
APPLICATIONES MATHEMATICAE
28,3 (2001), pp. 353–365

Zbigniew Bartoszewski (Gdańsk)
Zdzisaw Jackiewicz (Tempe, AZ)

TOWARD A TWO-STEP RUNGE–KUTTA CODE FOR
NONSTIFF DIFFERENTIAL SYSTEMS

Abstract. Various issues related to the development of a new code for
nonstiff differential equations are discussed. This code is based on two-step
Runge–Kutta methods of order five and stage order five. Numerical exper-
iments are presented which demonstrate that the new code is competitive
with the Matlab ode45 program for all tolerances.

1. Introduction. A new code for nonstiff ordinary differential equations
(ODEs) {

y′(x) = f(y(x)), x ∈ [x0,X],

y(x0) = y0,
(1.1)

f : Rm → Rm, is described. This code is based on variable step size two-
step Runge–Kutta (TSRK) method of order p = 5 and stage order q = 5
constructed in [1]. A general class of TSRK methods was introduced recently
by Jackiewicz and Tracogna [12] and further investigated in [5], [9], [11], [13],
[14], [17], and [18]. On a nonuniform grid

x0 < x1 < . . . < xN , xN ≥ X,
these methods with coefficients η ∈ R, u, v, w ∈ Rs, and A,B ∈ Rs×s take
the form




Y [n] = (u⊗ Im)ỹn−1 + ((e− u)⊗ Im)yn

+ hn+1((A⊗ Im)F (Ỹ [n−1]) + (B ⊗ Im)F (Y [n])),

yn+1 = ηỹn−1 + (1− η)yn

+ hn+1((vT ⊗ Im)F (Ỹ [n−1]) + (wT ⊗ Im)F (Y [n])),

(1.2)

2000 Mathematics Subject Classification: 65L05, 65L06.
Key words and phrases: two-step Runge–Kutta methods, starting procedure, local

error estimation, step changing strategy.

[353]

354 Z. Bartoszewski and Z. Jackiewicz

n = 1, . . . , N − 1, where hn+1 = xn+1 − xn, ỹ0 = y0, and



F (Ỹ [n−1]) = (Ṽ ⊗ Im)F (Ỹ [n−2]) + (W̃ ⊗ Im)F (Y [n−1]),

ỹn−1 = yn−1 + (ṽ ⊗ Im)hn+1F (Ỹ [n−2])

+ (w̃ ⊗ Im)hn+1F (Y [n−1]),

(1.3)

n = 2, . . . , N (compare [17]). Denote by y the exact solution to (1.1). Then
yn denotes an approximation to y(xn), Y [n] ∈ Rm·s, Y [n] = [Y [n]

1 , . . . , Y
[n]
s]T

is the vector of stage values and its coordinates Y [n]
j are approximations to

y(xn + cjhn+1), F (Y [n]) ∈ Rm·s, F (Y [n]) = [f(Y [n]
1), . . . , f(Y [n]

s)]T , ỹn−1 is

an approximation to y(xn−hn+1), F (Ỹ [n−1]) = [f(Ỹ [n−1]
1), . . . , f(Ỹ [n−1]

s)]T ,
where stage values Ỹ [n−1]

j are approximations to y(xn − hn+1 + cjhn+1),

Ṽ , W̃ ∈ R(p+1)×s, Ṽ = G̃D̃TV , W̃ = G̃D̃TW , ṽT , w̃T ∈ Rp+1, ṽ = ∆̃V ,
w̃ = ∆̃W , ∆̃ = ∆/δ, D̃ = D/δ and G and G̃ are matrices defined by

G =
[
e c . . .

cp

p!

]
and G̃ =

[
e c− e . . .

(c− e)p
p!

]
.

Here, e = [1, 1, . . . , 1]T ∈ Rs, c = [c1, . . . , cs]T is the vector of stage abscissas,
cp means componentwise multiplication,

T =




1 1
1
2!

. . .
1
p!

0 1 1 . . .
1

(p− 1)!

0 0 1 . . .
1

(p− 2)!
...

...
...

. . .
...

0 0 0 . . . 1




,

D and ∆ are the rescaling matrix and vector given by

D = diag(δ, δ2, . . . , δp+1), δ = hn+1/hn,

∆ =
[

1− δ (1− δ)2

2!
. . .

