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ASYMPTOTIC EVALUATION OF
THE POISSON MEASURES

FOR TUBES AROUND JUMP CURVES

Abstract. We find the asymptotic behavior of P (‖X − φ‖ ≤ ε) when X
is the solution of a linear stochastic differential equation driven by a Poisson
process and φ the solution of a linear differential equation driven by a pure
jump function.

1. Introduction. This paper deals with the asymptotic evaluation of
the Poisson measure for tubes around jump curves.

This problem has been widely studied for the Wiener measure: let {Wt;
t ≥ 0} be a Wiener process in Rd and φ ∈ L2([0, 1],Rd). It is known that

P (‖W − φ‖∞ ≤ ε) ∼
4
π

exp
(
− π2

8ε2 −
|φ|2
2

)
.

A related problem is the computation of Onsager–Machlup functionals:
given a process X, we consider a norm ‖ · ‖ and two smooth curves φ and ψ.
If

lim
ε↓0

P (‖X − φ‖ ≤ ε)
P (‖X − ψ‖ ≤ ε)
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exists and can be expressed as

exp
[ T�

0

L(φ̇(s), φ(s)) ds−
T�

0

L(ψ̇(s), ψ(s)) ds
]

for a given function L(ẋ, x), then the above expression is called the Onsager–
Machlup functional , and can be interpreted as a likelihood ratio for the law of
the process X. Most of the studies on Onsager–Machlup’s functional concern
the case of a diffusion process X which is the solution of the stochastic
differential equation

dX(t) = b(X(t))dt+ dW (t), X(0) = x0, X(t) ∈ Rd,
where x0 ∈ Rd and the coefficient b has some regularity. Then, for a large
class of norms on the Wiener space, and for functions in the Cameron–
Martin space, it can be shown that the Onsager–Machlup function exists
and is given by

L(φ̇, φ) = −1
2

d∑

i=1

|φ̇i − bi(φ)|2 − 1
2

d∑

i=1

∂bi
∂xi

(φ).

We refer to Ikeda and Watanabe (1981) and Shepp and Zeitouni (1992) for
some basic results in that direction, and to Lyons and Zeitouni (1999) and
Capitaine (2000) for theorems concerning the consistency of the Onsager–
Machlup functional with respect to the norm considered on the Wiener
space. Note also that the case of SDEs in infinite dimensions driven by a
Gaussian noise have been considered in Mayer–Wolf and Zeitouni (1993),
and Bardina, Rovira and Tindel (2000, 2001).

A natural (but to our knowledge unadressed in the literature) problem
is to find if this kind of result still holds on the Poisson space. That is,
if N is a standard Poisson process on [0, 1], X the solution to a stochastic
differential equation driven byN , and φ : [0, 1]→ R a deterministic function,
we would like to evaluate P{‖X − φ‖ ≤ ε} for various norms. For the sake
of computations, we deal with two simple cases: the case X = N , and the
case when X is the solution to a linear equation of the form

Xt =
t�

0

Xs ds+Nt, t ∈ [0, 1].

In those two examples, some fundamental differences with respect to the
Gaussian case can already be observed:

1. The Girsanov transform, which is an essential tool in the computation
of the Onsager–Machlup functional on the Wiener space, is of little help in
our case, since it transforms the Poisson process to a general semi-martingale
that cannot be handled easily.
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2. It seems natural to deal with jump functions, which are the closest to
the a.s. paths of the Poisson process. For this reason, we will evaluate the
probability of some tubes around functions of the type

ht =
k∑

i=1

I[Si,1)(t),

where k ≥ 0 and 0 < S1 < . . . < Sk < 1 are the jump points of h in the case
X = N , and of the type

φht =
t�

0

φhs ds+ ht

in case X is the solution to the corresponding equation driven by the Poisson
process.

3. From our results (see Theorems 3.1 and 4.1), it seems that the asymp-
totic evaluation of P (‖X−φ‖ ≤ ε) only depends on the number of jumps of
φ. This confirms the impression that N is a “uniformly” distributed process
when conditioned on its number of jumps.

Note also that our result in the SDE case is obtained by a lineariza-
tion procedure. We hope to extend this method to a more general type of
equations in a forthcoming paper.

Our article is organized as follows: in the next section, we will recall
some very basic facts about the standard Poisson process N . Then we will
compute the asymptotic evaluation for N in Section 3, and for the linear
SDE case in Section 4.

