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NONLINEAR MULTIPLE HYBRID PROCEDURES
FOR SOLVING SOME CONSTRAINED

NONLINEAR OPTIMIZATION PROBLEMS

Abstract. We introduce a new formulation of multiple hybrid procedures
which consist in a combination of k arbitrary approximate solutions. The
connection between this method and other vector sequence transformations
is studied. This connection is also exploited for solving some constrained
nonlinear optimization problems. A convergence acceleration result is es-
tablished and numerical examples are given.

1. Introduction. It is well known that hybrid procedures can be used
for solving a system of linear equations [1, 6]. Multiple hybrid procedures
were defined by Brezinski and Redivo-Zaglia [6] and their acceleration prop-
erties have been studied. The nonlinear hybrid procedures studied in [5]
are also used for accelerating fixed point iterations. In this paper, we will
consider nonlinear multiple hybrid procedures for solving some constrained
nonlinear optimization problems. In order to present conveniently our re-
sults, let us introduce the setting used throughout this paper. For the vector
x = (x1, . . . , xp) ∈ Rp, we use the Euclidean norm

‖x‖ =
( ∑

1≤i≤p
x2
i

)1/2
.

We also denote by (·, ·) the corresponding inner product. We use the matrix
norm

‖A‖ = sup
‖x‖6=0

‖Ax‖/‖x‖

for any q × p matrix A. The paper is organized as follows. Section 2 is de-
voted to a new formulation of multiple hybrid procedures and the connection
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between this transformation and other vector sequence transformations. In
Section 3, we study the convergence acceleration method for solving some
constrained nonlinear optimization problems. Some numerical examples are
given in Section 4.

2. Nonlinear multiple hybrid procedures. Consider the system of
linear equations

(2.1) Ax = b.

Hybrid procedures for solving (2.1) were defined by Abkowicz and Brezin-
ski [1] and by Brezinski and Redivo-Zaglia [6]. Let x1, . . . , xk be k approxi-
mate solutions of (2.1). Multiple hybrid procedures construct a new approx-
imate solution by setting

yk =
k∑

i=1

αixi with
k∑

i=1

αi = 1

where α1, . . . , αk are chosen to minimize ‖%k‖, with

%k =
k∑

i=1

αiri and ri = b− Axi.

Consider the nonlinear system
(2.2) F (x) = 0

where F : Rp → Rp. We suppose that there exists a solution x∗ of (2.2). Let
x

(1)
n , . . . , x

(k)
n be k sequences of vectors of Rp converging to x∗ with k ≤ p.

We construct a new sequence by setting

(2.3) t(k)
n =

k∑

i=1

α(i)
n x(i)

n with
k∑

i=1

α(i)
n = 1.

We make the following definition:

Definition 2.1. A map r : Rp → Rp is said to be a residual function if

∀x ∈ Rp ∃λ ∈ R∗ r(x) = λF (x).

Remark 2.1. If we assume that (2.2) has a unique solution x∗, then

r(x) = 0 ⇔ x = x∗,

and we get the definition given by Brezinski and Chehab [5].

Let r(1), . . . , r(k) be k residual functions, and set

r(i)
n = r(i)(x(i)

n ), i = 1, . . . , k.

Setting

(2.4) β(j)
n = 1−

j−1∑

i=1

α(i)
n , j = 2, . . . , k,
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we obtain from (2.3)

(2.5) t(k)
n = x(1)

n +
k∑

j=2

β(j)
n (x(j)

n − x(j−1)
n ).

We define

(2.6) %(k)
n = r(1)

n +
k∑

j=2

β(j)
n (r(j)

n − r(j−1)
n ).

The coefficients β(2)
n , . . . , β

(k)
n are chosen to minimize ‖%(k)

n ‖. We introduce
some notations.

We define the following matrices by giving their columns:

∆1
n,k = [x(2)

n − x(1)
n , . . . , x(k)

n − x(k−1)
n ], ∆2

n,k = [∆2x(1)
n , . . . .,∆2x(k−1)

n ],

where ∆2x
(i)
n = ∆(∆x(i)

n ) and ∆x(i)
n = x

(i+1)
n − x(i)

n ; morever,

Rn,k = [r(1)
n , . . . , r(k−1)

n ], ∆Rn,k = [r(2)
n − r(1)

n , . . . , r(k)
n − r(k−1)

n ],

(∆Rn,k)†= ((∆Rn,k)T∆Rn,k)−1(∆Rn,k)T , the pseudo-inverse of ∆Rn,k.

