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POLYNOMIAL AND SPLINE ESTIMATORS OF THE
DISTRIBUTION FUNCTION WITH

PRESCRIBED ACCURACY

Abstract. Dvoretzky–Kiefer–Wolfowitz type inequalities for some polyno-
mial and spline estimators of distribution functions are constructed. More-
over, hints on the corresponding algorithms are given as well.

1. Introduction. The family of all continuous probability distribution
functions on the real line is denoted by F . If the probability corresponding to
F ∈ F is supported on the interval I then we write F ∈ F(I). LetX1, . . . , Xn

be a simple sample corresponding to a distribution F ∈ F and let

(1.1) Fn(x) =
1
n

n∑
j=1

1(−∞,x](Xj).

The Dvoretzky–Kiefer–Wolfowitz (DKW) inequality in its final form (see [6])

(1.2) P{‖Fn − F‖∞ ≥ ε} ≤ 2e−2nε2 for all F ∈ F ,

where ‖Fn − F‖∞ = supx |Fn(x) − F (x)|, gives us a powerful tool for sta-
tistical applications (testing hypotheses concerning unknown F , confidence
intervals for F etc.). It seems, however, unnatural to estimate a continuous
F ∈ F by the step function Fn. In the abundant literature of the subject
one can find different approaches to smoothing empirical distribution func-
tions but it turns out that smoothing may spoil the estimator. For classical
kernel estimators (see e.g. [8]) no inequality of DKW type exists (Zieliński
[9]). Consequently, one cannot tell how many observations X1, . . . , Xn are
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needed to guarantee the prescribed accuracy of the kernel estimator. Us-
ing the method from [9] one can prove a similar negative result for some
polynomial estimators (see Section 4 below).

In what follows we discuss three estimators and the DKW type inequal-
ities for them. The first one (see Section 3), to be denoted by Φm,n, is a
smooth modification of Fn. It is a piecewise polynomial estimator of the
class Cm ∩ F with knots placed at the sample points X1:n, . . . , Xn:n. The
smoothness parameterm = 1, 2, . . . can be fixed by the statistician according
to his a priori knowledge of the smoothness of the estimated F ∈ F . In this
case the DKW type inequality holds in the class F of all continuous proba-
bility distribution functions on the real line. The second one (see Section 4)
is the polynomial estimator constructed in Ciesielski [3], and the third one
(see Section 5) is a spline estimator with equally spaced knots (Ciesielski
[2], [4]). In both cases subclasses of F are explicitly specified for which the
DKW type inequalities are proved. We start in Section 2 with preliminar-
ies on specific approximations by algebraic polynomials and by splines with
equally spaced knots.

2. Preliminaries from approximation theory. We recall the neces-
sary ingredients from approximation theory, in particular the basic proper-
ties of the Bernstein polynomials and of the related B-splines. The relation
is direct: the Bernstein polynomials are simply the degenerate B-splines.

Let us start with the Bernstein polynomials. For a given integer r ≥ 1 let
Πm denote the space of real polynomials of degree at most m = r−1 (i.e. of
order r). For convenience, both parameters r and m will be used; m is more
natural for polynomials and r for splines. The basic Bernstein polynomials
of degree m are linearly independent and given by the formula

(2.1) Ni,m(x) =
(
m

i

)
xi(1− x)m−i with i = 0, . . . ,m.

Consequently,

(2.2) Πm = span[Ni,m : i = 0, . . . ,m],

and therefore each w ∈ Πm has a unique representation

(2.3) w(x) =
m∑
i=0

wiNi,m(x).

Now, given the coefficients wi and the x ∈ (0, 1) we can calculate the value
w(x) using the Casteljeau algorithm based on the identity

(2.4) Ni,m(x) = (1− x)Ni,m−1(x) + xNi−1,m−1(x).

The Bernstein polynomials are positive on (0, 1) and they form a partition
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of unity,

(2.5)
m∑
i=0

Ni,m(x) = 1 for i = 0, . . . ,m and x ∈ (0, 1).