(1− δ)p+1

(p+ 1)!

]
,

and the matrices V,W ∈ R(p+1)×s are defined by the relation

V G̃+WG = Ip+1,(1.4)

the so-called compatibility conditions

G̃TV = 0 and G̃TW = Is(1.5)

and some additional conditions which will be given in the next section. It
was explained in [17] that (1.4) and (1.5) imply that the rescaled quantities

Runge–Kutta code for nonstiff systems 355

ỹn and F (Ỹ [n]) are identical to F (Y [n]) and yn respectively if δ = 1, i.e., if
no step size change is performed. We can take advantage of this fact and
put h2 = h1 to obtain F (Ỹ [0]) = F (Y [0]), ỹ0 = y0 and start the process
with formulas (1.2) for n = 2. However, we should first apply a one-step
method of order consistent with the order of the TSRK method to find y1
and Y [0]. But if the step h2 is too large we should find ỹ0 and F (Ỹ [0]) by
other methods, for example by the one-step method used to find y1 and Y [0].

We will assume that the coefficient matrix A in (1.2) is strictly lower
triangular, i.e., triangular with zero diagonal. This choice corresponds to the
explicit methods (1.2)–(1.3) which are appropriate for nonstiff differential
systems (1.1). In [12] and [1] we have also considered the diagonally implicit
TSRK methods (with a constant element on the diagonal of A) which are
appropriate for stiff differential systems.

Since TSRK methods depend on numerical values at two consecutive
steps they are more difficult to implement than Runge–Kutta methods.
Moreover, they also require a special starting procedure of sufficiently high
order (see Section 4). However, these difficulties are offset by increased effi-
ciency. For example, the formula used in this paper achieves order five with
only four function evaluations per step. In contrast, to attain the same or-
der with explicit Runge–Kutta methods would require at least six function
evaluations in a current step. Additional advantages of TSRK formulas are
the availability of asymptotically correct estimators of the local discretiza-
tion error (see Section 3) and continuous interpolant of the same order (see
[4], [13]) without any significant additional cost, which is not possible for
Runge–Kutta methods.

The error constants Ĉν and Cν can be written in the form

Ĉν =
1
ν!
− (−1)νη

ν!
− vT (c− e)ν−1

(ν − 1)!
− wT cν−1

(ν − 1)!
,

Cν =
cν

ν!
− (−1)νu

ν!
− A(c− e)ν−1

(ν − 1)!
− Bcν−1

(ν − 1)!
.

It follows from the results of [12] and [13] that if

Ĉν = 0, ν = 1, . . . , p,(1.6)

Cν = 0, ν = 1, . . . , p− 1,(1.7)

then the method (1.2)–(1.3) is convergent with order p and stage order q = p,
i.e.,

sup{‖y(xn)− yn‖ : 0 ≤ n ≤ N} = O(hp),

and

sup{‖y(xn + chn+1)− Y [n]‖ : 0 ≤ n ≤ N} = O(hp),

356 Z. Bartoszewski and Z. Jackiewicz

h = max{hn : 1 ≤ n ≤ N}. We will refer to (1.6) and (1.7) as the consistency
conditions and stage consistency conditions, respectively, of order p.

The organization of this paper is as follows. In Section 2 we review the
construction of a TSRK method of order p = q = 5 with desirable stability
properties [1] and the computation of the matrices V and W which appear
in the definitions of ṽ and w̃, which in turn appear in formulas (1.3). The es-
timation of the principal part of the local discretization error of (1.2)–(1.3)
is discussed in Section 3. In Section 4 we discuss the computation of the
quantities Ỹ [0]

j ≈ y(x0 + cjh1) and y1 ≈ y(x1), which are required to start
the TSRK method (1.2)–(1.3). In Section 5 we discuss the choice of the
starting step size h1 = x1−x0. In Section 6 we describe the step size chang-
ing strategy which is based on the estimate of the local discretization error
derived in Section 3. In Section 7 a selection of results of numerical experi-
ments is presented. These results demonstrate that the new code described
in this paper is competitive with the code ode45 from the Matlab ODE suite
developed by Shampine and Reichelt [16].