2. Preliminaries. Let (Ω,F , P ) be a complete probability space,

Definition 2.1. A Poisson process is a càdlàg process N = {Ns; s ∈
[0, 1]} such that:

• N0 = 0.
• Given 0 ≤ t1 < . . . < tn ≤ 1 the increments

Ntn −Ntn−1 , Ntn−1 −Ntn−2 , . . . , Nt2 −Nt1 , Nt1
are independent.
• Given s < t, the increment Nt − Ns has a Poisson law of parameter

t− s.
Given a Poisson process, we will denote by T1, T2, . . . the successive jump

points of the Poisson process.
In this situation the following result is well known (see for instance Bhat-

tacharya and Waymire, 1990, Proposition 4.5.6):
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Proposition 2.2. The conditional distribution of (T1, . . . , Tk) given
{Nt = k} is the same as that of k increasingly ordered independent ran-
dom variables each having the uniform distribution on (0, t]. That is, the
conditional density of the vector (T1, . . . , Tk) given {Nt = k} is

f(T1,...,Tk)(t1, . . . , tk) = k!I{0<t1<...<tk<t}(t1, . . . , tk).

In this paper, given a standard Poisson process {Ns; s ∈ [0, 1]} we will
consider a diffusion process of the form

Xt =
t�

0

Xs ds+Nt, t ∈ [0, 1].

It is easy to check that the solution of this equation can be written in
terms of the jump points of the Poisson process as

X(t) =
∞∑

i=1

et−TiI[Ti,1)(ti).

3. The case of a Poisson process. When we consider a standard
Poisson process, we have the following result:

Theorem 3.1. Let {Ns; s ∈ [0, 1]} be a standard Poisson process and h
a real-valued jump function defined on [0, 1], with expression

ht =
k∑

i=1

I[Si,1)(t),

where 0 < S1 < . . . < Sk < 1 are the jump points. Then, for ε > 0 small
enough,

P{‖N − h‖1 ≤ ε} = 2ke−1
(
eε −

k−1∑

j=0

εj

j!

)
= 2ke−1 ε

k

k!
+O(εk+1),

P{‖N − h‖2 ≤ ε} = 2ke−1 ε
2k

k!
+O(ε2k+2).

Remark 3.2. Note that the probability depends only on the number of
jumps of the function h.

Proof. We will only develop the L2 case. The proof for the L1 norm can
be done using the same arguments.

Since 0 < S1 < . . . < Sk < 1, there exists ε0 such that Si+1 − Si > ε2
0

for all i ∈ {1, . . . , k − 1}, S1 > ε2
0 and 1− Sk > ε2

0. Along the proof we will
consider ε < ε0.
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We have

P{‖N − h‖2 ≤ ε} =
∞∑

j=0

P{‖N − h‖2 ≤ ε |N1 = j} e
−1

j!
.

In order to compute the probabilities involved in the sum we will consider
three cases:

• If j < k, then P{‖N − h‖2 ≤ ε |N1 = j} = 0. Indeed, in this case,

‖N − h‖22 ≥
1�

Sk

(Nt − ht)2 dt ≥
1�

Sk

dt = 1− Sk > ε2.

• If j = k, then P{‖N − h‖2 ≤ ε |N1 = k} = (2ε2)k. We will prove this
by induction on k. Notice that if |Ti(ω) − Si| > ε2 for some i ∈ {1, . . . , k},
then it is easy to check that ‖N(ω)−h‖22 > ε2. Otherwise, if |Ti(ω)−Si| < ε2

for all i ∈ {1, . . . , k}, then

‖N(ω)− h‖22 =
k∑

i=1

|Ti − Si|.

So

P{‖N − h‖2 ≤ ε |N1 = k} = P
{ k∑

i=1

|Ti − Si| ≤ ε2
∣∣∣N1 = k

}
.

For k = 1, using Proposition 2.2 we have

P{|T1 − S1| ≤ ε2 |N1 = 1} = P{S1 − ε2 ≤ T1 ≤ S1 + ε2 |N1 = 1}

=
S1+ε2�

S1−ε2
dt = 2ε2.

Assume now that if k = n, then

P
{ n∑

i=1

|Ti − Si| ≤ ε2
∣∣∣N1 = n

}
= (2ε2)n,

and consider k = n+ 1. By Proposition 2.2, if ε is small enough,

P
{ n+1∑

i=1

|Ti − Si| ≤ ε2
∣∣∣N1 = n+ 1

}

=
�

{t1<...<tn+1:
∑n+1
i=1 |ti−Si|≤ε2}

(n+ 1)! dt1 . . . dtn+1

= (n+ 1)
Sn+1+ε2�

Sn+1−ε2

(
n!