On the other hand, the modified Bernstein polynomials

(2.6) Mi,m(x) = (m+ 1)Ni,m(x)

are normalized in L1(0, 1), i.e.

(2.7)
1�

0

Mi,m(x) dx = 1.

In our construction of the polynomial estimator, the Durrmeyer kernel

(2.8) Rm(x, y) =
m∑
i=0

Mi,m(x)Ni,m(y)

plays an essential role. The kernel is symmetric and it has the following
spectral representation:

(2.9) Rm(x, y) =
m∑
i=0

λi,m li(x)li(y),

where the eigenfunctions are the orthonormal Legendre polynomials li and
for the corresponding eigenvalues λi,m we have (cf. e.g. [5])

(2.10) λ0,m = 1, λi,m =
i∏

j=1

m+ 1− j
m+ 1 + j

for i = 1, . . . ,m,

whence, with the notation λk = k(k + 1),

(2.11)
2
5

λj
λk+1

≤ 1− λj,m ≤
λj

m+ 2
for λk ≤ m < λk+1, 1 ≤ j ≤ k.

Now, for a given function F which is either of bounded variation or continu-
ous on [0, 1], the value of the underlying smoothing operator is a polynomial
of degree m+ 1 defined by the formula

(2.12) TmF (x) = F (0) +
x�

0

[ 1�

0

Rm(y, z) dF (y)
]
dz.

Now, since

(2.13)
x�

0

Mi,m(y) dy =
m+1∑
j=i+1

Nj,m+1(x) for i = 0, 1, . . . ,m,

the Casteljeau algorithm, in case F = Fn, can be applied to calculate
the value TmF (x). It also follows from (2.12) that the integrated Legendre
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polynomials

(2.14) Lj(x) =
x�

0

lj(y) dy for j = 0, 1, . . .

are the eigenfunctions for the operators Tm with the corresponding eigenval-
ues (2.6). For more details on the eigenvalues λi,m we refer to [3]. An ele-
mentary argument gives, for any probability distribution functions F and G,
both supported on [0, 1], the important inequality

(2.15) ‖TmF − TmG‖∞ ≤ ‖F −G‖∞.
Moreover, if F is a continuous function on [0, 1], then

(2.16) ‖TmF‖∞ ≤ 3‖F‖∞.

Proposition 2.1. For each F ∈ C[0, 1] we have

(2.17) ‖F − TmF‖∞ → 0 as m→∞.
Proof. The family {Tm} of operators on C[0, 1] is by (2.16) uniformly

bounded and therefore by the Banach–Steinhaus theorem it is sufficient to
check (2.17) for F = Lj with any fixed j. However, in this case

F − TmF = Lj − TmLj = (1− λj,m)Lj ,

and an application of (2.11) completes the proof.

In what follows we use the symbol Wm
p (I) for the Sobolev space of order

of smoothness m and with the integrability exponent p.

Theorem 2.2. Let F ∈W 2
2 [0, 1]∩F [0, 1], D = d/dx and M = ‖D2F‖2.

Then

(2.18) ‖F − TmF‖∞ ≤
M

m1/4
for m = 2, 3, . . . .

Proof. For the density f = DF we have

(2.19) (f, 1) = 1

with the usual scalar product (f, g) in L2[0, 1], and

(2.20) F (x)− TmF (x) =
x�

0

(f −Rmf)(z) dz,

where Rm is the Durrmeyer operator corresponding to (2.8). It now follows
from (2.20) that

(2.21) ‖F − TmF‖∞ ≤ ‖f −Rmf‖2.
Using the spectral representation of Rm we find that

(2.22) ‖f −Rmf‖22 =
∞∑
i=1

(1− λi,m)2a2
i ,
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where the ai’s are the Fourier–Legendre coefficients and by definition each
λi,m for i > m is assumed to be 0. Moreover,

(2.23) ai = (f, li).