2. Construction of variable step size TSRK methods. It was
explained in [1] that solving the system (1.6) with respect to vT and ws and
then the system (1.7) with respect to aij leads to a family of methods of
order p = q with free parameters η, ci, ui, i = 1, . . . , s, wi, i = 1, . . . , s− 1,
and bij , i = 2, . . . , s, j = 1, . . . , i− 1. These free parameters are then chosen
in such a way that the stability polynomial of the method is equal to the
prescribed polynomial with desired stability properties. This leads to a large
system of polynomial equations which can be solved by techniques based on
least squares minimization. The solution process is carefully explained in [1]
and in the case of s = 4 and p = q = 5 leads to the TSRK method whose
coefficients up to six decimal places of accuracy are listed below.

c = [0.0426809 0.179134 0.514122 0.864807]T ,

η = 0, u = [3.37416 2.77718 1.53983 0.337209]T ,

A =




0.149087 1.06305 1.06295 1.14175

0.148093 0.817564 0.959052 0.774195

−0.504349 1.47770 −0.0344121 0.446085

−2.52101 4.54789 −2.56605 1.11104



,

B =




0 0 0 0

0.257408 0 0 0

−0.118572 0.787496 0 0

−1.23797 1.43006 0.438059 0



,

Runge–Kutta code for nonstiff systems 357

v = [0.359241 −0.671283 0.456387 −0.150115]T ,

w = [0.754482 −0.763885 0.795484 0.219689]T .

We compute next the matrices V,W ∈ R(p+1)×s by solving the system (1.4)
and the compatibility conditions (1.5). In the case of s = 4 this leads to
a four-parameter family of solutions depending on w53, w54, w63, and w64.
These free parameters are then chosen to satisfy the additional conditions

V e = 0,(2.1)
and

V Cp = 0,(2.2)

which are necessary for a reliable control of the local discretization error.
This is discussed in detail in [17] and will be briefly addressed in Section 3.

It is easy to program the solution process to (1.4), (1.5), (2.1), and (2.2)
in MATHEMATICA, and the resulting unique solution V and W corre-
sponding to the TSRK method listed at the beginning of this section is
given below.

V =




−0.0125838 0.0252922 −0.0158426 0.00313423

0.391021 −0.78851 0.495509 −0.0980198

−4.77228 9.75851 −6.21523 1.22900

18.0402 −39.7319 27.0261 −5.33442

59.0730 −89.4004 37.9363 −7.60893

−462.024 837.008 −467.869 92.8851




,

W =




1.41174 −0.463082 0.0577709 −0.00643001

−10.0916 11.5495 −1.64588 0.187973

19.4568 −30.9511 13.2262 −1.73193

99.3719 −132.842 35.1429 −1.67266

−214.337 346.433 −176.504 44.4082

−1408.30 2057.80 −807.490 157.989




.

Full precision versions of the coefficients of these matrices and of the TSRK
method can be obtained from the authors.

3. Local error estimation. It was proved in [17] that the local dis-
cretization error ϕp(xn+1) of the TSRK method (1.2)–(1.3) at the point
xn+1 is given by

ϕp(xn+1)

=
(
Ĉp+1y

(p+1)(xn) + ((v + w)TCp)
∂f

∂y
(y(xn))y(p)(xn)

)
hp+1
n+1 +O(hp+1

n+1).

358 Z. Bartoszewski and Z. Jackiewicz

Moreover, if V and W satisfy (1.4), (1.5), (2.1), (2.2), and the condition

G̃DTWCp = δp+1Cp,(3.1)

then the principal part of this error can be estimated by the formula

(3.2) est(xn+1) = hn+1(βT1 ⊗ Im)F (Y [n]) + hn+1(βT2 ⊗ Im)F (Ỹ [n−1]),

where the vectors β1, β2 ∈ Rs satisfy the system of equations



(β1 + β2)T e = 0,

βT1 c
ν−1 + βT2 (c− e)ν−1 = 0, ν = 2, 3, . . . , p,

βT1
cp

p!
+ βT2

(c− e)p
p!