We also set
βn,k = (β(2)

n , . . . , β(k)
n )T ∈ Rk−1.

The following theorem shows that (t(k)
n )n defined by (2.3) is well defined,

and gives a new formula for it.

Theorem 2.1. If rank(∆Rn,k) = k−1, then there exists a unique vector
βn,k which solves

(2.7) (∆Rn,k)T∆Rn,kβn,k = −(∆Rn,k)T r(1)
n

and

(2.8) t(k)
n = x(1)

n −∆1
n,k(∆Rn,k)†r(1)

n .

Proof. Using the previous notations and (2.6), we have

%(k)
n = r(1)

n + ∆Rn,kβn,k.

Then

‖%(k)
n ‖2 = ‖r(1)

n ‖2 + 2(r(1)
n ,∆Rn,kβn,k) + ‖∆Rn,kβn,k‖2

= ‖r(1)
n ‖2 + 2((∆Rn,k)T r(1)

n , βn,k) + ((∆Rn,k)T∆Rn,kβn,k, βn,k).

Therefore, the vector βn,k minimizing ‖%(k)
n ‖2 is such that

(∆Rn,k)T∆Rn,kβn,k = −(∆Rn,k)T r(1)
n .

By the previous notations and (2.5), we have

t(k)
n = x(1)

n + ∆1
n,kβn,k.
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On the other hand, it is well known that the hypothesis rank(∆Rn,k) = k−1
implies that (∆Rn,k)T∆Rn,k is nonsingular. Then we finally have

βn,k = −(∆Rn,k)†r(1)
n and t(k)

n = x(1)
n −∆1

n,k(∆Rn,k)†r(1)
n .

Remark 2.2. (1) Consider the optimization problem

(2.9) find x∗ ∈ Rp such that f(x∗) = min
x∈Rp

f(x)

where f is a convex function from Rp to R. Problem (2.9) is equivalent
to (2.2) with F = ∇f , the gradient of f .

If we set xn+i = xn+i−1 − λn,i∇f(xn+i−1), x(i)
n = xn+i−1, where

x0 ∈ Rp, n = 0, 1, . . . , i = 1, . . . , k − 1 and λn,i is the solution of
minλ∈R∗ f(xn+i−1 − λ∇f(xn+i−1)), then:

• For k = 3 and r
(i)
n = −λn,i∇f(xn+i−1), i = 1, 2, we obtain (see [11])

t
(k)
n = ε

(n)
2 , the vector ε-algorithm [3, 4].

• For k = p and r
(i)
n = −∇f(xn+i−1), i = 1, . . . , p, we get the modified

Henrici transformation used in [12] for solving (2.9):

t(p)n = xn −∆Xn(∆F ′(xn))−1∇f(xn),

where ∆F ′(xn) is the p× p matrix whose columns are

∇f(xn+1)−∇f(xn), . . . ,∇f(xn+p)−∇f(xn+p−1).

(2) Consider the vector sequence defined by xn+i = xn+i−1−λF (xn+i−1),
with x0 ∈ Rp, λ > 0, i = 1, . . . , p and n = 0, 1, . . . If we set

x(i)
n = xn+i−1, r(i)

n = −λF (xn+i−1),

then we have r(i)
n = ∆x(i)

n , r(i+1)
n − r(i)

n = ∆2x
(i)
n and ∆Rn,k = ∆2

n,k. We
obtain the RRE (reduced rank extrapolation; see [13])

(2.10) t(k)
n = xn −∆1

n,k(∆2
n,k)†∆xn.

3. Nonlinearly constrained optimization problems. Let us now
apply the vector sequence transformation (2.8) to the solution of the con-
strained optimization problem

(3.1)
{

min f(x)
subject to g(x) ≤ 0

where the functions f : Rp → R and g : Rp → Rq (with g(x) = (gi(x))1≤i≤q
and q ≤ p) are convex and twice continuously differentiable. The Lagrangian
is defined by

L(x, λ) = f(x) +
q∑

i=1

λigi(x)

where x ∈ Rp and λ = (λ1, . . . , λq) ∈ Rq.
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It is well known that if a vector x∗ is a solution of (3.1), then there exists
a multiplier λ∗ ∈ Rq+ such that

(3.2) L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) ∀x ∈ Rp ∀λ ∈ Rq+.

We denote by Jg the Jacobian matrix of g, and we set T (xn) = t
(p)
n .

