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SEMI-MARKOV CONTROL PROCESSES WITH
NON-COMPACT ACTION SPACES AND

DISCONTINUOUS COSTS

Abstract. We establish the average cost optimality equation and show
the existence of an (ε-)optimal stationary policy for semi-Markov control
processes without compactness and continuity assumptions. The only condi-
tion we impose on the model is the V -geometric ergodicity of the embedded
Markov chain governed by a stationary policy.

1. Introduction and preliminaries. In this paper we deal with the
ratio-average cost optimality criterion for semi-Markov control processes on
a Borel space. We only assume that the one-step cost function is lower semi-
analytic, and the transition probability function satisfies certain ergodicity
conditions. For such a model, we show the existence of a lower semiana-
lytic solution to the optimality equation. Moreover, as a consequence we
obtain an ε-optimal universally measurable stationary policy for the deci-
sion maker. This result was stated in [8] without proof. In this paper we
give its proof as well as some examples not satisfying the commonly used
compactness-continuity assumptions.

The idea of solving the optimality equation via a fixed point argument
under V -geometric ergodicity assumptions goes back to Vega-Amaya [15].
He has established the optimality equation under additional requirements.
Namely, he assumes that the one-step cost function is lower semicontinuous,
and the transition law is setwise continuous. By setwise continuity of the
transition probability q, we mean that q(D |x, a) is continuous in a for each x
and any Borel set D of X. His idea combined with a “regularizing” technique
was applied by Jaśkiewicz [7] to derive the optimality equation for semi-
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Markov models with weakly continuous transition laws. For the details of
the aforementioned approaches the reader is referred to [8].

Whereas certain continuity assumptions imposed on the transition law
are satisfied in many cases arising from practical situations, the compactness
condition on the admissible action sets sometimes turns out to be restrictive,
e.g., for inventory models (see [3, 4, 14, 16]). Moreover, for these models
even the setwise convergence of the transition probability function is too
strong. A natural assumption is weak continuity of the transition law [3, 4].
However, one can imagine examples of (semi-)Markov control processes with
transition probabilities which are neither weakly continuous nor setwise con-
tinuous (see Section 4). In addition, there are models for which transition
laws are continuous (in some topology) and the admissible action sets are
compact, but the cost functions need not be lower (or upper) semicontinu-
ous. Nevertheless, in all these cases the optimality equation can still be de-
rived using a fixed point argument. This fact is of crucial importance, since
it allows one to deal with another optimality cost criterion, the so-called
time-average cost criterion. Having established the optimality equation with
respect to the ratio-average cost we are able to show the existence of an
(ε-)optimal stationary policy and optimal cost with respect to the latter
criterion (see Theorem 3 in [8]).

We start with the definitions of analytic and universally measurable sets
and functions. Recall that by a Borel space X we mean a non-empty Borel
subset of some Polish space. We assume that it is endowed with the σ-algebra
B(X) of all its Borel subsets.

Let NN be the set of sequences of positive integers, equipped with the
product topology. So NN is a Polish space. Let Y be a separable metric
space. We say that Y is an analytic set or analytic space provided there is a
continuous function g from NN onto Y. There are other equivalent definitions
of analytic sets in a Borel space X (consult [1] and references therein).

Now let E be an analytic subset of an analytic space X and let p be
any probability measure on the Borel subsets of X. Then E is universally
measurable if E is in the completion of the Borel σ-algebra with respect to
every probability measure p.

From now on let X and Y be Borel spaces. Let A(X) be the analytic σ-
algebra and U(X) be the σ-algebra of all universally measurable subsets ofX.
We say that a function f : X → Y is analytically measurable [universally
measurable] if f−1(B) ∈ A(X) [f−1(B) ∈ U(X)] for every B ∈ B(Y ). We
have B(X) ⊂ A(X) ⊂ U(X).

Let B ⊂ X and f : B → R. If B is analytic and {x ∈ B : f(x) < c} is
analytic for each c ∈ R, then f is said to be lower semianalytic (l.s.a.).

Now we state some basic results on l.s.a. functions and universally mea-
surable selectors.
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Lemma A (Proposition 7.48 in [1]). Let f : X × Y → R be l.s.a., and
q(dy |x) a Borel measurable stochastic kernel on Y given X. Then the func-
tion f̄ : X → R defined by

f̄(x) =
�

Y

f(x, y) q(dy |x)

is l.s.a.