= Ĉp+1,

(β1 + β2)TCp = (v + w)TCp,

with the constants C̃p+1 and Cp given in Section 1.
It was observed by Tracogna [17] that the estimate (3.2) is more reliable

if the condition (β1 + β2)T e = 0 is replaced by the two conditions βT1 e = 0
and βT2 e = 0. Solving the resulting system of equations corresponding to
the TSRK method given in Section 2 leads to the following coefficients β1
and β2:

β1 = [1.76797 −2.32030 0.655654 −0.103315]T ,

β2 = [−0.158241 0.409025 −0.692396 0.441612]T .

We now have to discuss the role of (3.1). It follows from (1.5) that this
condition is automatically satisfied if δ = 1, i.e., if no step change is permit-
ted, and it is approximately satisfied if δ is close to one. In the actual im-
plementation of the code we permit the values of δ in the range [δmin, δmax],
where δmin = 0.1 and δmax = 2. The results of numerical experiments pre-
sented in Section 6 demonstrate that the estimate (3.2) is quite reliable for
all values of δ in this range (compare Figs. 7.1a and 7.2a in Section 7).

4. Starting procedure. General TSRK methods of the form (1.2)–
(1.3) require a starting procedure to compute Ỹ [0] and y1 in addition to
the given initial value y0. This starting procedure must be compatible with
the TSRK method, which means that the terms of order up to p− 1 in the
B-series corresponding to Ỹ [0] computed by the starting procedure coincide
with the corresponding terms in the TSRK formula (compare [9], [18]; for
the notion of B-series we refer the reader to [8]). However, as observed
by Hairer and Wanner [9] and Tracogna and Welfert [18], the situation is
much simpler for TSRK methods of stage order q = p or q = p − 1. In
this case it is possible to choose as starting procedure any continuous RK
method of order p or to use repeatedly a (discrete) RK method of order

Runge–Kutta code for nonstiff systems 359

p with step sizes ci(x1 − x0), i = 1, . . . , s, to compute Ỹ [0]
j , where the ci

correspond to the TSRK formula. In our code we adopt the former approach
and compute Ỹ [0] and y1 by the continuous RK method constructed by
Owren and Zennaro [15] by minimizing the continuous coefficients of the
local discretization error. The resulting optimal method of order p = 5 with
s = 8 stages and stage reuse has the form




Ki = f
(
y0 + h1

i−1∑

j=1

ãijKj

)
,

ξ(x0 + θh1) = y0 + h1

s∑

i=1

b̃i(θ)Ki,

(4.1)

i = 1, . . . , s, θ ∈ [0, 1], h1 = x1 − x0, where the vector c̃ = [c̃1, . . . , c̃s]T of
stage abscissas, the coefficient matrix Ã = [ãi,j]si,j=1, and the vector b̃(θ) =

[̃b1(θ), . . . , b̃s(θ)]T of continuous weights are given by

c̃ Ã

b̃T (θ)
=

0
1
6

1
6

1
4

1
16

3
16

1
2

1
4 −3

4 1
1
2 −3

4
15
4 −3 1

2
9
14

369
1372 −243

343
297
343

1485
9604

297
4802

7
8 − 133

4512
1113
6016

7945
16544 −12845

24064 − 315
24064

156065
198528

1 83
945 0 248

825
41
180

1
36

2401
38610

6016
20475

b̃1(θ) b̃2(θ) b̃3(θ) b̃4(θ) b̃5(θ) b̃6(θ) b̃7(θ) b̃8(θ)

with
b̃1(θ) = 596

315θ
5 − 4969

819 θ
4 + 17893

2457 θ
3 − 3292

819 θ
2 + θ,

b̃2(θ) = 0,

b̃3(θ) = −1984
275 θ

5 + 1344
65 θ4 − 43568

2145 θ
3 + 5112

715 θ
2,

b̃4(θ) = 118
15 θ

5 − 1465
78 θ4 + 3161

234 θ
3 − 123

52 θ
2,

b̃5(θ) = 2θ5 − 413
78 θ

4 + 1061
234 θ

3 − 63
52θ

2,

b̃6(θ) = −9604
6435θ

5 + 2401
1521θ

4 + 60025
50193θ

3 − 40817
33462θ

2,

b̃7(θ) = −48128
6825 θ

5 + 96256
5915 θ

4 − 637696
53235 θ

3 + 18048
5915 θ

2,

b̃8(θ) = 4θ5 − 109
13 θ

4 + 75
13θ

3 − 18
13θ

2.

