

+ Cl−1(ε0l)−(3/2)(1/2−1/r)‖u‖L∞(t0,t0+2;L2(R3)).

Using (33) in (31) we get

‖Ul‖W 2,1
r (R3×[t0,t0+2]) ≤ ε0‖Ul/2‖W 2,1

r (R3×[t0,t0+2])(34)

+Dl−1(ε0l)−(3/2)(1/2−1/r)‖u0‖L2(R3)

+ A(‖f‖Lr(R3×[t0,t0+2]) +B‖u0‖L2(R3)).

Putting l = 1 and repeating the same method as for (34) we conclude that

(35) ‖U1‖W 2,1
r (R3×[t0,t0+2]) + ‖∇P1‖Lr(R3×[t0,t0+2])

≤ εk0‖U1/2k‖W 2,1
r (R3×[t0,t0+2])

+ E‖u0‖L2(R3)(1 + ε027/4−3/(2r) + . . .+ (ε027/4−3/(2r))k−1)

+ A(‖f‖Lr(R3×[t0,t0+2]) +B‖u0‖L2(R3))(1 + ε0 + . . .+ εk−1
0 ).

Taking ε so small that ε0 ≤ 2−(7/4−3/(2r)) and letting k → ∞ in (35), we
get

(36) ‖U1‖W 2,1
r (R3×[t0,t0+2]) + ‖∇P1‖Lr(R3×[t0,t0+2])

≤ c(‖f‖Lr(R3×[t0,t0+2]) + ‖u0‖L2(R3)).

Inequality (36) gives (6). The proof of the Theorem is finished.
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