Lemma B (Jankov–von Neumann’s theorem). If K ⊂ X×Y is analytic,
then there exists an analytically measurable function φ : projX(K)→ Y such
that

Gr(φ) := {(x, y) : y = φ(x), x ∈ projX(K)} ⊂ K.
For the proof the reader is referred to [1, p. 182]. This lemma brings us

to the following selection theorem for l.s.a. functions.

Lemma C. Let K ⊂ X × Y be analytic and f : K → R be l.s.a. Define
f∗ : projX(K)→ R by

f∗(x) = inf
y∈Y (x)

f(x, y),

with Y (x) := {y ∈ Y : (x, y) ∈ K}. Then:

(a) f∗ is l.s.a.,
(b) the set

I = {x ∈ projX(K)| : for some yx ∈ Y (x), f(x, yx) = f∗(x)}
is universally measurable, and for every ε > 0 there exists a univer-
sally measurable function φ : projX(K) → Y such that Gr(φ) ⊂ K
and for all x ∈ projX(K),

f(x, φ(x)) = f∗(x) if x ∈ I, f(x, φ(x)) ≤ f∗(x) + ε if x 6∈ I.
Part (a) follows from the proof of Proposition 7.47 in [1], whilst (b) is a

consequence of Proposition 7.50 in [1].

2. The model. A semi-Markov control process is described by the fol-
lowing objects:

(i) The state space X is a standard Borel space.
(ii) A is a Borel action space.
(iii) K is a non-empty analytic subset of X×A. We assume that for each

x ∈ X, the non-empty x-section

A(x) = {a ∈ A : (x, a) ∈ K}
of K represents the set of actions available in state x.

(iv) Q(· |x, a) is a regular transition measure from X × A into R+ ×X,
where R+ = [0,∞). It is assumed that Q(D |x, a) is a Borel function on
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X × A for any Borel subset D ⊂ R+ × X, and Q(· |x, a) is a probability
measure on R+ ×X for any x ∈ X and a ∈ A(x). Define

Q(t, X̂ |x, a) := Q([0, t]× X̂ |x, a)

for any Borel set X̂ ⊂ X. If a ∈ A(x) is selected in state x, then Q(t, X̂ |x, a)
is the joint probability that the sojourn time is not greater than t ∈ R+ and
the next state y is in X̂. Denote by H(· |x, a) the distribution of the sojourn
time when the process is in state x and the action a ∈ A(x) is selected, that
is, H(t |x, a) = Q(t,X |x, a). Let τ(x, a) be the mean holding time, i.e.,

τ(x, a) =
∞�

0

tH(dt |x, a).

Put q(· |x, a) := Q(R+, · |x, a). Then q is called the transition law of the
embedded Markov process. Moreover, the distribution of the sojourn time
and the next state is conditionally independent of (x, a), i.e.,

Q(t, X̂ |x, a) = q(X̂ |x, a)H(t |x, a).

(v) Let ci : K → R, i = 1, 2. Then the expected one-step cost function
c : K → R equals

c(x, a) = c1(x, a) + τ(x, a)c2(x, a).

Here c1 is an immediate cost paid by the decision maker at the transition
time, and the cost c2 is incurred until the next transition occurs.

Let {Tn} denote a sequence of random decision (jump) epochs with
T0 := 0 and set x := x0. If the action a0 ∈ A(x) is selected, then the
immediate cost c1(x, a0) is incurred for the decision maker and the process
remains in state x up to time T = T1 − T0 = T1. The cost c2(x, a0) per
unit time is incurred until the next transition occurs. Afterwards the sys-
tem moves to state x1 according to the probability measure q(· |x, a0). The
procedure repeats itself yielding a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some
stochastic process, where xn and an describe the state and the action chosen,
respectively, on the nth step of the process. Obviously, tn is a realization of
the random variable Tn, and the distribution function of the random holding
time Tn+1 − Tn is H(· |xn, an).

A policy is a sequence π = {πn} where πn (n ≥ 0) is a universally
measurable stochastic kernel on A given (X × A × R+)n × X satisfying
πn(A(xn) |hn) = 1 for any history hn = (x0, a0, t1, . . . , xn) of the process
(clearly, h0 = x0). We denote by Π the class of all policies. Let F be the
set of all universally measurable transition probabilities f from X to A such
that f(x) ∈ A(x) for each x ∈ X. A stationary policy π is of the form
π = {f, f, . . .}, where f ∈ F. Thus, every stationary policy π = {f, f, . . .}
can be identified with the mapping f ∈ F. Since K is analytic, the Jankov–
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von Neumann theorem guarantees that there exists at least one f ∈ F.
Therefore, F and Π are non-empty.