Consider problem (3.2) and let x0 ∈ Rp and λ0 ∈ Rq+ be given vectors.
Assuming that (xn, λn) = (x1

n, . . . , x
p
n, λ

1
n, . . . , λ

q
n) ∈ Rp × Rq+ is given, we

consider the problem

L(x∗, λ∗) ≤ L(x, λ∗) ∀x ∈ Rp.
One can obtain xn+1 such that

L(xn+1, λn) ≤ L(xn, λn).

Then we apply the gradient method [8] to minx∈Rp L(x, λn), where xn is
considered as an initial point, and we define the vector sequence (y(m)

n )m by

y(1)
n = xn

for m = 1, . . . , do

r(m)
n = α(∇f(y(m)

n ) + (Jg(y(m)
n ))Tλn)

y(m+1)
n = y(m)

n − r(m)
n

end do

where α > 0. Then the sequence (T (y(m)
n ))m defined by (2.8) for (y(m)

n )m
converges to a limit denoted by xn+1.

In order to determine λn+1, we consider the problem

L(x∗, λ) ≤ L(x∗, λ∗) ∀λ ∈ Rq+.
One can obtain λn+1 such that

L(xn+1, λn) ≤ L(xn+1, λn+1).

Then we can take λn+1 as the first iteration of the gradient method applied
to maxλ∈Rq+ L(xn+1, λ), where λn is considered as an initial point. Then we
have

λn+1 = P (λn + %g(xn+1))

where % > 0 and P is the projection onto Rq+ defined by

P (x) = (max(xi, 0))1≤i≤q ∀x ∈ Rq.
The corresponding algorithm is as follows:
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Algorithm 1.

(a) Choose x0 ∈ Rp, T (y(−1)
0 ) = x0, λ0 ∈ Rq+, α > 0, ε > 0 and % > 0

(b) for n = 0, 1, . . . , do

(b1) Set y(1)
n = xn

for i = 1, . . . , p, do
r

(i)
n = α(∇f(y(i)

n ) + (Jg(y
(i)
n ))Tλn)

y
(i+1)
n = y

(i)
n − r(i)

n

end do
(b2) for i = 1, . . . , do

r
(p+i)
n = α(∇f(y(p+i)

n ) + (Jg(y
(p+i)
n ))Tλn)

y
(p+i+1)
n = y

(p+i)
n − r(p+i)

n

solve the linear system (∆Rn,p)T∆Rn,pβn,p=(∆Rn,k)T r(i)
n

compute T (y(i)
n ) = y

(i)
n −∆1

n,pβn,p

if ‖T (y(i)
n )− T (y(i−1)

n )‖ ≤ ε then

set xn+1 = T (y(i)
n )

stop
end if

end do
(b3) Computation of λn+1

for i = 1, . . . , q, do
λin+1 = max(λin + %gi(xn+1), 0).

end do
if ‖xn+1 − xn‖ ≤ ε then

set x∗ = xn+1

stop
end if

end do.

As mentioned above, the following theorem shows that (T (y(m)
n ))m con-

verges to xn+1 faster than (y(m)
n )m. Furthermore, we shall see that the vector

sequence (xn)n obtained by this procedure converges to the solution of (3.1).
We suppose that g(x) = Cx − d, and {x ∈ Rp : g(x) < 0} 6= ∅, where

C ∈Mq,p(R) and d ∈ Rq. This case occurs frequently in practice.
Let us now study the convergence and acceleration of the sequence trans-

formation (T (y(m)
n ))m. We denote by ∇2f the Hessian of f . The following

theorem shows the acceleration of convergence obtained by (T (y(m)
n ))m.

Theorem 3.1. Let f : Rp → R be of class C2 and convex. Suppose that
there exist constants m, %,M, ε > 0 such that
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(3.3) m‖x−y‖2 ≤
(
∇f(x)−∇f(y)− %

2
CTC(x−y), x−y

)
∀x, y ∈ Rp,

(3.4) ∀n ∃N ∃γn > 0 ∀m ≥ N
∣∣∣∣det

(
rmn
‖rmn ‖

, . . . ,
rm+p−1
n

‖rm+p−1
n ‖

)∣∣∣∣ ≥ γn,

(3.5) ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖ ∀(x, y) ∈ Rp × Rp.
Then:

1) The sequence (T (y(m)
n ))m is defined for m ≥ N and n ≥ 0.

2) For all n ≥ 0 there exists a unique xn+1 ∈ Rp such that

lim
m→∞

‖T (y(m)
n )− xn+1‖

‖y(m)
n − xn+1‖

= 0.

