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Llúıs Alsedà and José Miguel Moreno (Barcelona)

ON THE PRIMARY ORBITS OF STAR MAPS
(FIRST PART)

Abstract. This paper is the first one of a series of two, in which we
characterize a class of primary orbits of self maps of the 4-star with the
branching point fixed. This class of orbits plays, for such maps, the same role
as the directed primary orbits of self maps of the 3-star with the branching
point fixed. Some of the primary orbits (namely, those having at most one
coloured arrow) are characterized at once for the general case of n-star maps.

1. Introduction. The notion of a primary orbit has revealed to be very
useful in the study of several characteristics of the dynamics of discrete one-
dimensional systems. This notion for interval maps is related to the notion
of a minimal orbit (see, for instance, [12], [7], [8], [3], [9], [10], [11]). However
it is more general since its definition depends only on the behaviour of a
map from a given class on such an orbit. Hence it is possible to characterize
these orbits by looking only at their shapes.

Primary orbits were introduced in [1] to study continuous self maps of
the space consisting of three intervals joined by a common endpoint—the
Y or the 3-star—with this point fixed. This class of maps will be called Y
in this paper. Simultaneously, Baldwin [5] considered the same notion for
maps on the interval or the real line, which he called→-minimal cycles. For
interval maps, the primary (or minimal) orbits are shown by several authors
to coincide with the simple ones (see [5] and [2]; see also [12], [7], [8], [3], [9],
[10], [11]). For a definition of simple orbit see, for instance, [2]. These orbits
were called pendulum in [1].

In this series of two papers we start the generalization of the charac-
terization of primary orbits of maps from Y to self maps of the n-star
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(n intervals joined by a common endpoint) with the branching point fixed.
In [1], the primary orbits were classified into two categories: directed and
undirected. We are convinced that directed orbits are the “genuine” primary
orbits in the Y, whereas the undirected ones are “inherited” in some way
from maps of the interval. However, when trying to do that generalization,
one quickly sees that, for n ≥ 4, directed primary orbits no longer have the
good properties they had in Y. These properties are based on the Directed
Rule [1, Lemma 10.4], which the primary directed orbits of maps from Y
satisfy. A crucial consequence of the Directed Rule is that the primary orbits
of maps from Y cannot have more than two coloured arrows ([1, Directed
Theorem (d)]). For n ≥ 4 it is easy to find examples of directed primary
orbits which do not satisfy those properties and, hence, the Directed Rule
(see Example 4.13).

We generalize both the Directed Rule and the General Rule (Lemma 6.1)
of [1] into a new condition we call the Generalized Directed Rule. The orbits
satisfying this condition are called strongly directed . For such orbits, in the
case of the 4-star, it is possible to show that they have at most three coloured
arrows (Theorem 4.10). Therefore these orbits play the same role as the
directed primary orbits of maps from Y. This is the class of primary orbits
we are going to study.

We feel that strongly directed orbits are the “genuine” primary orbits in
the n-star. In particular we think that primary orbits which do not satisfy
the Generalized Directed Rule (directed as well as undirected ones) arise,
in some way, from stars with less branches. The understanding in depth of
this point and the extension of the characterization of the primary orbits to
orbits of the 4-star not satisfying the Generalized Directed Rule is an open
problem.

The characterization of the primary orbits for n ≥ 4 is essentially dif-
ferent from that for the case n = 3. However, as will be apparent from
Sections 4–6 and [4], the ideas and techniques used in the characterization
of the strongly directed primary orbits for the case n = 4 should allow us
to find these orbits in the general case (which would be an essential con-
tribution to the understanding of the primary orbits for the n-stars). In
this spirit, this series of two papers should not be regarded as the sequel
of the study of the primary orbits for the 3-star, neither as a natural (and
perhaps boring) step to the study of the 5-star, but rather as an attempt
to understand in an easy case the ideas that should allow one to undertake
the task in the general case. These papers are an essential step towards the
characterization of the primary orbits of the n-stars.

To develop our study we classify the primary strongly directed orbits of
the 4-star into several families, following the characterization of the directed
primary orbits of maps from Y. The first classes of primary orbits we find
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are twist orbits (Definition 3.1), having no coloured arrows, and single orbits
(Definition 3.3), with only one coloured arrow. For these two simple types of
orbits, we give a characterization which is independent of n. In Theorems 3.2
and 3.6 we show that they are the only primary orbits without coloured
arrows or with just one coloured arrow, respectively.

For orbits with two or three coloured arrows the situation is a bit more
complicated. To classify them we must look at another feature of its shape,
namely whether they have or do not have crossing arrows. Theorem 5.8
characterizes the primary orbits having crossing arrows and some coloured
arrow as box orbits (Definition 5.2).

Finally, the study of the primary strongly directed orbits without cross-
ing arrows having more than one coloured arrow, requiring more specific
techniques, is left for [4], the second paper of this series.

This paper is organized as follows. Section 2 gives the necessary defini-
tions and general results for the study of strongly directed orbits. In Section 3
we study twist and single orbits. Section 4 is devoted to stating and prov-
ing the basic properties of strongly directed orbits, as well as to explaining
some differences between these orbits and directed orbits not satisfying the
Generalized Directed Rule. In Section 5 we study box orbits. Finally, in
Section 6 we summarize the main results of this paper.

2. Definitions, notation and preliminary results. The symbols N,
Z and Q will denote, as usual, the sets of natural numbers (without zero),
integers and rational numbers respectively. We often must deal with the ring
of integers mod k which we will denote by Zk. Then we use the symbols ⊕
and 	 (or ⊕k and 	k, if necessary) to denote the addition and subtraction
in Zk.

For n ∈ N, the n-star is the subspace of the plane consisting of all
complex numbers z such that zn is in the unit interval [0, 1]. We shall denote
the n-star by Xn. We shall also use the notation Xn to denote the class of
all continuous maps from Xn to itself with 0 as a fixed point. In particular
we have Y = X3 and Y = X3. We note that the 1-star and the 2-star are
homeomorphic to a closed interval of the real line. Thus, in what follows,
when talking about Xn or Xn we shall always assume that n ≥ 2. The symbol
≡ will denote congruence modulo n.

As usual, if f ∈ Xn we shall write fk to denote f ◦ . . .◦ f (k times) when
k ∈ N, and f0 = id. A point x ∈ Xn such that fk(x) = x for some k ∈ N will
be called a periodic point of f . Then the set Orbf (x) = {f i(x) : i ∈ N} is a
periodic orbit of f . The period of x is Card(Orbf (x)) (usually we also call it
the period of the orbit). Then x has period m if and only if fm(x) = x but
f j(x) 6= x for j = 1, . . . ,m − 1. To simplify our study we will not consider
{0} as a periodic orbit of maps from Xn.
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Although we study maps from Xn, we need to consider simultaneously
the family I of continuous functions of the interval I = [0, 1] ⊂ R into itself.
Of course, for maps from I we use the same notation and terminology. If
we do not need to be precise, X will represent I as well as Xn, and X will
represent I as well as Xn.

Most of the basic definitions and results from [1] can be easily generalized
to more complicated trees. In particular, [1, Sections 1, 2, 3 and 8] are
immediately extended, mutatis mutandis, to the context of n-stars. Since
this series of two papers is a continuation of [1], we shall freely use these
results and definitions in the more general context of the n-stars without
rewriting them. We only slightly modify (and recall) the notation from [1]
as follows.

Following [1], E will always denote the set {0} (we only consider n ≥ 2).
The closures of components of X \E are called branches. For x ∈ X \E we
denote by br(x) the branch where x is, and we put x ∼ y if br(x) = br(y).

Let P be a subset of X. The span of P is the smallest closed connected
subset of X containing P . It will be denoted by 〈P 〉. When P = {x1, . . . , xk},
we simply write 〈x1, . . . , xk〉 for 〈{x1, . . . , xk}〉.

An interval is a connected subset of a branch. Then the intervals in Xn
are homeomorphic to intervals of the real line. Usually the word interval will
mean closed interval, that is, a set of the form 〈x, y〉 where x and y are the
endpoints of the interval and satisfy x = 0 or y = 0 or x ∼ y.

If x ∈ 〈0, y〉 we write x ≤ y. Analogously, we define ≥, < and > in the
obvious way. We say that x is smaller than y if x < y. When x ≤ y we
use the standard notation [x, y], [x, y), (x, y] and (x, y) to denote the closed,
half-open and open intervals of endpoints x and y.