Let Ω = (K × R+)∞ be the space of all infinite histories of the process,
endowed with U (the σ-algebra of universally measurable sets in Ω). Accord-
ing to Proposition 7.45 in [1], for any π ∈ Π and any initial state x0 = x ∈ X
there exists a unique probability measure P πx defined on Ω. We denote by
Eπx the expectation operator with respect to P πx .

We shall consider the following ratio-average cost:

J(x, π) := lim sup
n→∞

Eπx (
∑n−1

k=0 c(xk, ak))
Eπx (

∑n−1
k=0 τ(xk, ak))

.

Clearly, J(x) := infπ∈Π J(x, π) is an optimal cost. A policy πε is called
ε-optimal if

J(x, πε)− ε ≤ J(x)

for all x ∈ X. Now we present our assumptions.

(B) Basic assumptions:

(i) there exist a constant B > 0 and a Borel measurable function
V : X → [1,+∞) such that

|c(x, a)| ≤ BV (x) and τ(x, a) ≤ BV (x)

for every (x, a) ∈ K;
(ii) the function τ is Borel measurable, whilst c is l.s.a. on K.

(GE) V -geometric ergodicity assumptions:

(i) there exists a Borel set C ⊂ X such that for some λ ∈ (0, 1)
and η > 0, we have�

X

V (y) q(dy |x, a) ≤ λV (x) + η1C(x)

for all (x, a) ∈ K, where V is the function introduced in (B);
(ii) the function V is bounded on C, i.e.,

vC := sup
x∈C

V (x) <∞;

(iii) there exist some δ ∈ (0, 1) and a probability measure µ con-
centrated on the Borel set C with the property that

q(D |x, a) ≥ δµ(D)

for each Borel set D ⊂ C, x ∈ C and a ∈ A(x).

For any function u : X → R define the V-norm

‖u‖V := sup
x∈X

|u(x)|
V (x)

.
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Under (GE) the embedded state process {xn} governed by a stationary
policy f ∈ F is a positive recurrent aperiodic Markov chain and there exists
a unique invariant probability measure πf (see Theorem 11.3.4 on p. 116
in [9]). Moreover, by Theorem 2.3 in [10], {xn} is V -ergodic, that is, there
exist θ > 0 and α ∈ (0, 1) such that

(1)
∣∣∣ �
X

u(y) qn(dy |x, f(x))−
�

X

u(y)πf (dy)
∣∣∣ ≤ V (x)‖u‖V θαn

for every u with ‖u‖V < ∞, and x ∈ X, n ≥ 1. Here qn(· |x, f(x)) denotes
the n-stage transition probability induced by q and a stationary policy f. As
an immediate consequence of (1), one can easily get

(2) J(f) := J(x, f) =

	
X c(x, f(x))πf (dx)	
X τ(x, f(x))πf (dx)

for every f ∈ F.
(R) Regularity condition: there exist κ > 0 and β < 1 such that

H(κ |x, a) ≤ β
for all x ∈ C and a ∈ A(x).

Assumptions (R) and (GE) ensure that an infinite number of transitions
do not occur in a finite time interval [6]. Moreover, (R) implies that

(3) τ(x, a) ≥ κ(1− β) for x ∈ C and a ∈ A(x).

For a further discussion of the assumptions the reader is referred to [5, 9, 14].

3. Main results. We begin with two auxiliary lemmas.

Lemma 1. Let (GE) hold. Then

(a) inff∈F πf (C) ≥ (1− λ)/η;

(b) supf∈F
	
X V (y)πf (dy) ≤ η/(1− λ).

Proof. Let the process be governed by a stationary policy f ∈ F. In-
tegrating both sides of (GE)(i) with respect to the invariant probability
measure πf we get

�

X

V (y)πf (dy) ≤ λ
�

X

V (y)πf (dy) + ηπf (C).

Now part (a) easily follows from the fact that V ≥ 1, whilst (b) is a conse-
quence of πf (C) ≤ 1.