�

Aε

dt1 . . . dtn

)
dtn+1,
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where

Aε =
{
t1 < . . . < tn;

n∑

i=1

|ti − Si| ≤ ε2 − |tn+1 − Sn+1|
}
.

But, by the induction hypothesis the last expression is equal to

(n+ 1)2n
Sn+1+ε2�

Sn+1−ε2
(ε2 − |tn+1 − Sn+1|)n dtn+1

= (n+ 1)2n2
ε2�

0

(ε2 − u)n du = 2n+1ε2(n+1),

which is the desired conclusion.
• Finally, if j > k then P{‖N − h‖2 ≤ ε |N1 = j} ≤ 2kε2j .
Notice that if |Ti(ω)−Si| > ε2 for some i ∈ {1, . . . , k}, or if 1−Ti(ω) > ε2

for some i ∈ {k + 1, . . . , j}, then ‖N(ω)− h‖22 > ε2. Otherwise,

‖N(ω)− h‖22 =
k∑

i=1

|Ti(ω)− Si|+
j∑

i=k+1

(Ti+1(ω)− Ti(ω))(i− k)2,

where in order to simplify the notation we assume Tj+1 ≡ 1.
But
j∑

i=k+1

(Ti+1 − Ti)(i− k)2 =
j∑

i=k+1

[(1− Ti)− (1− Ti+1)](i− k)2

=
j∑

i=k+1

(1− Ti)(2(i− k)− 1) ≥
j∑

i=k+1

(1− Ti).

So, in this case, for ε small enough,

P{‖N − h‖2 ≤ ε |N1 = j}

= P
{ k∑

i=1

|Ti − Si|+
j∑

i=k+1

(1− Ti)(2(i− k)− 1) < ε2
∣∣∣N1 = j

}

≤ P
{ k∑

i=1

|Ti − Si|+
j∑

i=k+1

(1− Ti) ≤ ε2
∣∣∣N1 = j

}
.

Using the result for the case j = k, and setting

ψ(tk+1, . . . , tj) = 2k
(
ε2 −

j∑

i=k+1

(1− ti)
)k
,
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we find that the last expression is equal to

j!
k!

1�

1−ε2

tj�

1−(ε2−(1−tj))
. . .

tk+2�

1−(ε2−∑j
i=k+2(1−ti))

ψ(tk+1, . . . , tj) dtk+1 . . . dtj = 2kε2j .

Thus,

P{‖N − h‖2 ≤ ε} =
∞∑

j=0

P{‖N − h‖2 ≤ ε |N1 = j} e
−1

j!

= 2ke−1 ε
2k

k!
+O(ε2k+2),

which completes the proof of the theorem.

4. The case of a diffusion Poisson process

Theorem 4.1. Given a standard Poisson process N = {Ns; s ∈ [0, 1]},
and given a jump function ht =

∑k
i=1 I[Si,1)(t), t ∈ [0, 1], 0 < S1 < . . . <

Sk < 1, consider the diffusion process

Xt =
t�

0

Xs ds+Nt, t ∈ [0, 1],

and the jump curve

φht =
t�

0

φhs ds+ ht, t ∈ [0, 1].

Then, for ε > 0 small enough,

P{‖X − φh‖1 ≤ ε} = 2ke−1 ε
k

k!
+O(εk+1),

P{‖X − φh‖2 ≤ ε} = 2ke−1 ε
2k

k!
+O(ε2k+2).

The solution of such equations can be expressed, using the jump points
of the Poisson process and the jump function, as

X(t) =
∞∑

i=1

et−TiI[Ti,1)(t) and φht =
k∑

i=1

et−SiI[Si,1)(t).

As in the case of Poisson process, we can assume that there exists ε0 > 0
such that Si+1 − Si > ε2

0 for all i ∈ {1, . . . , k− 1}, S1 > ε2
0 and 1− Sk > ε2

0.
From now on we will assume ε ≤ ε0.

Before the proof of the theorem we will show a preliminary lemma.
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Lemma 4.2. (a) For fixed α < ε0, if there exists i ∈ {1, . . . , k} such that
|Si − Ti| > α2, then

‖X − φh‖22 > C1α
2

where C1 denotes a universal constant.
(b) There exists ε1 > 0, depending only on k, such that for fixed α < ε1,

if for some i > k, Ti < 1 and 1− Ti > α2, then

‖X − φh‖22 > C2α
2

where C2 is another universal constant.