We mainly use Markov graphs whose vertices are intervals. Namely,
if f ∈ X and A is a family of intervals of X, the A-graph of f is the
oriented graph with the intervals of A as vertices and having an arrow from
I to J if and only if I f -covers J . Recall that I f -covers J if f(I) ⊃ J
[2, Lemma 1.2.1].

A path of length k in an A-graph of f is a sequence of k + 1 vertices
I0, I1, . . . , Ik such that Ii−1 f -covers Ii for i = 1, . . . , k. We use the obvious
representation of such a path: I0 → I1 → . . .→ Ik. A path of length 1 will be
called a step. A loop of length k in an A-graph of f is a path of length k such
that Ik = I0. It will be convenient to consider the indices of the intervals of
a loop of length k in Zk. The representations I0 → I1 → . . . → Ik−1 → I0

and, more generally, Ii → Ii⊕1 → . . .→ Ii	1 → Ii are used.
We say that we concatenate the loop α = I0 → I1 → . . . → Ik−1 → I0

to the loop β = J0 → J1 → . . .→ Jl−1 → J0 if they have a common vertex
Ii = Jj and we form a new loop
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αβ = I0 → I1 → . . .→ Ii → Jj⊕l1 → . . .→ Jj → Ii⊕k1 → . . .→ Ik−1 → I0.

Usually it will be clear which common vertex we use. The l-fold repetition
of a loop α, denoted by αl, is the loop obtained by concatenating l copies
of α. A loop is nonrepetitive if it is not a repetition of a shorter loop. A
loop is elementary if it is not the concatenation of two loops. A shortcut
of s > 0 arrows in a loop I0 → I1 → . . . → Ik−1 → I0 is any step of the
form Ii → Ij , with j 	 i = s + 1. It is clear that, in such a case, the loop
Ii → Ij → Ij⊕1 → . . .→ Ii has length k − s.

Let P be a periodic orbit of f ∈ Xn. As in the case n = 3, the ordered pair
A = (x, f(x)) is an arrow with beginning b(A) = x and end e(A) = f(x).
If br is a branch of X such that P ∩ br 6= ∅, we put sm(br) = min(P ∩ br)
to represent the smallest point of P on this branch (remember that we do
not consider {0} as a periodic orbit of f). The arrow beginning at sm(br)
will be denoted by smA(br), that is, b(smA(br)) = sm(br). We shall call the
arrows smA(br) the smallest arrows.

Let B be the set of branches of X having nonempty intersection with P .
We follow [6] to define σ : B → B such that, for each b ∈ B, σ(b) =
br(f(sm(b))). Since B is finite, σ has at least a periodic point. If σ has a
periodic point of period t, we say that P has type t. Note that a periodic
orbit can have several types.

Definition 2.1. The periodic orbit P ⊂ Xn will be called directed if it
has type n. Observe that if P is directed, then P has points in all branches,
P has no other type different from n and σ is a cyclic permutation (and, in
particular, bijective). The orbit P is undirected if it is not directed.

Definition 2.2. If P is directed and F is the set of arrows of P , we
define the colour c : F → Zn as follows (see Figure 2.1). For each arrow
A ∈ F , c(A) is such that

σc(A)(br(e(A))) = σ(br(b(A))).
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Fig. 2.1. The colours of several arrows of a directed orbit

Note that if c(A) = 0, then e(A) ∈ σ(br(b(A))). Hence, for similarity
with the case n = 3, A will be called black . If c(A) 6= 0, then A will be
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called coloured . Observe that, by definition, all smallest arrows are black.
Recall that, in the case n = 3, an arrow A was called green if c(A) = 1 and
red when c(A) = 2. For n = 4 we keep this terminology and add the term
blue for arrows with c(A) = 3.

Analogously we define the colour of a step I → J in any A-graph of f .
Namely, if x ∈ I and y ∈ J , then the colour of I → J is the number c ∈ Zn
such that σc(br(y)) = σ(br(x)).

Now we introduce a new notion which will play a key role in our study.

Definition 2.3. Let P be a directed orbit of a map f ∈ Xn. Then S ⊂ P
is a string of P of length l(S) = Card(S) if it satisfies the following:

(i) there is a point z ∈ S, called the beginning of S, such that S =
{fk(z) : 0 ≤ k < l(S)};

(ii) if 0 < k < l(S), then the arrow (f k−1(z), fk(z)) is black, and
(iii) if an endpoint of a black arrow is in S, then so is the other endpoint.

The point f l(S)−1(z) will be called the end of S and the string beginning
at f l(S)(z) will be called the next string of S.

Observe that, if P has only black arrows, then we can take any point
as the beginning of the unique existing string (the entire orbit). Otherwise,
the beginning of a string is the end of a coloured arrow, and the end of a
string is the beginning of a coloured arrow. In particular, if A and B are
coloured arrows such that e(A) = b(B) = x, then S = {x} is a string. Each
coloured arrow separates the string ending in the beginning of the arrow
from the next string. Note that these two strings can be the same. Then it
is clear that the set of strings of P forms a partition of P determined by
the coloured arrows, if there are any. Therefore, except in the special case
of a periodic orbit with no coloured arrows, the numbers of strings and of
coloured arrows coincide.

We say that a string S spirals out if x < fn(x) whenever fk(x) ∈ S for
k = 0, 1, . . . , n. Note that if P has only black arrows and the period of P is
larger than n, then the string P does not spiral out.

We shall often label the branches of Xn as br0, br1, . . . , brn−1. Then we
can simplify the notation in the following way: if bri ∩P 6= ∅, we put smi =
sm(bri) and smAi = smA(bri). In that case we will also define the index of
x ∈ Xn \E in such a way that ind(x) = i if and only if x ∈ bri.

If P is directed then we can label the branches of Xn in such a way that
σ(bri) = bri⊕1 for each i ∈ Zn. In this case, we shall say that the branches
of Xn are σ-labelled. Then ind(e(smAi)) = ind(b(smAi))⊕ 1 for i ∈ Zn and,
for every arrow A, it follows that

ind(e(A)) + c(A) ≡ ind(b(A)) + 1,(1)

from the definition of c(A).
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Lemma 2.4. Let P be directed and assume that the branches of Xn are
σ-labelled. If A0, A1, . . . , Ak−1 is a sequence of k arrows of P such that
b(Aj) ∼ e(Aj−1) for j = 1, . . . , k − 1, then

ind(e(Ak−1)) +
k−1∑

j=0

c(Aj) ≡ ind(b(A0)) + k.

Proof. This follows by adding up the congruences (1) for these k arrows.

The sequences of arrows defined next will play a basic role in the de-
scription of the orbits we are going to study in this work.

Definition 2.5. The k ≥ 1 arrows A0, A1, . . . , Ak−1 are said to be over-
lapping if e(Ai) ≥ b(Ai⊕1) for all i ∈ Zk.

Lemma 2.6. If A0, A1, . . . , Ak−1 are overlapping arrows of a directed
orbit , then

k ≡
k−1∑

i=0

c(Ai).

Proof. This follows immediately from Lemma 2.4.

From now on we assume that P is a directed periodic orbit of period m
of a map f ∈ Xn. Therefore, m ≥ n. Since our aim is to characterize the
primary orbits, in view of the First Theorem (Theorem 2.3) of [1], we can
(and will) also assume that f is EP -adjusted.

Clearly, the n smallest arrows are overlapping and give a loop of length n
in the EP -graph of f which will be called the branching loop. Namely, if
we assume that the branches of Xn are σ-labelled, for i = 0, 1, . . . , n− 1 we
define Ii = [0, smi] to be the branching intervals. Then the branching loop
is α = I0 → I1 → . . .→ In−1 → I0.

Let A0, A1, . . . , Ak−1 be a sequence of arrows and let C0, C1, . . . , Cl−1 be
the sequence of coloured arrows in it. Then Ci = Aji for i = 0, 1, . . . , l − 1.
We will always assume that ji < jk if and only if i < k.

Definition 2.7. Let Γ =(A0, A1, . . . , Ak−1) and Γ ′=(A′0, A
′
1, . . . , A

′
k′−1)

be two sequences of arrows. Let C0, C1, . . . , Cl−1 and C ′0, C
′
1, . . . , C

′
l′−1 be the

sequences of coloured arrows of the above sequences, respectively. We say
that Γ and Γ ′ are isochromatic if l = l′ and there exists a j ∈ Zl such
that c(Ci) = c(C ′j⊕i) for all i ∈ Zl. If Q is a directed periodic orbit of
period p,

Γ ′ = ((x, f(x)), (f(x), f 2(x)), . . . , (fp−1(x), x))

is the sequence of arrows of Q and Γ and Γ ′ are isochromatic, then we also
say that Γ and Q are isochromatic.
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The following lemma and its corollary will be useful to obtain orbits
(different from P ) from a sequence of overlapping arrows.