The approximations y1 and Ỹ [0] are now computed from the formulas

y1 = ξ(x1), Ỹ
[0]
j = f(ξ(x0 + cjh1)), j = 1, 2, 3, 4.

360 Z. Bartoszewski and Z. Jackiewicz

Owren and Zennaro [15] constructed also an embedded discrete RK method
of order four which can be used for error control. However, we did not
find this estimate very reliable and decided instead to estimate the local
discretization error of the first step by the Richardson extrapolation

est(x1) =
32(y1 − y∗1)

31
.(4.2)

Here, y∗1 is an approximation to y(x1) computed by a continuous RK method
(4.1) over two steps of size h1/2. For the problem of the form (1.1) this
requires 14 additional function evaluations, so the cost of (4.2) is quite high.
However, this estimate is used only in the first step so its contribution to
the overall cost of the algorithm is not significant.

5. Selection of initial step size. We choose the initial step size h1 =
x1 − x0 following the approach given in [8], which is a modification of the
approach proposed by Gladwell, Shampine and Brankin [7]. All the heuristic
constants and safety factors below have also been adopted from [8].

Put sci = Atoli + |yi(x0)|Rtoli, i = 1, . . . ,m, where Atoli and Rtoli are
absolute and relative error tolerances corresponding to the ith component
of the solution and define the norm ‖ · ‖sc by

‖y‖sc =

√√√√ 1
m

m∑

i=1

y2
i

sc2
i

.

The algorithm proposed in [8] is the following. As first guess for the step
size we let

h0 = 0.01(d0/d1),

where d0 = ‖y0‖sc, d1 = ‖f(y0)‖sc. If either d0 or d1 is smaller than 10−5 we
put h0 = 10−6. We next compute h̃0 from the formula

h̃0 = (0.01/max{d1, d2})1/6,

where

d2 =
‖f(y0 + h0f(y0))− f(y0)‖sc

h0
.

If max{d1, d2} ≤ 10−15 we put h̃0 = max{10−6, h0·10−3}. Then the proposed
starting step size h1 is given by

h1 = min{100 · h0, h̃0}.
The initial step is accepted if err ≤ 1, where

err = ‖est(x1)‖sc,
with sci = Atoli+max{|y0i|, |y1i|}Rtoli, i = 1, . . . ,m, and est(x1) computed
by (4.2). The initial step is rejected if err > 1 and the computations are

Runge–Kutta code for nonstiff systems 361

repeated with a new step size h̃1 adjusted according to the formula

h̃1 = h1 ·min{δmax,max{δmin, δsf · (1/err)1/6}},
with safety factors δmax = 2, δmin = 0.1, δsf = 0.9. After the first step
computed by the continuous RK method (4.1) is accepted we define h2 = h1,
where h1 is the size of the accepted step from x0 to x1, and compute the
quantity F (Ỹ [0]), which is needed to continue integration with the TSRK
method (1.2)–(1.3), and to compute the local error estimate (3.2).

6. Step size changing strategy. Assume we have completed a step
by the TSRK method from xn to xn+1 with a step size hn+1, n ≥ 1, which
resulted in the computation of the quantities Y [n], F (Y [n]), and yn+1. We
next compute the estimate est(xn+1) of the local discretization error at xn+1
using formula (3.2) and form the quantity

err = ‖est(xn+1)‖sc,
with sci = Atoli + max{|yni|, |yn+1,i|}Rtoli, i = 1, . . . ,m. This quantity is
then compared to one to compute an optimal step size (compare [8])

hopt = hn+1 · (1/err)1/6.

Let, for a given computer, mε > 0 be the smallest number for which
1 + mε 6= 1. If mε < err ≤ 1 the step is accepted and a new step size hn+2

is computed from the formula

hn+2 = hn+1 ·min{δmax,max{δmin, δsf · hopt}}
with δmax, δmin, and δsf defined in Section 4. If err ≤ mε we put hn+2 =
hn+1 ·δmin. The step is then completed by the computation of the quantities
F (Ỹ [n]) and ỹn using formula (1.3).