Proof. (a) Set n := inf{i ∈ {1, . . . , k} : |Si − Ti| > α2}. Then

‖X − φh‖22 ≥
Sn+α2�

Sn−α2

|X(t)− φh(t)|2 dt.

If we define

dn =
n−1∑

i=1

(e−Ti − e−Si) + I{Tn<Sn}e
−Tn ,

the last integral is equal to

Sn�

Sn−α2

e2td2
n dt+

Sn+α2�

Sn

e2t(dn − e−Sn)2 dt

=
d2
n

2
(e2Sn − e2(Sn−α2)) +

(dn − e−Sn)2

2
(e2Sn+α2 − e2Sn)

≥
[
d2
n

2
+

(dn − e−Sn)2

2

]
2α2 ≥ e−2Sn

2
α2 >

e−2

2
α2;

we have used the fact that ex − ey ≥ x − y for 0 < y < x, and a2 + b2 ≥
(a+ b)2/2 for all a, b ∈ R.

(b) We can assume that |Si − Ti| ≤ α2 for all i ∈ {1, . . . , k}. Notice that

d∞(t) =
∣∣∣
k∑

i=1

(e−Ti−e−Si)+
∞∑

i=k+1

e−TiI[Ti,1)(t)
∣∣∣ ≥ e−Tk+1−kα2 ≥ e−1−kα2.

Then

‖X − φh‖22 >
1�

1−α2

|X(t)− φ(t)|2 dt =
1�

1−α2

e2t|d∞(t)|2 dt

≥ (e−1 − kα2)2

2
(e2 − e2(1−α2)) ≥ C2α

2,

by similar arguments to the proof of (a) and for α small enough.
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Remark 4.3. Note that from Lemma 4.2 we can assume, for ε small
enough, that for all i, l ∈ {1, . . . , k} such that i < l, Si < Tl and Ti < Sl.

Proof of Theorem 4.1. As in the case of a Poisson process we only develop
the L2 case. We have

P{‖X − φh‖2 ≤ ε} =
∞∑

j=0

P{‖X − φh‖2 ≤ ε |N1 = j} e
−1

j!
.

To compute the probabilities involved in the sum we will consider three
cases:

• If j < k, then for ε small enough, by Lemma 4.2,

(1) P{‖X − φh‖2 ≤ ε |N1 = j} = 0.

• If j = k, we will prove that P{‖X − φh‖2 ≤ ε |N1 = k} = (2ε2)k +
O(ε2k+2).

Notice first that by Lemma 4.2 we only need to consider the ω such that
|Si − Ti(ω)| < ε2/C1 for all i ∈ {1, . . . , k}.

Using the expressions for X and φh involving the jump points, we have,
for N1 = k,

‖X − φh‖22 =
1�

0

e2t
( k∑

i,l=1

(e−TiI[Ti,1)(t)− e−SiI[Si,1)(t))

× (e−TlI[Tl,1)(t)− e−SlI[Sl,1)(t))
)
dt

=
1
2

[ k∑

i,l=1

{e−Ti−Tl(e2 − e2(Ti∨Tl))− e−Ti−Sl(e2 − e2(Ti∨Sl))

− e−Si−Tl(e2 − e2(Si∨Tl)) + e−Si−Sl(e2 − e2(Si∨Sl))}
]

=
1
2

[ k∑

i,l=1

{e2−Ti−Tl − e|Ti−Tl| − 2e2−Ti−Sl + 2e|Ti−Sl|(2)

+ e2−Si−Sl − e|Si−Sl|}
]
.

Notice that if we put δi := Ti − Si, then

e2−Si−Sl + e2−Ti−Tl − 2e2−Ti−Sl = e2−Si−Sl(1 + e−δi−δl − 2e−δi)

= e2−(Si+Sl)
(
δi − δl +

(δi + δl)2

2
eη

1
i,l − δ2

i e
η1
i

)
,

by Taylor’s decomposition, where η1
i , η

1
i,l ∈ [−2ε2/C1, 2ε2/C1].