Lemma 2.8. Let P be a directed orbit of an EP -adjusted map f ∈ Xn.
Let k 6≡ 0 and let Γ = (A0, A1, . . . , Ak−1) be a sequence of overlapping
arrows, with A0 being the smallest arrow on its branch. Then, for every
l ≥ 1, f has a directed orbit Q 6= P of period k+ ln such that Γ and Q are
isochromatic.

Proof. Since A0 is the smallest arrow on its branch, it is black. Hence
k > 1. Since k 6≡ 0 and b(Ai⊕1) ≤ e(Ai) for each i ∈ Zk, by Lemma 2.6 there
is at least one coloured arrow Ap (with p 6= 0).

For i ∈ Zk we define the intervals Jn+i as follows:

Jn+i = [0, b(Ai)] if i 6= p,

Jn+p = [sm(br(b(Ap))), b(Ap)].

Then Jn → Jn+1 → . . .→ Jn+k−1 → Jn. Hence, since Jn is a basic interval,
by [1, Lemma 1.12], for each i ∈ Zk there exists a basic interval In+i ⊂ Jn+i

such that In → In+1 → . . . → In+k−1 → In (in fact Jn = In). We call this
loop β. By construction, the ith step in β (In+i → In+(i⊕1)) is of the same
colour as Ai for all i ∈ Zk.

If α = I0 → I1 → . . . → In−1 → I0 is the branching loop, with I0 = In,
we can consider the loop γ = αlβ. If γ is repetitive, since α is elementary,
then β = δαε for some (possibly empty) loops δ and ε starting with I0.
Then we can consider the loop αl+1δε which has the same steps as γ, but
ordered in a different way. Nevertheless, since all the steps in α are black,
this loop has the same coloured steps as γ and these steps are arranged in
the same order. Repeating this process if necessary, since k 6≡ 0, we get a
nonrepetitive loop γ ′ = αrβ′ for some r ≥ l and some nonempty loop β ′ of
length not a multiple of n (if γ is nonrepetitive, then we take γ ′ = γ). All
the coloured steps of γ are now in β ′, arranged in the same order.

Since 0 6∈ In+p and γ′ goes through In+p, by [6, Lemma 2.2], we obtain
a periodic orbit Q of period k + ln isochromatic with Γ .

Clearly P 6= Q because γ′ goes at least twice through I0 but P has a
unique point in I0. It is also clear that Q is directed. Indeed, all the smallest
arrows of Q must begin in the branching EP -basic intervals, and all the
steps of the EP -graph of f starting from these intervals are black.

Corollary 2.9. Let A0, A1, . . . , Aq−1 be a sequence of arrows such that
A0 is the smallest arrow on its branch, e(Ai) ≥ b(Ai+1) for i = 0, 1, . . . , q−2
and

∑q−1
i=0 c(Ai) 6≡ 0. Then f has directed orbits of all the periods congruent

to
∑q−1

i=0 c(Ai) and greater than or equal to q+n. Moreover , these orbits are
isochromatic with the sequence A0, A1, . . . , Aq−1.
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Proof. We label the branches in such a way that ind(e(Aq−1)) = 0 and
they are σ-labelled. Let r = ind(b(A0)). Then we have the q+ r overlapping
arrows

A0, A1, . . . , Aq−1, smA0, . . . , smAr−1,

where the last r arrows are omitted if r = 0. By Lemma 2.6, q + r ≡∑q−1
i=0 c(Ai). Then Lemma 2.8 (with k = q + r) ends the proof.

The first important consequence of Lemma 2.8 is the following property
of primary directed orbits.

Proposition 2.10. Each string of a primary directed orbit of a map
from Xn with period not a multiple of n spirals out.

Proof. Let P be a primary directed orbit of f ∈ Xn of period m 6≡ 0 and
let S be a string of P . Assume that there is some x ∈ S with f j(x) ∈ S
for j = 0, 1, . . . , n and such that x > fn(x). Then we label the points and
arrows of P as follows:

x0 = sm(br(x)) and xi = b(Ai) = f i(x0) for each i ∈ Zm.
Since x 6= x0, there is an l > 0 (in fact, l > 1, because A0 is black) such

that x = xl. Moreover, since xl⊕j = f j(x) ∈ S for j = 0, 1, . . . , n, we have
f j(x) 6∼ x0 for j = 1, . . . , n − 1. That is, xl⊕j 6= x0 for j = 0, 1, . . . , n − 1
and, hence, l + n ≤ m.

Then, by eliminating the arrows Al, Al+1, . . . , Al+n−1 from the sequence
of arrows of P , we get the sequence

A0, A1, . . . , Al−1, Al+n, . . . , Am−1

(where the arrows Al+n, . . . , Am−1 are omitted if l + n = m) of k = m− n
arrows. These arrows are overlapping because e(Al−1) = x > fn(x) =
xl⊕n = b(Al⊕n). Since A0 = smA(br(x)) (and it has not been eliminated),
Lemma 2.8 gives a periodic orbit of period k + n = m different from P . By
the First Theorem (Theorem 2.3) of [1], this contradicts the primarity of P
(remember that we are assuming that f is EP -adjusted).

3. Twist and single orbits for maps from Xn. We are ready to
study the simplest families of primary directed orbits. Namely, those having
at most one coloured arrow. This study can be done for every Xn (n ≥ 2)
by generalizing the analogous results of [1].

First we assume that P is a directed periodic orbit of period m of a
map f ∈ Xn, with all arrows black. Note that, then, m ≡ 0 by Lemma 2.6.
The characterization of the primary orbits of this kind is a routine gener-
alization of the corresponding results for Y maps and, hence, we omit its
proof. This generalization of [1, Definition 4.40, Proposition 5.7 and Directed
Theorem (a)] is as follows.



166 L. Alsedà and J. M. Moreno

Definition 3.1. We say that P is a twist orbit in the following cases:

(1) If m = n · 2k, k ≥ 0, we use induction. If k = 0 then P is twist. If
k ≥ 1 and twist orbits of period n · 2k−1 are defined, then P is twist if it is
a 2-extension of a twist orbit of period n · 2k−1.

(2) If m = n · 2k · r, r is odd and r ≥ 3, then P is twist if it is an
R-extension of a twist orbit of period n · 2k, where R is a simple orbit of
period r.

Theorem 3.2. If P is a directed orbit having only black arrows, then P
is primary if and only if it is twist.

We now study the primary directed orbits having only one coloured
arrow. The generalization of the related results of [1] to any Xn (n ≥ 2) can
also be done in a simple way. We shall see that the orbits of this kind are
defined as follows.

Definition 3.3. Let P be a directed orbit of a map f ∈ Xn. P will be
called a single orbit of colour c if it has exactly one coloured arrow of colour
c and its unique string spirals out.

If P is a single orbit of colour c and period m of a map f ∈ Xn, then
m ≡ c by Lemma 2.6, and m > n because P is directed and has a coloured
arrow. If A is this coloured arrow, we set xi = f i(e(A)) for i ∈ Zm. Then
we have xi < xi+n for 0 ≤ i ≤ m− n− 1.

Note that if the branches of Xn are labelled in such a way that xj ∈ brj
for j ∈ Zn, then xi ∈ brj is equivalent to i ≡ j. That is, ind(xi) ≡ i for each
i ∈ Zm. Then it also happens that xj = smj for j ∈ Zn. We shall label the
EP -basic intervals by their largest endpoint, that is, Ii = [0, xi] if 0 ≤ i < n
and Ii = [xi−n, xi] if n ≤ i ≤ m− 1.

By Proposition 2.10, a directed primary orbit with only one coloured
arrow must be single. To see that the converse is also true we start by
characterizing the EP -graph of a single orbit. The following results are
closely related to [6, Theorem 3.2].

Lemma 3.4. Let P be a single orbit of an EP -adjusted map f ∈ Xn.
Then the EP -graph of f contains only the following steps (see Figure 3.1):

(i) Ii → Ii⊕1 for each i ∈ Zm.
(ii) In−1 → I0.

(iii) Im−1 → Ii for all i ≡ m.