Using the notation from (2.14) we get

(2.24) |ai| = |(D2F,Li)| ≤M‖Li‖2.
It remains to estimate ‖Li‖2. To this end apply the identity

(2.25) 2Li+1 =
1√

(2i+ 1)(2i+ 3)
li+2 −

1√
(2i+ 1)(2i− 1)

li, i ≥ 1,

to get

(2.26) ‖Li+1‖22 =
1

8λi
(
1− 3

4λi

) ≤ 1
8λi
(
1− 3

4λ1

) =
1

5λi
, i ≥ 1.

Thus, for the unique k satisfying the inequalities λk ≤ m < λk+1 we obtain

(2.27)
∞∑

i=k+1

|ai|2 ≤M2
∞∑
i=k

1
5λi

=
M2

5
1
k
.

By the monotonicity in m of ‖f −Rmf‖2 and by (2.11) we get

(2.28) ‖f −Rmf‖22 ≤
k∑
i=1

(
λi

m+ 2

)2

|ai|2 +
M2

5
1
k
.

Now, λ1 = 2, ‖L1‖22 = 1/10,
√
m/2 ≤ k <

√
m, and therefore

(2.29)
k∑
i=1

(
λi

m+ 2

)2

|ai|2 ≤
3M2

5
√
m
.

Combining (2.29) and (2.28) we get (2.18).

In the construction below of the spline estimator with random knots,
a particular role is played by the following polynomial density function on
[0, 1]:

(2.30) φm(x) := Mm,2m(x) = (2m+ 1)
(

2m
m

)
xm(1− x)m,

where the positive integer m is the given parameter of smoothness. The
corresponding polynomial distribution function is

(2.31) Φm(x) =
x�

0

φm(y) dy,

or else (see (2.13))

(2.32) Φm(x) =
2m+1∑
i=m+1

Ni,2m+1(x),
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which permits calculating Φm(x) with the help of the Casteljeau algorithm.
It is also important that Φm(x) solves the two-point Hermite interpolation
problem of order m, i.e.

(2.33) DkΦm(0) = 0 and DkΦm(1) = δk,0 for k = 0, . . . ,m.

For later convenience we also introduce the transformed polynomial distri-
bution

(2.34) Φm(x; [a, b]) = Φm

(
x− a
b− a

)
.

Clearly,
Φm(a; [a, b]) = 0 and Φm(b; [a, b]) = 1.

On the real line R similar roles to polynomials and Bernstein polyno-
mials on [0, 1] are played by the cardinal splines and cardinal B-splines,
respectively. For a given integer r ≥ 1 the space Sr of cardinal splines of
order r is the space of all functions on R of class Cr−2 whose restrictions
to (j, j + 1) are polynomials of order r, i.e. DrS = 0 on each (j, j + 1) for
j = 0,±1, . . . . It is known that there is a unique B(r) ∈ Sr (up to a mul-
tiplicative constant) positive on (0, r) and with support [0, r]. The function
B(r) becomes unique if normalized e.g. so that

(2.35)
�

R
B(r)(y) dy = 1.

The density B(r) can as well be defined probabilistically by the formula

(2.36) P{U1 + · · ·+ Ur < x} =
x�

−∞
B(r)(y) dy

where U1, . . . , Ur are independent uniformly distributed r.v. on [0, 1]. We
also need the rescaled cardinal B-splines

N
(r)
i,h (x) = B(r)

(
x

h
− i
)

and M
(r)
i,h (x) =

1
h
B(r)

(
x

h
− i
)

for i ∈ Z,

where h > 0 is the so called window parameter. They share the nice properties

(2.37)
∑
i

N
(r)
i,h (x) = 1 and

�

R
M

(r)
i,h (y) dy = 1.