If err > 1 the step is rejected and computations are repeated with a new
step size h̃n+1 equal to

h̃n+1 = hn+1 ·min{δmax,max{δmin, δsf · hopt}}
and the new quantities F (Ỹ [n−1]) and ỹn−1 corresponding to h̃n+1. If n = 1
then Ỹ [0]

j , j = 1, . . . , s, and ỹ0 are computed by the continuous RK method
(4.1) at the points

x1 + (cj − 1)h̃2, x1 − h̃2,

i.e., Ỹ [0]
j = ξ(x1 + (cj − 1)h̃2), ỹ0 = ξ(x1 − h̃2). If n > 1 then F (Ỹ [n−1]) and

ỹn−1 are computed from
{
F (Ỹ [n−1]) = (Ṽ ⊗ Im)F (Ỹ [n−2]) + (W̃ ⊗ Im)F (Y n−1]),

ỹn−1 = yn−1 + (ṽ ⊗ Im)h̃n+1F (Ỹ [n−2]) + (w̃ ⊗ Im)h̃n+1F (Y [n−1]),

with Ṽ , W̃ , ṽ and w̃ corresponding to the new ratio δ = h̃n+1/hn.

362 Z. Bartoszewski and Z. Jackiewicz

7. Numerical examples. An experimental code tsrk5 based on TSRK
methods (1.2)–(1.3) with coefficients defined in Section 2 was written in
Matlab and applied to many problems to test its accuracy, efficiency, the re-
liability of local error estimation, and robustness of step changing strategy.
The implementation issues of this code were described in Sections 3–6. The
problems for the above tests were taken from the paper [10] one of whose
objectives in presenting the test problems, methods and comparison criteria
was to provide a rigorous conceptual basis for comparing numerical meth-
ods for ordinary differential equations. For illustration we present below a
selection of results of numerical experiments on the following two problems:
Van der Pol equation and orbit equation, i.e. problem E2 and D5 in [10].

Example 1. Van der Pol equation ([10]):
{
y′1 = y2, y1(0)= 2,

y′2 = (1− y2
1)y2 − y1, y2(0)= 0,

x ∈ [0, 20].

Example 2. Orbit equation ([10]):




y′1 = y3, y1(0) = 1− ε,
y′2 = y4, y2(0) = 0,

y′3 = −y1/(y2
1 + y2

2)3/2, y3(0) = 0,

y′4 = −y2/(y2
1 + y2

2)3/2, y4(0) =
√

(1 + ε)/(1− ε),
x ∈ [0, 20], ε = 0.9. Here, ε is the eccentricity of the orbit.

In Tables 7.1 and 7.2 we have listed the number of steps ns, number of
rejected steps nr, number of function evaluations nfe for our experimental
code tsrk5 based on the TSRK method (1.2)–(1.3) as well as for the Matlab
ode45 code for Atoli = Rtoli = tol = 10−4, 10−8, and 10−12. This code was
written by Shampine and Reichelt (see [16]) and it is based on the explicit
Runge–Kutta (4, 5) pair DOPRI5 constructed by Dormand and Prince [6].
This code uses local extrapolation so it is effectively of order five. The re-
sults presented in Tables 7.1 and 7.2 demonstrate that the tsrk5 code is
competitive with the Matlab ode45 code for all tolerances.

Table 7.1. Numerical results for Example 1

tol 10−4 10−8 10−12

method ns nr nfe ns nr nfe ns nr nfe

tsrk5 112 14 530 513 28 2190 2368 33 9630

ode45 78 27 631 425 9 2605 2653 4 15943

Runge–Kutta code for nonstiff systems 363

Table 7.2. Numerical results for Example 2

tol 10−4 10−8 10−12

method ns nr nfe ns nr nfe ns nr nfe

tsrk5 144 39 2378 579 3 2378 2674 2 10754

ode45 98 18 697 516 0 3097 3245 0 19471

We have plotted in Figs. 7.1a and 7.2a the local errors and local error
estimates for toli = Rtoli = tol = 10−4 (solid line, symbol ‘∗’), 10−8 (dashed
line, symbol ‘◦’) and 10−12 (dashdotted line, symbol ‘×’). The corresponding
step size patterns are plotted in Figs. 7.1b and 7.2b, where we have used
solid, dashed, and dashdotted lines in Figs. 7.1a and 7.2a and solid line and
symbols ‘∗’, ‘◦’, and ‘×’ in Figs. 7.1b and 7.2b for tol = 10−4, 10−8, and
10−12, respectively. In Figs. 7.1b and 7.2b the rejected steps are indicated
by ‘×’. We can see that the error estimation employed in our code is very
reliable and that the step size changing mechanism is very robust. In all
cases the error at the endpoint was about 10 · tol.