Proof. Let i ∈ Zm be such that 0 ≤ i < m− 1. Since f is EP -adjusted,
if Ii = [x, xi] with x ∈ EP , then f(Ii) = [f(x), f(xi)]. If i 6= n − 1, then
f(Ii) = Ii+1. Since f(0) = 0 < x0 < xn = f(xn−1), we have f(In−1) =
I0 ∪ In.
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Fig. 3.1. A single orbit P and the EP -graph of an EP -adjusted map

On the other hand, since Im−1 = [xm−1−n, xm−1] and f(xm−n−1) =
xm−n 6∼ x0 = f(xm−1), we have f(Im−1) = I0 ∪ [0, xm−n] (we also use the
fact that f is EP -adjusted). By taking into account that 0 < xi ≤ xm−n if
and only if i ≡ m, the lemma is proved.

The steps in (i) of the above lemma form the loop I0 → I1 → . . . →
Im−1 → I0 which will be called the fundamental loop.

Corollary 3.5. Let P be a single orbit of an EP -adjusted map f ∈ Xn.
Then every elementary loop in the EP -graph of f different from the funda-
mental one has length a multiple of n.

Proof. The shortcut given in (ii) of Lemma 3.4 produces a branch-
ing loop, which has length n. The shortcuts of i arrows given in (iii) of
Lemma 3.4 produce elementary loops of lengths m − i ≡ 0. Since, in view
of Lemma 3.4, there are no more elementary loops different from the funda-
mental one in the EP -graph of f , the corollary follows.

Finally we are ready to prove the desired result.

Theorem 3.6. Let P be a directed orbit having only one coloured ar-
row A. Then P is primary if and only if it is single of colour c(A).

Proof. As already mentioned, if P is primary then it must be single
by Proposition 2.10. Therefore we only have to prove the converse. Let P
be a single orbit (of colour c(A), of course) of period m and let f ∈ Xn
be EP -adjusted. In the EP -graph of f there is no thin loop. Indeed, by
Lemma 3.4 all the loops go through In−1 or through Im−1 which f -cover
more than one basic interval. By Corollary 3.5 the only loop of length m is
the fundamental one, which is nonrepetitive and is associated to P . Hence,
by the First Theorem of [1], P is primary.

The next lemma shows that, with a single orbit, there coexist many
other orbits. This result, which will be useful later, is related to the “forcing
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relation” (see [2]) and the characterization of the sets of periods of maps
from Xn (see [6]).

Lemma 3.7. Assume that P is a single orbit of colour c and period m
of an EP -adjusted map f ∈ Xn. Then f has:

(a) single orbits of colour c and periods m+ ln for all l ≥ 1;
(b) periodic orbits of periods km+ ln with k arrows of colour c, for all

k, l ≥ 1;
(c) twist orbits of all periods k ≡ 0.

All these orbits have spans strictly contained in 〈P 〉. Moreover , f has no
other periodic orbits different from P .

Proof. The proofs of (a)–(c) are straightforward generalizations of
[1, Lemmas 10.7 and 10.14]. The fact that the spans of those orbits are
strictly contained in 〈P 〉 follows easily from their constructions.

By Corollary 3.5, in the EP -graph of f we can only find nonrepeti-
tive loops of lengths km + ln, with k ≥ 0 and l ≥ 1, different from the
fundamental one. Hence, the last statement of the lemma follows from
[1, Proposition 1.11] and the primarity of P .

4. Strongly directed orbits of maps of Xn. In this section we shall
define and study a new class of periodic orbits, more restrictive than the
directed ones, that plays the same role as the directed orbits of maps from
Y in the classification of all primary orbits of maps from Xn. We shall explain
this point in detail later. The definition of this new class will be done by
means of the following property.

Generalized Directed Rule. Let P be a periodic orbit of a map
f ∈ Xn. For each sequence A0, A1, . . . , Ak−1 of overlapping arrows of P , we
have k ≥ n.

Definition 4.1. A directed periodic orbit P will be called strongly di-
rected if it satisfies the Generalized Directed Rule.

Obviously, a directed orbit with only black arrows is strongly directed.
Clearly, also single orbits are strongly directed.

Remark 4.2. In [1, Lemmas 6.1 and 10.4] it is shown that, for n ≤ 3,
all the primary directed orbits have the following properties:

(i) There is no arrow A such that b(A) < e(A).
(ii) If n = 3 then there are no arrows A and B such that e(A) ≥ b(B)

and e(B) ≥ b(A).

Clearly, the Generalized Directed Rule reduces to the above properties
for n ≤ 3. Therefore, all primary directed orbits for n ≤ 3 are also strongly
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directed. However, despite the fact that each primary directed orbit satisfies
(i) for all n ≥ 2 (see the proof of [1, Lemma 6.1]), for n ≥ 4 we can easily
find primary directed orbits which are not strongly directed. To see this,
consider the following example.
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Fig. 4.1. A primary directed orbit which is not strongly directed

Assume that P is the directed periodic orbit of an EP -adjusted map
f ∈ X4 of period 7 described as follows (see Figure 4.1). The points and
arrows of P are labelled in the natural way, that is, f(xi) = xi⊕1 and
b(Ai) = xi for all i ∈ Z7. Furthermore, for j ∈ Z4, xj is the smallest
point on its branch. Since the arrows Aj have to be black for j ∈ Z4, we
have x0 < x4. Finally, we set x3 < x5 and x4 < x6. Clearly this orbit
is not strongly directed, because the arrows A3 (black) and A4 (red) are
overlapping. However, it is very easy to see that P is primary. Indeed, in
the EP -graph of f there is only one loop of length 7, which is elementary
and is associated to P . By [1, Proposition 1.10(b)] there is no periodic orbit
different from P associated to this loop. All other elementary loops in that
graph have even length (2 or 4). Hence, we cannot get any periodic orbit of
period 7 different from P , and P is primary by the First Theorem of [1].

For strongly directed orbits we have the following couple of results about
overlapping arrows, which we shall need later.

Lemma 4.3. Let P be a strongly directed orbit and let A0, A1, . . . , Ak−1
be overlapping arrows. If there are s consecutive arrows, Ai, Ai⊕1, . . .
. . . , Ai⊕(s−1), in the above sequence such that s ≡ ∑s−1

j=0 c(Ai⊕j) and s −
Card({0 ≤ j ≤ s− 1 : c(Ai⊕j) = 1}) < n, then Ai⊕s, Ai⊕(s+1), . . . , Ai	1 are
overlapping arrows.

Proof. We only have to prove that e(Ai	1) ≥ b(Ai⊕s). Since e(Ai	1)
≥ b(Ai) and e(Ai⊕(s−1)) ≥ b(Ai⊕s), it is enough to show that b(Ai) ≥
e(Ai⊕(s−1)).

First, we prove that b(Ai) ∼ e(Ai⊕(s−1)). Indeed, if we assume that the
branches of Xn are σ-labelled, then
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ind(e(Ai⊕(s−1))) +
s−1∑

j=0

c(Ai⊕j) ≡ ind(b(Ai)) + s,

by Lemma 2.4. Since s ≡∑s−1
j=0 c(Ai⊕j) we get b(Ai) ∼ e(Ai⊕(s−1)).

In the case s = 1 the Generalized Directed Rule prohibits that b(Ai) <
e(Ai), and thus the lemma is proved for this case.

Furthermore, the previous case allows us to eliminate the arrows Ai⊕j
with 0 ≤ j ≤ s−1 such that c(Ai⊕j) = 1 from the sequence A0, A1, . . . , Ak−1.
Thus, it only remains to consider the case 1 < s < n. Then, since e(Ai⊕j) ≥
b(Ai⊕(j+1)) for j = 0, 1, . . . , s− 2, again by the Generalized Directed Rule it
cannot happen that e(Ai⊕(s−1)) ≥ b(Ai).

Lemma 4.4. Let P be a strongly directed orbit and let A0, A1, . . . , Ak−1
be overlapping arrows, with A0 being the smallest arrow on its branch. Let
j ∈ {1, . . . , k − 1} be such that A0, A1, . . . , Aj−1 are black arrows. Then
j ≥ c(Aj) and A0, . . . , Aj−c, Aj+1, . . . , Ak−1 are overlapping arrows.