Clearly, suppN (r)
i,h = suppM (r)

i,h = [ih, (i + r)h]. Moreover, the recurrent
formula

(2.38) N
(r)
i,h (x) =

x− ih
(r − 1)h

N
(r−1)
i,h (x) +

(i+ r)h− x
(r − 1)h

N
(r−1)
i+1,h (x)

supplies an algorithm for calculating at a given x the value of the cardinal



Polynomial and spline estimators 7

spline

(2.39)
∑
i

aiN
(r)
i,h (x)

given the coefficients (ai). The same algorithm can be used to calculate the
value at x of the distribution function

(2.40)
x�

−∞
M

(r)
i,h (y) dy =

∞∑
j=i

N
(r+1)
i,h (x).

Now, just as in the polynomial case (cf. (2.8)) we introduce the spline kernel

(2.41) R
(k,r)
h (x, y) =

∞∑
i=−∞

M
(k)
i+ν,h(x)N

(r)
i,h (y).

In what follows it is assumed that 1 ≤ k ≤ r and that r − k is even, i.e.
r − k = 2ν with ν being a non-negative integer. It then follows that the
supports of M (k)

i+ν,h and of N (r)
i,h are concentric. Denote by C±(R) the linear

space of all right-continuous functions on R with finite limits at ±∞, and by
BV (R) the linear space of all continuous functions of finite total variation
on R. Now, for F ∈ C±(R) ∪ BV (R) the value of the operator T (k,r)

h F is
defined by the formula

T
(k,r)
h F (x) =

x�

−∞

( �

R
R

(k,r)
h (z, y)F (dz)

)
dy(2.42)

=
∞∑

i=−∞

�

R
M

(k)
i+ν,h dF

x�

−∞
N

(r)
i,h (y) dy.

To recall from [4] the direct approximation theorem by the operators T (k,r)
h ,

the notion of modulus of a given order m ≥ 1 is needed:

ωm(F ; δ) = sup
|t|<δ
‖∆m

t F‖∞,

where ∆m
t is the mth order progressive difference with step t, i.e.

∆m
t f(x) =

m∑
j=0

(−1)j+m
(
m

j

)
f(x+ jt).

Now, the following theorem, important for spline estimation, was proved
in [4]:

Theorem 2.3. Let 1 ≤ k ≤ r with r − k even and let h > 0. Then for
F ∈ C±(R) ∪BV (R),

(2.42) ‖T (r,k)
h F‖∞ ≤ ‖F‖∞,
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and for F ∈ C±(R),

(2.43) ‖F − T (k,r)
h F‖∞ ≤ 2(4 + (r + k)2)ω2(F ;h),

and in particular for k = 1,

(2.44) ‖F − T (1,r)
h F‖∞ ≤ ω1

(
F ;

r + 1
2

h

)
.

Consequently , for each continuous probability distribution F ,

(2.45) ‖F − T (k,r)
h F‖∞ → 0 as h→ 0+.

3. A smooth modification of Fn. We start, for a given positive integer
m, with the polynomial density (2.30) and its polynomial probability distri-
bution (2.31). Let now X1:n, . . . , Xn:n with X1:n ≤ · · · ≤ Xn:n be the order
statistics from the sample X1, . . . , Xn. For technical reasons we assume that
X1:n < · · · < Xn:n; otherwise one should consider multiple knots. Moreover,
define

X0:n = max{0, X1:n − (X2:n −X1:n)} = max{0, 2X1:n −X2:n},
Xn+1:n = min{Xn:n + (Xn:n −Xn−1:n), 1} = min{2Xn:n −Xn−1:n, 1}.

Now, for the given sample X1, . . . , Xn and for given m ≥ 0 a new estimator
Φm,n(x) for F is defined as follows: it equals 0 for x < X0:n, 1 for x ≥ Xn+1:n,
and for i = 1, . . . , n+ 1 and Xi−1:n ≤ x < Xi:n,

(3.1) Φm,n(x) =
1
n
Φ(x; [Xi−1:n, Xi:n]) + Fn(Xi−1:n)−

1
2n
.