3) The sequence (xn)n∈N converges to the solution x∗ of problem (3.1).

Proof. 1) Assume that the vector λn is given and consider the function
Φn : Rp → R defined by

Φn(x) = f(x) + (λn, g(x)) ∀x ∈ Rp.
We have

∇Φn(x) = ∇f(x) + CTλn,(3.6)

∇2Φn(x) = ∇2f(x).(3.7)

By the hypothesis (3.3), we have

m‖x− y‖2 ≤ (∇f(x)−∇f(y), x− y)− %

2
‖C(x− y)‖2 ∀(x, y) ∈ Rp ×Rp,

and then, by (3.6), we deduce

m‖x− y‖2 ≤ (∇Φn(x)−∇Φn(y), x− y) ∀(x, y) ∈ Rp × Rp.
This relation implies (see [7]) the sufficient condition for the existence and
uniqueness of the solution of the problem minx∈Rp Φn(x), denoted by xn+1,
and for all x, y ∈ Rp, we have

m‖y‖2 ≤ (∇2Φn(x)y, y) ∀(x, y) ∈ Rp × Rp.
Therefore, using (3.4), (3.5) and (3.7), we deduce that ∇2Φn(xn+1) is regu-
lar,

‖∇2Φn(x)−∇2Φn(y)‖ ≤M‖x− y‖ ∀(x, y) ∈ Rp × Rp,
and

∀n ≥ 0 ∃N > 0 ∃γn ∀m ≥ N∣∣∣∣det
( ∇Φn(y(m)

n )

‖∇Φn(y(m)
n )‖

, . . . ,
∇Φn(y(m+p−1)

n )

‖∇Φn(y(m+p−1)
n )‖

)∣∣∣∣ ≥ γn.
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Then, for all n ≥ 0, the sequence T (y(m)
n ) is defined for m ≥ N and (see [13])

lim
m→∞

‖T (y(m)
n )− xn+1‖

‖y(m)
n − xn+1‖

= 0.

Now we will prove the convergence of the sequence (xn)n to the solution
of problem (3.1).

The sufficient condition for the existence of the solution of (3.1) is given
by (3.3) and the hypothesis {x ∈ Rp : g(x) < 0} 6= ∅ (see [7]). It is well
known that if x∗ is a solution to (3.1) with corresponding multipliers λ∗ ∈
Rp+, then x∗ also satisfies

(3.8) L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) ∀(x, λ) ∈ Rp × Rq+.
Using (3.3), we have

m‖xn+1 − x∗‖2 ≤
(
∇f(xn+1)−∇f(x∗)− %

2
CTC(xn+1 − x∗), xn+1 − x∗

)
.

By (3.8), we have L(x∗, λ∗) = minx∈Rp L(x, λ∗), thus

∇f(x∗) = −CTλ∗.
On the other hand, Φn(xn+1) = minx∈Rp Φn(x) implies

∇f(xn+1) = −CTλn.
Thus, we deduce

m‖xn+1 − x∗‖2 ≤
(
−CT (λn − λ∗)−

%

2
CTC(xn+1 − x∗), xn+1 − x∗

)

≤ − 1
2%

(2%CT (λn−λ∗) + %2CTC(xn+1−x∗), xn+1−x∗)

≤ − 1
2%

(%2(CTC(xn+1−x∗), xn+1−x∗) + 2%(CT (λn−λ∗), xn+1−x∗)).

Therefore

m‖xn+1 − x∗‖2

≤ − 1
2%

(‖λn − λ∗ + %C(xn+1 − x∗)‖2 − ‖λn − λ∗‖2)

≤ − 1
2%

(‖λn + %(Cxn+1 − d)− λ∗ − %(Cx∗ − d)‖2 − ‖λn − λ∗‖2).

Using (3.8), we have L(x∗, λ∗) = maxλ∈Rq+ L(x∗, λ), thus

λ∗ = P (λ∗ + %(Cxn+1 − d)),

and since λn+1 = P (λn + %(Cxn+1 − d)), we finally obtain
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(3.9) m‖xn+1 − x∗‖2 ≤ −
1
2%

(‖λn+1 − λ∗‖2 − ‖λn − λ∗‖2),

which proves that the sequence (‖λn−λ∗‖)n is decreasing, hence convergent,
which gives limk→∞ xn+1 = x∗.

Remarks 3.1. (1) The assumption (3.4) is the uniform invertibility hy-
pothesis [13]. In [10, Prop. 4], a characterization of this hypothesis is given
using the matrix ∇2f(xn+1).