Proof. Assume that the branches of Xn are σ-labelled in such a way that
ind(e(Aj)) = 0. Since A0, A1, . . . , Ak−1 are overlapping and A0, A1, . . . , Aj−1

are black arrows, by Lemma 2.4, we have ind(b(A0)) ≡ c−(j+1), where c =
c(Aj). If j < c, then 0 ≤ c− (j+1) < n and, hence, ind(b(A0)) = c− (j+1).
Since e(Aj) ≥ sm0, the c arrows

A0, A1, . . . , Aj−1, Aj , smA0, . . . , smAc−j−2

(where the last c − j − 1 arrows are omitted if c < j + 2) are overlapping,
contrary to the Generalized Directed Rule. Therefore, j ≥ c.

The last statement follows then from Lemma 4.3 with i = j − c+ 1 and
s = c.

The auxiliary results of [1, Section 10] about directed orbits of Y maps
which depend on the Directed Rule can easily be extended to Xn for strongly
directed orbits. In particular, we shall use the following versions of [1, Lem-
mas 10.8 and 10.10].

Lemma 4.5. Let P be a strongly directed orbit of f ∈Xn. Let A0, A1, . . .
. . . , Ak−1 be overlapping arrows, all black except A0 which is coloured. Then
f has a single orbit of period k and colour c(A0), with span contained in 〈P 〉.

Lemma 4.6. Let P be a strongly directed orbit of period m of an EP -
adjusted map f ∈ Xn. If P has a coloured arrow of colour c, then f has a
periodic orbit of period smaller than or equal to m which is single of colour c.

We also have the following important result which, generalizing [1, Corol-
lary 10.11], characterizes the primary strongly directed orbits whose periods
satisfy a certain congruence.
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Proposition 4.7. Let P be strongly directed and primary of period m.
Then:

(a) If m ≡ 0, then all arrows of P are black and , hence, P is twist.
(b) If A is a coloured arrow of P and m ≡ c(A), then P is single of

colour c(A).

Proof. Let f ∈ Xn be an EP -adjusted map.
(a) If there is a coloured arrow, then by Lemmas 4.6, 3.7(c) and [1,

Lemma 1.18], f has an orbit of period m with all arrows black. Hence it
is different from P . But by the First Theorem of [1], this contradicts the
primarity of P .

(b) By Lemmas 4.6, 3.7(a) and [1, Lemma 1.18], f has a single orbit of
period m. Then P must be single, again by the First Theorem of [1].

From the above proposition we get immediately the following general-
ization of [1, Directed Theorem (b)].

Corollary 4.8. If n > 2 and P is primary and strongly directed , then
P cannot have arrows of all colours.

At present we know how the primary strongly directed orbits look like if
they have no coloured arrows (twist) or if they have just one coloured arrow
(single). In the rest of this section we are going to show that, in the case
n = 4, such orbits cannot have more than three coloured arrows. This will
help us in the rest of our study.

We start by proving a lemma whose proof we owe to the kindness of
J. Moncasi and his colleagues.

Lemma 4.9 (Moncasi). If n ≥ 2 and a0, a1, . . . , an−1 ∈ Zn \ {0}, then
there exist i, j ∈ Zn, i < j, such that

∑j
k=i ak ≡ 0.

Proof. Set sj =
∑j

k=0 ak for j ∈ Zn. If sj ≡ 0 for some j ∈ Zn, then,
since a0 6= 0, we have j > 0 and we are done.

If sj 6≡ 0 for all j ∈ Zn, then since Zn \ {0} has only n− 1 elements, we
can find i, j ∈ Zn \ {0} with i ≤ j such that si−1 ≡ sj ; that is, sj − si−1 =
ai + . . .+ aj ≡ 0. Furthermore, i 6= j since ai 6= 0 for all i ∈ Zn.

The following theorem plays a crucial role in the characterization of the
primary strongly directed orbits of maps of X4.

Theorem 4.10. If n = 4 and P is strongly directed and primary , then
it cannot have more than three coloured arrows.

Proof. Label the arrows A0, A1, . . . , Am−1 of P in such a way that A0 is
the smallest arrow on its branch, and b(Ai) = e(Ai−1) for i= 1, . . . ,m−1.
Let C0, C1, . . . , Cl−1 be the sequence of coloured arrows in the above se-
quence. Recall that, if Ci = Aji for i ∈ Zl, we assume that ji < jk if and
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only if i < k. Then, for each i = 0, 1, . . . , l − 1, we denote by n(i) the num-
ber of black arrows of the sequence A0, A1, . . . , Am−1 before Ci. That is,
n(i) = ji − i.

We assume that l ≥ n and we shall get a contradiction. Note first that
m 6≡ 0 by Proposition 4.7(a). Also, by Lemma 4.9, there are indices p, q ∈ Zn
with p < q such that

∑q
i=p c(Ci) ≡ 0. Let p be the smallest such index.

If p = 0, then we can apply Lemma 4.4 the necessary number of times
(q + 1) to eliminate the arrows C0, C1, . . . , Cq, together with

∑q
i=0 c(Ci) −

(q + 1) black arrows. In this way we obtain m − ∑q
i=0 c(Ci) overlapping

arrows, beginning with A0. Thus, since m −∑q
i=0 c(Ci) ≡ m, we can ap-

ply Lemma 2.8 to get a periodic orbit of period m different from P . This
contradicts the primarity of P by the First Theorem of [1].

Now suppose that p > 0. We can assume that, in the sequence of arrows
A0, A1, . . . , Am−1, there is no smallest arrow between C0 and C1. Indeed,
if there were one, relabelling the arrows from that one on, we could take
a smaller p. Relabelling if necessary, we can also assume that there is no
smallest arrow between A0 and C0 other than A0. Under these assumptions,
we have n(1) + 2 ≤ m− (n− 1)− (l − 2).

We note that if m ≡ c(C0) + c(C1), then by using Corollary 2.9 with
q = n(1)+2, we get a periodic orbit of period m (because n(1)+2+n < m)
with only two coloured arrows. Hence, this orbit is different from P , which
contradicts the primarity of P .

Since p > 0, it is clear that c(C0) ⊕ c(C1) ∈ Z4 \ {0, c(C0), c(C1)}. Also
m 6≡ c(C0) and m 6≡ c(C1) by Proposition 4.7(b). Therefore, since m 6≡ 0, if
c(C0) 6= c(C1) we get m ≡ c(C0) + c(C1), which gives a contradiction.

So we are left with the case c(C0) = c(C1) = c. Clearly, c 6= 2 (that
is, c ∈ {1, 3}). If P has no coloured arrow of colour 2, then again m ≡
c(C0) + c(C1). Indeed, since p > 0, C0, C1, C2 and C3 cannot have all
the same colour. Thus {c(C0), c(C1), c(C2), c(C3)} = {1, 3} and then, by
Proposition 4.7, m ≡ 2 ≡ 2c = c(C0) + c(C1). This gives a contradiction, as
above.

Thus, in the rest of the proof we may assume that P has some red
arrow. If c(C2) 6= c then, by Corollary 4.8, we have c(C2) = 2 and, hence,
p = 0, a contradiction. So, c(C2) = c.

From all the above we see that c(C0) = c(C1) = c(C2) = c ∈ {1, 3} and
c(C3) 6= c. Furthermore, we can also assume that there is no smallest arrow
between C1 and C2. Otherwise, relabelling the arrows from that one on, we
are in the case c(C0) 6= c(C1), which gives a contradiction. Consequently,
n(2) + 3 ≤ m− (n− 1)− (l − 3).

By Proposition 4.7 we have m 6≡ 0, m 6≡ c and m 6≡ 2. Since c ∈ {1, 3},
3c 6≡ 0, 3c 6≡ c and 3c 6≡ 2. Therefore, 3c ≡ m. Then we can use Corol-
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lary 2.9 with q = n(2)+3 to get a periodic orbit of period m with only three
coloured arrows and, hence, different from P . This contradicts the primarity
of P .

Let C be the set of all coloured arrows of a directed orbit. The above
theorem states that, in the case we are interested in, Card(C) ≤ 3. Hence,
Theorem 4.10 is analogous to [1, Directed Theorem (d)]. The following def-
inition gives another useful restriction about the set C which is also fulfilled
by strongly directed primary orbits in the case n = 4, as the next corollary
shows.

Definition 4.11. A directed orbit P is said to be colour compatible if
each nonempty set B of coloured arrows satisfies

∑

C∈B
c(C) 6≡ 0.

In particular, when n = 4, this means that P cannot have two red arrows,
nor can it have green and blue arrows simultaneously. Moreover, if P has
three coloured arrows, then these arrows must all have the same colour,
green or blue.

Corollary 4.12. If n = 4 and P is a strongly directed primary orbit ,
then P is colour compatible.