On the other hand, by Remark 4.3, for the other term involved in the
sum (2) we have three situations:
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If i < l, then

2e|Ti−Sl| − e|Ti−Tl| − e|Si−Sl| = eSl−Si(−eδl−δi + 2e−δi − 1)

= eSl−Si
(
−δl − δi −

(δl − δi)2

2
eη

2
i,l + δ2

i e
η2
i

)
,

where η2
i , η

2
i,l ∈ [−2ε2/C1, 2ε2/C1].

If i = l, then

2e|Ti−Sl| − e|Ti−Tl| − e|Si−Sl| = 2e|Ti−Si| − 2 = 2|δi|+ δ2
i e
η3
i ,

where η3
i ∈ [−2ε2/C1, 2ε2/C1].

Finally, if i > l, then

2e|Ti−Sl| − e|Ti−Tl| − e|Si−Sl| = eSi−Sl(−eδi−δl + 2eδi − 1)

= eSi−Sl
(
δi + δl −

(δi − δl)2

2
eη

4
i,l + δ2

i e
η4
i

)
.

where η4
i , η

4
i,l ∈ [−2ε2/C1, 2ε2/C1].

So, when N1 = k,

(3) ‖X − φh‖22 =
k∑

i=1

|δi|+ Z,

where

Z =
k∑

i,l=1

e−2(Si+Sl)
(

(δi + δl)2

2
eη

1
i,l − δ2

i e
η1
i

)

+
k∑

i=1

δ2
i e
η3
i +

∑

i<l

eSl−Si
(
− (δl − δi)2

2
eη

2
i,l + δ2

i e
η2
i

)

+
∑

i>l

eSi−Sl
(
− (δi − δl)2

2
eη

4
i,l + δ2

i e
η4
i

)
.

For fixed ω, by Lemma 4.2(a), if ‖X(ω)−φh‖2 ≤ ε we get |Ti(ω)−Si| ≤
ε2/C1 for all i ∈ {1, . . . , k}. Then |Z(ω)| < C3k

2ε4/C2
1 with C3 := 10e1/C1 ,

and using the results proved in Theorem 3.1 we get from (3)

(4) P{‖X − φh‖2 ≤ ε |N1 = k} ≤ P
{ k∑

i=1

|δi| ≤ ε2 + C3k
2 ε

4

C2
1

∣∣∣∣N1 = k

}

=
(

2ε2
(

1 + C3k
2 ε

2

C2
1

))k
≤ 2kε2k + ck,1ε

2k+2

where ck,1 depends only on k and C1. On the other hand, for fixed ω such
that

∑k
i=1 |δi| ≤ ε2 we clearly have |Z(ω)| < C3k

2ε4. So, again from (3) we
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get

P{‖X − φh‖2 ≤ ε |N1 = k} ≥ P
{ k∑

i=1

|δi| ≤ ε2 − C3k
2ε4
∣∣∣N1 = k

}
(5)

= (2ε2(1− C3k
2ε2))k ≥ 2kε2k + ck,2ε

2k+2

where ck,2 depends only on k and C1. Putting (4) and (5) together we obtain

(6) P{‖X − φh‖2 ≤ ε |N1 = k} = (2ε2)k +O(ε2k+2).

• To deal with the case j > k notice that, again by Lemma 4.2, if
‖X(ω) − φh‖2 ≤ ε then |Ti(ω) − Si| ≤ ε2/C1 for all i ∈ {1, . . . , k} and
|1 − Ti(ω)| ≤ ε2/C2 for all i ∈ {k + 1, . . . , j}. So, using Proposition 2.2 we
have

P{‖X − φh‖2 ≤ ε |N1 = j}
≤ P{{ max

1≤i≤k
|Ti − Si| ≤ ε2/C1} ∩ { max

k+1≤i≤j
|1− Ti| ≤ ε2/C2} |N1 = j}

≤ j!2kε2j

Ck1C
j−k
2

,

and then

(7)
∞∑

j=k+1

P{‖X − φh‖2 ≤ ε |N1 = j} e
−1

j!

≤
∞∑

j=k+1

e−12kε2j

Ck1C
j−k
2

= e−12k
1

C2Ck1
· ε2k+2

1− ε2C2
.

Putting (1), (6) and (7) together we finish the proof of the theorem.

References

X. Bardina, C. Rovira and S. Tindel (2000), Onsager–Machlup functional for stochastic
evolution equations, preprint.

X. Bardina, C. Rovira and S. Tindel (2001), Onsager–Machlup functional for stochastic
evolution equations in a class of norms, Ann. Inst. H. Poincaré, to appear.
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