(2) It suffices to take α ∈ ]0, 1/M [ in order to have I − α∇2f(xn+1)
regular.

Now we propose another version of Algorithm 1 where the vector se-
quence (y(m)

n )m is computed by the gradient method with an optimal step.

Algorithm 2. We replace (b1) and (b2) by (b′1) and (b′2), where (b′1)
and (b′2) are defined by:

(b′1) Set y(1)
n = xn

for i = 1, . . . , p, do
compute s(i)

n = (∇f(y(i)
n ) + (Jg(y

(i)
n ))Tλn)

compute α(i)
n by minα∈R+ L(yin + αsin, λn)

set rin = α
(i)
n s

(i)
n , y(i+1)

n = y
(i)
n − r(i)

n

end do
(b′2) for i = 1, . . . , do

compute s(p+i)
n = (∇f(y(p+i)

n ) + (Jg(y
(p+i)
n ))Tλn)

compute α(p+i)
n by minα∈R+ L(y(p+i)

n + αs
(p+i)
n , λn)

set r(p+i)
n = α

(p+i)
n s

(p+i)
n , y(p+i+1)

n = y
(p+i)
n − r(p+i)

n

solve the linear system (∆Rn,p)T∆Rn,pβn,p = (∆Rn,k)T r(i)
n

compute t(p)n = T (y(i)
n ) = y

(i)
n−∆1

n,pβn,p

if ‖T (y(i)
n )− T (y(i)

n−1)‖ ≤ ε then

set xn+1 = T (y(i)
n )

stop
end if

end do.

The following theorem shows that T (y(m)
n )m given by Algorithm 2 con-

verges to xn+1 faster than (y(m)
n )m. We denote by G(u1, . . . , up) =

det((ui, uj))1≤i,j≤p the Gram determinant corresponding to the p-tuple
(u1, . . . , up). We obtain the following result.

Theorem 3.2. Let f : Rp → R be of class C2 and suppose that there
exist constants m, %, ε > 0 such that
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(3.10) m‖x−y‖2 ≤
(
∇f(x)−∇f(y)− %

2
CTC(x−y), x−y

)
, ∀x, y ∈ Rp,

(3.11) ∀n ∃N ∃γn > 0 ∀m ≥ N G

(
r

(m)
n

‖r(m)
n ‖

, . . . ,
r

(m+p−1)
n

‖r(m+p−1)
n ‖

)
≥ γn.

Then:

1) The sequence (T (y(m)
n ))m is defined for m ≥ N and n ≥ 0.

2) For all n ≥ 0 there exists a unique xn+1 ∈ Rp such that

lim
m→∞

‖T (y(m)
n )− xn+1‖

‖y(m)
n − xn+1‖

= 0.

3) The sequence (xn)n∈R converges to the solution x∗ of problem (3.1).

Proof. As in Theorem 3.1, the probem minx∈Rp Φn(x) has a unique so-
lution denoted by xn+1. Using (3.10), (3.11), (3.6), and (3.7), we have

m‖y‖2 ≤ (∇2Φn(x)y, y) ∀(x, y) ∈ Rp × Rp,
m‖x− y‖2 ≤ (∇Φn(x)−∇Φn(y), x− y) ∀(x, y) ∈ Rp × Rp,

∀n≥ 0 ∃N > 0 ∃γn> 0 ∀m≥N G

( ∇Φn(ymn )
‖∇Φn(ymn )‖ , . . . ,

∇Φn(ym+p−1
n )

‖∇Φk(ym+p−1
n )‖

)
≥ γn.

Then for all n ≥ 0, the sequence T (ymn ) is defined for m ≥ N and we have
(see [12])

lim
m→∞

‖T (ymn )− xn+1‖
‖ymn − xn+1‖

= 0.

The end of the proof is the same as in Theorem 3.1.

4. Numerical experiments. In this section, we report on some nu-
merical experiments. We compare the nonlinear multiple hybrid procedures
NLM given by Algorithms 1 and 2 with the gradient method GM and the
gradient method with optimal step GMO [2, 7]. This comparison will be
summarized in tables which give the number of iterations, iter., and the
associated residual norms for each method. The stopping criterion is given
by res. = ‖xk − x∗‖, where x∗ is the solution of problem (3.1). To solve the
linear system in Algorithms 1 and 2, we use Gaussian elimination.

Example 1. The first example has been used in [15]. We consider the
following problem:

{
Minimize 1

2x
2
1 + 1

2x
2
2 − 2x1x2 − x1 − 2x2

subject to
{
x1 + x2 ≤ 1,
x1 ≥ 0 and x2 ≥ 0.