Proof. Assume that there is a nonempty subset B of the set C of all
coloured arrows of P such that

∑
C∈B c(C) ≡ 0. Clearly, Card(B) > 1.

Moreover, B 6= C by Proposition 4.7(a) and Lemma 2.6. Since Card(C) ≤ 3
by Theorem 4.10, we have Card(B) = 2 and Card(C) = 3. That is, P has
three coloured arrows, C0, C1 and C2, with c(C0) + c(C1) ≡ 0. Hence, again
by Lemma 2.6, m ≡ c(C2), contrary to Proposition 4.7(b).

At the beginning of this section we claimed that strongly directed orbits
of maps from Xn play the same role, in the characterization of primary
orbits, as directed orbits of maps from Y. This is supported by Remark 4.2,
all the results from Lemma 4.5 on and, mainly, by Theorem 4.10. It will also
be supported by the fact that there exist primary directed periodic orbits of
maps from X4 with an arbitrary number of coloured arrows, as the following
example shows. Thus, the study of the directed primary orbits which are
not strongly directed is the new feature of the characterization of primary
orbits in n-stars with n ≥ 4.

Example 4.13. For any p ∈ N, let P be the directed periodic orbit of
an EP -adjusted map f ∈ X4 of period m = 2p+ 5 described as follows (see
Figure 4.2). The points and arrows of P are labelled in the natural way,
that is, f(xi) = xi⊕1 and b(Ai) = xi for all i ∈ Zm. Furthermore, for j ∈ Z4,
xj is the smallest point on its branch. Since the arrows Aj have to be black
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for j ∈ Z4, we see that x0 < x4. Finally, we set x3 < x5 < . . . < xm−2 and
x4 < x6 < . . . < xm−1.
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Fig. 4.2. A primary directed orbit with p+ 1 coloured arrows

Clearly this orbit has p red arrows, namely, all the Ar with r = 2k + 4
for k = 0, 1, . . . , p−1. It is also clear that P is not strongly directed, because
the arrows Ar−1 (black) and Ar (red), for any r as above, are overlapping.
However, it is very easy to see that P is primary. Indeed, label the basic
intervals by their largest endpoints. Then in the EP -graph of f we only
have the following steps:

(i) Ii → Ii⊕1 for each i ∈ Zm.
(ii) I3 → I0.

(iii) I4 → I1 and I4 → I3.
(iv) Im−1 → I2k+3 for k = 0, 1, . . . , p.

The steps in (i) give the fundamental loop, of length m. All the other short-
cuts only give elementary loops of even length (2, 4, . . . ,m−3). Therefore, in
the EP -graph of f , there is only one loop of length m, which is elementary
and is associated to P . By [1, Propositions 1.10(b) and 1.11] we cannot get
any periodic orbit of period m different from P . Hence P is primary by the
First Theorem of [1].

Note that the example given in Remark 4.2 was a particular case of this
one (namely, the case p = 1).

This example, or maybe some particular instances of it, can be used
to check that there exist other properties of strongly directed orbits which
heavily rely on the Generalized Directed Rule (see, e.g., Lemma 4.6 and
Proposition 4.7(b)).

From now on we only consider the case n = 4. That is, we restrict our
study to orbits of maps of X4. However we will continue using n instead of 4
to unify the notation with the previous sections.

5. Box orbits for maps from X4. We shall divide the primary strongly
directed orbits with more than one coloured arrow into two classes, according
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to whether they have or do not have crossing arrows in the sense of the
following definition.

Definition 5.1. Two arrows A and B such that b(A) < b(B) are said
to be crossing if e(A) > e(B).

Note that an extension of an orbit always has crossing arrows (see [1,
Definition 3.1]).

In this section we shall see that the primary strongly directed orbits with
more than one coloured arrow and with crossing arrows are precisely those
defined as follows.

Definition 5.2. Let ν ∈ {2, 3}. We say that a periodic orbit P of a map
f ∈ X4 of period m is ν-box green (resp. blue) if m is a multiple of ν and P
is an R-extension of a single green (resp. blue) orbit of period m/ν, where
R is an orbit of period ν of an interval map.

Remark 5.3. A ν-box orbit has ν coloured arrows.

We shall start our study by showing that ν-box orbits are primary.

Lemma 5.4. For each ν ∈ N, a ν-extension of a single orbit is strongly
directed.

Proof. Let P be a ν-extension of a single orbit. Clearly, P is directed.
So, we only have to see that P satisfies the Generalized Directed Rule. We
use the notation of [1, Definition 3.1] and its comments. Let ϕ : P →
{0, 1, . . . , s − 1} be such that x ∈ Pϕ(x) for all x ∈ P . Then to every

arrow A = (x, f(x)) of P corresponds the arrow Ã = (yϕ(x), f̃(yϕ(x))).

Let A0, A1, . . . , Ak−1 be overlapping arrows. Then Ã0, Ã1, . . . , Ãk−1 are also
overlapping because π(x) ≤ π(y) if x ≤ y. Since P̃ is single, k ≥ n.

Corollary 5.5. A ν-box orbit is strongly directed.

Since we are only interested in primary orbits, Lemma 5.4 together with
Theorem 4.10 and Corollary 4.12 justify that, in Definition 5.2, we have
considered neither the red case nor the case ν > 3.

Proposition 5.6. ν-box orbits are primary.

Proof. Since R is an orbit of period 2 or 3 in the interval, it is simple
(see [1, Remark 4.18 and Definition 4.1]). Hence, by [1, Proposition 5.4], it
is primary. By [1, Lemma 3.12 and Remark 3.7], it is enough to prove that
if Q is a single orbit of period l of an EQ-adjusted map h ∈ X4, then h has
no periodic orbits of period νl.

Suppose that h has an orbit of period νl. By [1, Proposition 1.11], we can
find in the EQ-graph of h a loop α of length νl associated to that orbit. Since
Q is single, by Corollary 3.5 and its proof we see that all the elementary
loops in the EQ-graph, except the fundamental one, have lengths multiple
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of n and the coloured step appears only in the fundamental loop. Hence,
νl ≡ vl and νl ≥ vl, where v is the number of times α goes through the
coloured arrow. Since l ≡ c ∈ {1, 3}, it follows that ν ≡ v and ν ≥ v. Since
n > ν, we have ν = v. From the equality νl = vl it follows that α is a
v-fold repetition of the fundamental loop of the EQ-graph of h. Hence Q is
associated to α. By [1, Proposition 1.10] (with n = 0), α does not give a
periodic orbit of period νl, which is a contradiction.

Our next goal is to prove that the primary orbits of the class we are
studying are ν-box. To do this we can assume that, if P is a strongly directed
primary orbit of a map f ∈ X4 with at least two coloured arrows and with
crossing arrows, then, by the First Theorem of [1], f is EP -adjusted. We
start with the following technical lemma.

Lemma 5.7. Let P be a strongly directed primary orbit of period m with
ν > 0 coloured arrows and with crossing arrows. Then m = ν · s with
ν ∈ {2, 3}, s 6≡ 0 and s > n, and there exists a partition of P into subsets
P0, P1, . . . , Ps−1 of ν elements each such that :

(i) 〈Pi〉 ∩ E = ∅ for i = 0, 1, . . . , s− 1.
(ii) Pi is in the same branch as Pj if and only if i ≡ j.

(iii) maxPi < minPi+n for i = 0, 1, . . . , s− n− 1.
(iv) There exists ψ : {0, 1, . . . , s − 1} → {0, 1, . . . , s − 1} such that , if

x ∈ Pi, then f(x) ∈ Pψ(i).

Proof. Since P has crossing arrows it cannot be single by Definition 3.3.
Hence ν ≥ 2, by Theorem 3.6. Then we can label the points and arrows of
P in such a way that b(Ai) = xi, e(Ai) = f(xi) = xi⊕1 for each i ∈ Zm, with
Am−1 coloured and b(Ak) > b(Al), e(Ak) < e(Al) for some k, l ∈ Zm with
k 6∈ {0,m−1}. This is clear if Ak and Al are black arrows. If Ak is coloured,
then so is Al and we can set l = m− 1 and clearly, k 6= m − 1. Also k 6= 0
because k = 0 gives e(Al) = b(Ak) > b(Al), contradicting the Generalized
Directed Rule.