We consider Φm,n(x) as an estimator of the unknown distribution function
F ∈ F which generates the sample X1, . . . , Xn. Given the sample, the esti-
mator Φm,n(x) may be easily calculated by the Casteljeau algorithm or using
the standard incomplete beta functions or distribution functions of beta ran-
dom variable; the functions are available in numerical computer packages.
Summarizing we get

Proposition 3.1. The estimator Φm,n has the following properties:

1. It is a piecewise polynomial probability distribution supported on
[X0:n, Xn+1:n] with knots at the sample points.

2. The function Φm,n(x)+1/2n interpolates Fn at the sample points, i.e.

Φm,n(Xi:n) +
1
2n

= Fn(Xi:n) for i = 1, . . . , n.

3. Φm,n ∈ Cm(R).
4. DkΦm,n(Xi:n) = 0 for k = 1, . . . ,m and i = 1, . . . , n.
5. ‖Φm,n − F‖∞ ≤ ‖Fn − F‖∞ + 1/2n.
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6. Moreover , the following DKW type inequality holds:

(3.2) P{‖Φm,n − F‖∞ ≥ ε} ≤ 2 e−2n(ε−1/2n)2 , n >
1
2ε
, F ∈ F .

4. Estimating by polynomials on [0, 1]. A polynomial estimator on
[0, 1] (see [3] and cf. (2.12)) can be defined by

(4.1) Fm,n(x) = TmFn(x),

where Tm transforms distributions on [0, 1], continuous or not, into distri-
bution functions on [0, 1] which are polynomials of degree m + 1. It turns
out that for the family F [0, 1] of all continuous distributions supported on
[0, 1], the DKW type inequality for the estimator Fm,n does not hold. More
precisely, we have the following negative result

Theorem 4.1. There are ε > 0 and η > 0 such that for any m and n
one can find a distribution function F ∈ F [0, 1] such that

(4.2) P{‖Fm,n − F‖∞ > ε} > η.

To prove (4.2) it is enough to demonstrate that for some ε, η > 0 and for
every n and for every odd m the following inequality holds:

(4.3) P{Fm,n(1/2) > F (1/2) + ε > 0} > η.

We start the proof by writing formula (4.1) in the form

(4.4) Fm,n(x) =
1
n

n∑
j=1

m∑
i=0

Ni,m(Xj)
x�

0

Mi,m(y) dy,

whence by (2.13),

(4.5) Fm,n(x) =
1
n

n∑
j=1

m∑
i=0

Ni,m(Xj)
m+1∑
k=i+1

Nk,m+1(x).

Let now {εk : k = 0, 1, . . .} be a sequence of independent Bernoulli r.v. with
P{εk = 0} = 1/2 = P{εk = 1}. Moreover, let ζm+1 = ε0 + · · ·+ εm+1 be the
binomial r.v. Then for odd m = 2ν − 1 and i ≤ ν,

m+1∑
k=i+1

Nk,m+1(1/2) = P{ζm+1 > i} ≥ P{ζm+1 > ν}(4.6)

= P{ζm+1 ≤ ν} = 1/2.

Consequently, by (2.13) we obtain, for odd m,

(4.7) Fm,n(1/2) ≥ 1
2n

n∑
j=1

ν∑
i=0

Ni,m(Xj) ≥
1
2n

n∑
j=1

1�

Xj

Mν−1,m−1(y) dy.
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Now, the continuous function

Mm(x) =
1�

x

Mν−1,m−1(y) dy

is decreasing on [0, 1], Mm(0) = 1, and Mm(1/2) = 1/2. Consequently, for
ε ∈ (0, 1/16) there is δ > 0 such that Mm(δ + 1/2) > 4ε. Choose now
F ∈ F [0, 1] such that

F (1/2) < ε and F (1/2 + δ) > η1/n.

Thus, by our hypothesis we get, for j = 1, . . . , n,

PF {Xj < 1/2 + δ} > η1/n and PF {Mm(Xj) > 4ε} > η1/n.