For this function, we can see that x∗ = (1/3, 2/3). For different initial points
x0 we obtain the following tables:
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Table 1. x0 = (0.5, 1)

iter GM NLMH

0 1.414213562373089E−002 1.414213562373089E−002

1 7.071067811865560E−003 1.138360651264128E−016

4 8.838834764831656E−004

10 1.381067932011570E−005

20 1.348699145788843E−008

25 4.214691149978832E−010

30 1.430201717150080E−011

Table 2. x0 = (0.6, 0.9)

iter GM NLMH

0 1.414213562373018E−003 1.414213563273018E−003

1 5.656854249492542E−004 1.159106867033638E−015

5 1.448154687869300E−005

10 1.482910400262855E−007

15 1.518500241054302E−009

20 1.554941226978357E−011

25 1.602622606765867E−013

30 4.399650097552470E−014

Example 2. This example is taken from [15]. We consider the following
problem: 




Minimize x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − x2 − 3x4

subject to

{ 2x1 + x2 + x3 + 4x4 ≤ 7,
x1 + x2 + 2x3 + x4 ≤ 6,
xi ≥ 0 pour i = 1, 2, 3, 4.

For x0 = (2, 2, 1, 0) we obtain the results shown in Fig. 1.

Example 3. This example was taken from [8]. We consider the problem
{

Minimize
∑

1≤i≤n f
2
i (x)

subject to Cx ≤ d
where

• n is any positive multiple of 2, x = (xi)1≤i≤n,
• for i = 1, . . . , n/2, f2i−1(x) = 10(x2i − x2

2i−1), f2i(x) = 1− x2i−1,
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Fig. 1

• C is the n× n matrix given by

C =




1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
. . . . . . . . . . . . . . . .
0 0 0 . . . 1


 ,

• d = (n, n− 1, n− 2, . . . , 2, 1).

For this problem, we used two values of n:

• n = 10, x0 = (1, 1, 2, 3,−1, 1, 0, 2,−3, 1) (Table 3),
• n = 20, x0 = (1, 1, 2, 3,−1, 1, 0, 2,−3, 1, 1, 1, 2, 3,−1, 1, 0, 2,−3, 1)

(Table 4).

Table 3

iter GM NLMH

0 5.196152423125231E−000 5.196152423125231E−000

1 1.848869271451412E−000 4.551452613214589E−001

10 4.874501256871418E−001 8.691254803654878E−002

20 4.701452178321422E−001 2.574512014583601E−002

30 4.110214567852103E−001 1.461420568972214E−003

40 3.661204568912511E−001 4.401257896542451E−004

45 3.601025321642539E−001 3.261250458792152E−010
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Table 3 (cont.)

iter GM NLMH

50 3.591204520121544E−001 1.182507890125461E−016

90 1.123654825613125E−001

100 1.084536218962116E−001

190 6.801245612561215E−002

200 7.151452105682512E−003

210 8.831258976521252E−004

Table 4

iter GM NLMH

0 7.348469228123105E−000 7.348469228123105E−000

1 1.831287965412451E−000 3.920124563214528E−001

10 2.172014508963212E−001 3.041789156325469E−002

20 2.084567825946129E−001 2.421576824563154E−002

30 2.045862587165234E−001 2.075862143654152E−002

40 1.764589253156015E−001 4.452136589456201E−003

50 1.701452879653223E−001 1.391254368245631E−004

60 1.665239015846152E−001 1.282458964321145E−004

70 1.614528635248963E−001 1.204568124351238E−004

80 1.541502589673541E−001 1.091254362154786E−004

83 1.531452689354611E−001 9.554218961254518E−005

85 1.530125647856918E−001 7.661254897314051E−007

86 1.521456924056314E−001 1.102578965314256E−007

87 1.520456243654213E−001 6.891452865432897E−011

88 1.520412365478127E−001 4.401789546243154E−013

89 1.520411356245634E−001 2.184579652301457E−015

100 1.445628397025648E−002

150 7.431546289378564E−002

200 7.082154839147325E−003
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Sci. Paris Sér. I 318 (1994), 1043–1049.

[11] B. Rhanizar, Hybrid procedures for solving some unconstrained nonlinear optimiza-
tion problems, Appl. Numer. Math. 30 (1999) 459–474.

[12] —, On Henrici’s transformation in optimization, Appl. Math. (Warsaw) 27 (2000),
127–141.
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