Set sm = sm(br(xm−1)), Ji = [0, xi] for i = 0, 1, . . . ,m− 2 and Jm−1 =
[sm, xm−1]. Then since xm−1 is the beginning of a coloured arrow and sm is
the beginning of a black arrow we see that Ji → Ji⊕1 for each i ∈ Zm. Also,
we have Jk−1 → Jl → Jk+1. So we can consider the loop

J0 → J1 → . . .→ Jk−1 → Jl → Jk+1 → . . .→ Jm−1 → J0.

Since some of the Ji (in fact, at least n) are basic intervals, by [1, Lem-
ma 1.12] we can find basic intervals Ii ⊂ Ji (i ∈ Zm) with Ik ⊂ Jl such that
Ii → Ii⊕1 for each i ∈ Zm. Then, in the EP -graph of f , there is the loop

α = I0 → I1 → . . .→ Im−1 → I0

where each step Ii → Ii⊕1 is of the same colour as Ai.
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If α is nonrepetitive, then by [6, Lemma 2.2], we get a periodic point
y ∈ I0 of period m with f i(y) ∈ Ii for each i ∈ Zm. Set Q = Orbf (y)
and J = [0, xl]. Note that f i(y) ∈ Ii ⊂ Ji ⊂ J for each i ∈ Zm such that
xi ≤ xl and fk(y) ∈ Ik ⊂ Jl ⊂ J but xk 6∈ J . Therefore, Card(J ∩ Q) ≥
Card(J ∩ P ) + 1 because i 6= j implies f i(y) 6= f j(y) for i, j ∈ Zm. Then
Q 6= P , contradicting the primarity of P .

Hence α is repetitive. Then there exists s such that m = r · s with r ≥ 2
and α = βr with β = I0 → I1 → . . . → Is−1 → I0 nonrepetitive. Since
m 6≡ 0 by Proposition 4.7(a), we get s 6≡ 0. By Theorem 4.10, P has no
more than three coloured arrows, that is, ν ≤ 3. Hence, Is−1 → I0 is the
only coloured step (of colour c(Am−1)) in β and r = ν.

For each i = 0, 1, . . . , s − 1, the points xi+js (j = 0, 1, . . . , r − 1) are all
in the same branch as Ii = Ii+js. Set Pi = {xi+js : j = 0, 1, . . . , r − 1}. It is
clear that (i) and (iv) are satisfied with ψ(i) = i⊕ 1 for each i ∈ Zs.

Moreover, the coloured arrows of P are those that begin in Ps−1 and end
in P0, that is, Ajs−1 for j = 1, . . . , r. From this it follows that Pi is in the
same branch as Pj if and only if i ≡ j (see Lemma 2.4). Then (ii) holds. We
also see that the strings of P are the sets Sk = {xi+ks : i ∈ Zs} for k ∈ Zν .

Consider the arrows Fi such that b(Fi) = minPi for i ∈ Zs. Since
b(Fi⊕1) = minPi⊕1 ≤ f(minPi) = e(Fi) for each i ∈ Zs, these arrows
are overlapping. Also they are all black except Fs−1. Hence s > n.

Now we prove (iii). Assume that there is j ∈ {0, 1, . . . , s−n−1} such that
maxPj > minPj+n. We have maxPj = xj+ks and minPj+n = xj+n+ls, for
some k, l ∈ Zν . Moreover, since m 6≡ 0 we see that k 6= l in view of Proposi-
tion 2.10. Then the (k	ν l)s−n arrows Aj+n+ls, Aj+n+ls⊕1, . . . , Aj+ks	1 are
overlapping. Since Aj+n+ls = Fj+n and the arrows Fi are also overlapping
we have the m− n overlapping arrows

Aj+n+ls, Aj+n+ls⊕1, . . . , Aj+ks	1, (Fj+n, Fj+n⊕1, . . . , Fj+n	1)l	k,

where the notation (Fj+n, Fj+n⊕1, . . . , Fj+n	1)l	k means that the sequence
Fj+n, Fj+n⊕1, . . . , Fj+n	1 is repeated l 	 k times. Since n of the arrows Fi
are the smallest arrows and m 6≡ 0, we can use Lemma 2.8 to get a periodic
orbit of period m and different from P . This contradicts the primarity of P
by the First Theorem of [1].

Now we are ready to prove the main theorem of this section.

Theorem 5.8. If P is a strongly directed orbit with ν > 0 coloured
arrows and with crossing arrows, then P is primary if and only if ν > 1
and P is ν-box.

Proof. If P is ν-box, then it is primary by Proposition 5.6. Hence we
only have to prove the converse.
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From Lemma 5.7 it follows immediately that ν > 1 and that P is a
ν-extension of a single orbit Q of period s. By Corollary 4.12, Q is not
red. If ν = 2 then we are done in view of [1, Remark 3.6]. So assume that
ν = 3. With the notation of the above lemma, in view of [1, Lemmas 8.6,
8.3 and 8.1], we deduce that f is monotone on all Pi except at most one.
Finally, setting R = P0 and g = f s, we conclude that P is an R-extension
of Q (see [1, Definition 3.3]). Hence P is ν-box because Card(R) = ν.

Now we are going to show that if P is strongly directed and primary,
has 3 coloured arrows and its period is a multiple of 3, then P is 3-box.
This result is analogous to [1, Directed Theorem (e)], and will help us in the
study of the primary strongly directed orbits with three coloured arrows.

First we prove the following lemma, which is the core of that result. In

its proof, we represent by I
l→→ J the fact that I f -covers J in l steps,

all of them black but the last, whereas I l→ J means that I f -covers J
in l black steps. That is, there exist intervals Ii (i = 0, 1, . . . , l) such that
I0 = I, Il = J , Ii → Ii+1 (i = 0, 1, . . . , l − 1), the first l − 1 steps Ii → Ii+1
(i = 0, 1, . . . , l − 2) are black and the last step Il−1 → Il is also black when

I
l→ J but it is coloured if I l→→ J .

Lemma 5.9. Assume that P is strongly directed and primary of period
a multiple of 3 with three coloured arrows. Then all three strings of P have
the same length.

Proof. The three coloured arrows are of the same colour, c ∈ {1, 3}, by
Corollary 4.12 (see also Definition 4.11). Then, if we denote the period of P
by m, we get m ≡ 3c, by Lemma 2.6. Set r = m/3 (then, of course, r ≡ c).

Suppose that the three strings of P do not have the same length. Then
we can label the points of P in such a way that xi = f i(x0) for each i ∈ Zm,
x0, xp and xp+q are the beginnings of the three strings, p ≥ r and q < r.
The lengths of the strings are, clearly, p, q, and m − (p + q). We label the
arrows in such a way that b(Ai) = xi for each i ∈ Zm. The coloured arrows
are then Ap−1, Ap+q−1 and Am−1. We are going to consider several cases
and, in each of them, construct a loop of length m in the EP -graph of f
which will give a periodic orbit Q of f different from P , contradicting the
primarity of P .

First we assume that p > r. Since r ≡ c, we have xp−r ∼ xp by
Lemma 2.4.

If xp−r < xp, set L = [0, xp−r] and M = [xp−r, xp]. Then L f -covers L
and M in r steps, all of them black but the last. Since q < r, by Lemma 2.4
we have f q(xp) = xp+q 6∼ f q(xp−r) = xp+q−r. Then 0 ∈ f q(M) and, hence,
0 ∈ f r(M). Thus M also f -covers L and M in r steps, all of them black but
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the last. We consider the loop

α1 = M
r→→ L

r→→ L
r→→M.

Suppose now that xp−r > xp. Consider the intervals J = [0, x0], K =
[0, xp+q], L = [0, xp] and M = [xp, xp−r]. Then J f -covers L and M in p− r
steps, all of them black. Since 0 ∈ f q(M), M f -covers K in q steps, all of
them black but the last. Furthermore, since 0 ∈ f r(M), M f -covers L in r
steps, all of them black but the last. It is also clear that L f -covers K in
q steps and that K f -covers J in m − (p + q) steps, in both cases all the
steps being black but the last (see Figure 5.1). We still have to consider two
possibilities:

J L

M

K

-
HHHHj ��

�*��*
p−r

p−r r

m−(p+q)
q

q










�

�J

J
J
J
J]J
J]

?
?

Fig. 5.1. Some f -coverings when xp−r > xp

Case (a): p + r < m. Then since q < r and r ≡ c we get xp+r ∼ xp
by Lemma 2.4. If xp+r > xp, then K f -covers L in r − q steps, all of them
black. Then we consider the loop

α2 = M
q→→ K

r−q−→ L
q→→ K

m−(p+q)
−−−−−−→→ J

p−r−→M.