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

b

x

h

0 5 10 15 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

x

a

Fig. 7.1. Example 1: a. Local error versus local error estimate. b. Step size control

364 Z. Bartoszewski and Z. Jackiewicz

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

b

x

h

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

x

a

Fig. 7.2. Example 2: a. Local error versus local error estimate. b. Step size control

Acknowledgements. The authors wish to express their gratitude to
the anonymous referee for his helpful comments.

References

[1] Z. Bartoszewski and Z. Jackiewicz, Construction of two-step Runge–Kutta methods
of high order for ordinary differential equations, Numer. Algorithms 18 (1998), 51–
70.

[2] J. C. Butcher, Diagonally-implicit multi-stage integration methods, Appl. Numer.
Math. 11 (1993), 347–363.

[3] —, The Numerical Analysis of Ordinary Differential Equations. Runge–Kutta and
General Linear Methods, Wiley, Chichester, 1987.

[4] J. C. Butcher and Z. Jackiewicz, Implementation of diagonally implicit multistage
integration methods for ordinary differential equations, SIAM J. Numer. Anal. 34
(1997), 2119–2141.

[5] J. C. Butcher and S. Tracogna, Order conditions for two-step Runge–Kutta methods,
Appl. Numer. Math. 24 (1997), 351–364.

[6] J. R. Dormand and P. J. Prince, A family of embedded Runge–Kutta formulae,
J. Comput. Appl. Math. 6 (1980), 19–26.

Runge–Kutta code for nonstiff systems 365

[7] I. Gladwell, L. F. Shampine and R. W. Brankin, Automatic selection of the initial
step size for an ODE solver , J. Comput. Appl. Math. 18 (1987), 175–192.

[8] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I.
Nonstiff Problems, Springer, Berlin, 1993.

[9] E. Hairer and G. Wanner, Order conditions for general two-step Runge–Kutta meth-
ods, SIAM J. Numer. Anal. 34 (1997), 2087–2089.

[10] T. E. Hull, W. H. Enright, B. M. Fellen and A. E. Sedgwick, Comparing numerical
methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972), 603–
637.

[11] Z. Jackiewicz and S. Tracogna, A representation formula for two-step Runge–Kutta
methods, in: Hellenic European Research on Mathematics and Informatics’94
(Athens, 1994), E. A. Lipitakis (ed.), Hellenic Math. Soc., Athens, 1994, 111–120.

[12] —, —, A general class of two-step Runge–Kutta methods for ordinary differential
equations, SIAM J. Numer. Anal. 32 (1995), 1390–1427.

[13] —, —, Variable stepsize continuous two-step Runge–Kutta methods for ordinary
differential equations, Numer. Algorithms 12 (1996), 347–368.

[14] Z. Jackiewicz and R. Vermiglio, General linear methods with external stages of dif-
ferent orders, BIT 36 (1996), 688–712.

[15] B. Owren and M. Zennaro, Derivation of efficient , continuous, explicit Runge–Kutta
methods, SIAM J. Sci. Statist. Comput. 13 (1992), 1488–1501.

[16] L. F. Shampine and M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci. Comput.
18 (1997), 1–22.

[17] S. Tracogna, Implementation of two-step Runge–Kutta methods for ordinary differ-
ential equations, J. Comput. Appl. Math. 76 (1997), 113–136.

[18] S. Tracogna and B. Welfert, Two-step Runge–Kutta: Theory and practice, BIT 40
(2000), 775–799.

Faculty of Technical Physics and
Applied Mathematics
Technical University of Gdańsk
G. Narutowicza 11/12
80-952 Gdańsk, Poland
E-mail: zbart@mif.pg.gda.pl

Department of Mathematics
Arizona State University

Tempe, AZ 85287, U.S.A.
E-mail: jackiewi@math.la.asu.edu

Received on 29.9.2000;
revised version on 14.5.2001 (1553)