Taking into account that
n⋂
j=1

{Mm(Xj) > 4ε} ⊂
{

1
n

n∑
j=1

Mm(Xj) > 4ε
}

one obtains

PF

{
1
n

n∑
j=1

Mm(Xj) > 4ε
}
> η,

which proves (4.3).

To obtain a positive DKW type inequality for the above polynomial es-
timators we reduce the space F of all continuous distribution functions to
a smaller subclass. We shall discuss, for a given constant M , subclass WM

of F [0, 1] such that F ∈ WM if and only if the density f = F ′ is absolutely
continuous and its derivative satisfies

(4.8)
1�

0

|f ′(x)|2 dx ≤M.

Theorem 4.2. Given constants M > 0, ε > 0 and η > 0, one can find
explicit values of m and n such that

(4.9) P{‖Fm,n − F‖∞ > ε} < η for all F ∈WM .

Specifically , it is enough to choose m and n so that

2M
m1/4

< ε and 2 exp
(
−2

nM2

m1/2

)
< η.

Proof. Let us start with the identity

F − Fm,n = (F − TmF ) + Tm(F − Fn).
Now (see [3]) the triangle inequality and contraction property (2.15) imply

(4.10) ‖F − Fm,n‖∞ ≤ ‖F − Fn‖∞ + ‖F − TmF‖∞,



Polynomial and spline estimators 11

whence by Theorem 2.2 and by the DKW inequality we get

P{‖F − Fm,n‖∞ > ε} ≤ P{‖F − Fm,n‖∞ > 2M/m1/4}
≤ P{‖F − Fn‖∞ + ‖F − TmF‖∞ > 2M/m1/4}

≤ P{‖F − Fn‖∞ +M/m1/4 > 2M/m1/4}

= P{‖F − Fn‖∞ > M/m1/4} ≤ 2 exp
(
−2

nM2

m1/2

)
< η,

and this completes the proof.

5. Estimating by splines with equally spaced knots. In this section
we exhibit a rich family of subclasses of continuous probability distributions
on R for which the DKW type inequality holds. The general scheme is very
much like that in Section 4 (cf. the proof of Theorem 4.2). We start by
recalling the generalized Hölder classes. A function ω(h) on R+ is said to
be a modulus of smoothness if it is bounded, continuous, vanishing at 0,
non-decreasing and subadditive, e.g. concave. Suppose we are given integers
(k, r) satisfying the conditions formulated just below formula (2.41). Taking
into account what we already know it is reasonable to consider the following
Hölder classes of probability distributions:

H
(k,r)
ω,2 = {F ∈ F : 2(4 + (r + k)2)ω2(F ;h) ≤ ω(h) for all h > 0},(5.1)

H
(k,r)
ω,1 =

{
F ∈ F : ω1

(
F ;

r + k

2
h

)
≤ ω(h) for all h > 0

}
.(5.2)

According to our scheme, the spline estimator with window parameter h and
with the given (k, r) is defined by the formula

(5.3) Fh,n = F
(k,r)
h,n = T

(k,r)
h Fn.

For these estimators we also have the basic inequality

(5.4) ‖F − Fh,n‖∞ ≤ ‖F − Fn‖∞ + ‖F − T (k,r)
h F‖∞.

We are now in a position to state the DKW type inequality for the generalized
Hölder classes of continuous distributions.

Theorem 5.1. Let i = 1, 2 and 1 ≤ k ≤ r with r − k even. Then for all
ε > 0 and η > 0 there are h > 0 and n ≥ 1 such that

(5.5) P{‖Fh,n − F‖∞ > ε} < η for all F ∈ H(k,r)
ω,i .

It suffices to choose h and n such that

ω(h) < ε/2 and 2 exp(−nε2/2) < η.

The proof is immediate from the DKW inequality, (5.4) and Theorem 2.3.
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