If, on the contrary, xp+r < xp, then xp+r ∈ L. Since fm−(p+r)(xp+r) = x0
and fm−(p+r)(0) = 0, L f -covers J in m − (p + r) steps, all of them black
but the last. Hence we can take the loop

α3 = M
q→→ K

m−(p+q)
−−−−−−→→ J

p−r−→ L
m−(p+r)
−−−−−−→→ J

p−r−→M.

Case (b): p+r ≥ m. That is, p ≥ 2r. Since r ≡ c, we have xr−1 ∼ xm−1
by Lemma 2.4. If xr−1 > xm−1, then J f -covers [0, xm−1] in r − 1 black
steps and [0, xm−1]→ J is a coloured step. Hence we can build the loop

α4 = M
q→→ K

m−(p+q)
−−−−−−→→ J

r→→ J
p−r−→M.

If, on the contrary, xr−1 < xm−1, then K f -covers [0, xr−1] in m−(p+q)−1
black steps when p + q < m− 1, and K ⊃ [0, xr−1] if p + q = m− 1. Since
[0, xr−1] f -covers [0, xp−r] ⊃ M in p − 2r + 1 steps also black, K f -covers
M in r − q black steps. Then we can consider the loop

α5 = M
q→→ K

m−(p+q)
−−−−−−→→ J

p−r−→M
q→→ K

r−q−→M.
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If I0 → I1 → . . . → Im−1 → I0 denotes any of the above five loops
(with I0 = M), then by using standard techniques (see, for instance, [2,
Lemma 1.2.7]) we get a point x ∈ M such that fm(x) = x and f i(x) ∈ Ii
for each i ∈ Zm. Set Q = Orbf (x). Since 0 6∈ M , we have 0 6∈ Q. Hence
Q has 1 or 3 coloured arrows and period r or m, respectively. We claim
that Q has period m. This is clear in Case (b) because p+ q > 2r, that is,
m − (p + q) < r < p + q − r and, hence, Q cannot have only one coloured
arrow. The orbits given by the loops α1, α2 and α3 cannot have period r
because, in such a case, x = f r(x) = f2r(x) ∈ M ∩ L, which reduces to a
single point of P , that is, of period m > r. So, the claim is proved. However,
the orbit Q is different from P . Indeed, if Q is given by the loop α1, then it
has all three strings of the same length, r, unlike P . In the remaining cases,
the strings of Q have lengths p+q−r, r and m−(p+q) and, since q < r < p
and q < p + q − r < p, those lengths are not equal to the lengths of the
strings of P . We then have a contradiction with the primarity of P .

Now assume that p = r. By Lemma 2.4, x0 ∼ xp ∼ xp+r because r ≡ c
and q < r. Set K = 〈x0, xp+r〉, L = 〈x0, xp〉, M = 〈xp, xp+r〉 and J =
[0, xp+q]. As above we will build appropriate loops to get orbits of period m
different from P , depending on the relative positions of x0, xp and xp+r. To
do this observe first that since f r(x0) = xp, f r(xp+r) = x0 and q < r, we

always have K r→→ L and J
r−q−→ [0, xp+r]. Furthermore, since q < p = r ≡ c,

again from Lemma 2.4, xq 6∼ xp+q 6∼ xp+r+q. Hence 0 ∈ f q(L), 0 ∈ f q(M)
and, since q < r, 0 ∈ f r(L) and 0 ∈ f r(M). This means that we also have
L

q→→ J , M
q→→ J , L r→→ [0, xp] and M

r→→ [0, x0] (see Figure 5.2).

K L J [0, xp+r]

[0, xp]

M [0, x0]

-- --

--

-

?
?

?
?

r

r

r

q

q

r−q

Fig. 5.2. Some f -coverings when p = r

The six possible cases are:

(i) x0 < xp < xp+r. Then L and M are contained in [0, xp+r] and we
have

L
q→→ J

r−q−→ L
q→→ J

r−q−→M
q→→ J

r−q−→ L.

(ii) xp+r < xp < x0. Then L and M are contained in [0, x0] and M ⊂
[0, xp]. Hence

M
r→→M

r→→ L
r→→M.
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(iii) xp+r < x0 < xp. Then L and K are contained in [0, xp] and we have

L
r→→ L

r→→ K
r→→ L.

(iv) xp < x0 < xp+r. Then L ∪K ⊂ [0, xp+r] and, hence,

L
q→→ J

r−q−→ L
q→→ J

r−q−→ K
r→→ L.

(v) xp < xp+r < x0. Then K ∪M ⊂ L ⊂ [0, x0] and we have

M
r→→M

r→→ K
r→→M.

(vi) x0 < xp+r < xp. Now we must use the interval [0, x0]. We have
[0, x0] ∪ L = [0, xp], [0, x0] r→→ [0, xp] and [0, x0] ⊂ [0, xp+r], hence

[0, x0] r→→ L
q→→ J

r−q−→ [0, x0] r→→ [0, x0].

All these loops give an orbit Q of period m, as we can easily see by
repeating previous arguments. Namely, in all the loops there are two in-
tervals r steps apart whose intersection reduces to a point of P . It is also
immediate that Q 6= P in cases (i), (ii), (iii) and (v), since the strings of
Q are all of the same length, unlike those of P by hypothesis. In case (iv),
Q 6= P because the strings of Q have the same lengths as those of P , but
in a different order: if we label the strings of Q in such a way that the first
is of length r = p, then the second has length 2r − q > r > q. Lastly,
to show that Q 6= P in case (vi), label the points yi ∈ Q in such a way
that y0 ∈ [0, x0], yi = f i(y0) for i ∈ Zm and the beginnings of the three
strings are y0, yr and yr+q. If Q = P , then yr+q = xp+q since both are the
beginning of the longest string (of length 2r − q = m − (p + q)). However,
f r−q(yr+q) ≤ x0 < xp+r = f r−q(xp+q). Hence, xp+q 6= yr+q; a contradiction.
Then, since Q 6= P in all cases we obtain a contradiction with the primarity
of P as before.

Now we are ready to prove the desired result.

Theorem 5.10. Let P be a periodic orbit of a map f ∈ X4. Then P is
a primary strongly directed orbit of period a multiple of three having three
coloured arrows if and only if P is 3-box.

Proof. If P is 3-box, then it has three coloured arrows by Remark 5.3,
its period is a multiple of three by Definition 5.2, P is strongly directed by
Corollary 5.5 and it is primary by Proposition 5.6.

Now we prove the converse. The three coloured arrows are of the same
colour, c ∈ {1, 3}, by Corollary 4.12. If we denote the period of P by m, we
have m ≡ 3c by Lemma 2.6. Also, by Lemma 5.9 the three strings have the
same length, r = m/3. Then r ≡ c and, by Lemma 2.4, the three strings
begin in the same branch. Then P has some crossing arrows. Indeed, assume
we have labelled the points of P in such a way that x0 is the beginning of a
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string, xi = f i(x0) for i ∈ Zm and x0 < min{xr, x2r}. Since f r(x0) = xr >
x0 = f r(x2r), we can find a t < r such that xt < x2r+t but xt+1 > x2r+t⊕1.
Hence P is 3-box by Theorem 5.8.

6. Conclusions. In this section we summarize the main results of the
paper. The next theorem summarizes Theorems 3.2 and 3.6 about primary
directed orbits of maps from Xn having at most one coloured arrow. The
second one puts together Theorem 4.10 and Corollary 4.12, giving important
restrictions for strongly directed orbits of maps from X4 to be primary. The
last result we quote is Theorem 5.8, which characterizes those primary orbits
having crossing arrows.

Theorem A. Let P be a directed orbit of a map f ∈ Xn with ν ≤ 1
coloured arrows.

(a) If P has only black arrows, then P is primary if and only if it is
twist.

(b) If P has a coloured arrow A, then P is primary if and only if it is
single of colour c(A).

Theorem B. Let P be a strongly directed orbit of a map f ∈ X4. If P
is primary , then it has no more than three coloured arrows and it is colour
compatible.

Theorem C. If P is a strongly directed orbit of a map f ∈ X4 with
ν > 0 coloured arrows and with crossing arrows, then P is primary if and
only if ν > 1 and P is ν-box.

As mentioned in the introduction, to finish the characterization of the
strongly directed primary orbits of maps from X4, we are left with the case
of those having ν > 1 coloured arrows and without crossing arrows. This
will be the goal of [4].
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