Lemma 2. Let assumption (GE) hold. Then for

W (x) := V (x) +
η

δ
and λ′ :=

λ+ η/δ

1 + η/δ
< 1,
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the following inequality holds:�

X

W (y) q(dy |x, a) ≤ λ′W (x) + δ1C(x)
�

C

W (y)µ(dy).

For the proof the reader is referred to Lemma 3.1 in [7].
For any function u : X → R we define the W -norm as

‖u‖W := sup
x∈X

|u(x)|
W (x)

.

We note that
‖u‖V <∞ iff ‖u‖W <∞.

Let LW denote the set of all l.s.a. functions whose W -norm is finite. Note
that LW is a complete metric space.

For any (x, a) ∈ K set

p(· |x, a) := q(· |x, a)− 1C(x)δµ(·).
Observe that from Lemma 2 we have

(4)
�

X

W (y) p(dy |x, a) ≤ λ′W (x).

Put
g := inf

f∈F
J(f).

From (B), (GE)(i) and (R) we conclude that g <∞. Indeed, by (2) and (3),

|J(f)| ≤
	
X |c(x, f(x))|πf (dx)	
X τ(x, f(x))πf (dx)

≤
B
	
X V (x)πf (dx)

κ(1− β)πf (C)
,

and Lemma 1 yields

(5) g ≤
B η

1−λ
1−λ
η κ(1− β)

.

We finally arrive at the following result.

Theorem 1. Assume (B, GE, R).

(a) There exist a constant g∗ and function h ∈ LW such that

(6) h(x) = inf
a∈A(x)

(
c(x, a)− g∗τ(x, a) +

�

X

h(y) q(dy |x, a)
)

for all x ∈ X.
(b) For any ε > 0 there exists a universally measurable function f ε ∈ F

such that

(7) h(x) ≥ c(x, fε(x))− g∗τ(x, fε(x)) +
�

X

h(y) q(dy |x, fε(x))− ε

for all x ∈ X.
(c) g∗ = g = infπ∈Π J(x, π) and g∗ ≥ J(f ε)− ε.
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Proof. For any u ∈ LW define

(8) (Tu)(x) := inf
a∈A(x)

(
c(x, a)− gτ(x, a) +

�

X

u(y)p(dy |x, a)
)

for all x ∈ X. We claim that T has a fixed point h ∈ LW . Indeed, observe
that by (B), (4), and (5) there exists a constant L∗ > 0 such that

(9) |(Tu)(x)| ≤ L∗W (x), x ∈ X.
This fact together with Lemmas A and C(a) shows that T maps LW into
itself. Now fix x ∈ X and u1, u2 ∈ LW and note that by (4) we have

|(Tu1)(x)− (Tu2)(x)| ≤ sup
a∈A(x)

∣∣∣ �
X

u1(y) p(dy |x, a)−
�

X

u2(y) p(dy |x, a)
∣∣∣

≤ ‖u1 − u2‖Wλ′W (x).

Since λ′ < 1, it follows that T is a contraction operator. Hence, from the
Banach fixed point theorem there exists h ∈ LW such that

(10) h(x) = inf
a∈A(x)

(
c(x, a)− gτ(x, a)

+
�

X

h(y) q(dy |x, a)− 1C(x)δ
�

X

h(y)µ(dy)
)
.

Note that if x 6∈ C then (6) holds. The case of x ∈ C requires more delicate
handling. Put

d := −δ
�

C

h(x)µ(dx).

We shall show that d = 0. Suppose that, on the contrary, d 6= 0.

Case 1: Let d < 0. Let f be an arbitrary stationary policy. Then from
(10) we get

(11) h(x) ≤ c(x, f(x))− gτ(x, f(x)) +
�

X

h(y) q(dy |x, f(x)) + d1C(x).

Integrating both sides of (11) with respect to the invariant probability mea-
sure πf , we obtain

g ≤
	
X c(x, f(x))πf (dx)	
X τ(x, f(x))πf (dx)

+
dπf (C)	

X τ(x, f(x))πf (dx)
.

Note that by Lemma 1(a) we have

inf
f∈F

πf (C) ≥ (1− λ)/η.

Hence, taking into account that d < 0 and applying (2) and (B) we conclude

g ≤ J(f) +
(1− λ)d/η	

X τ(x, f(x))πf (dx)
≤ J(f) +

(1− λ)d/η
B
	
X V (x)πf (dx)

.
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Now making use of Lemma 1(b), we see that

g ≤ J(f) +
(1− λ)d/η
Bη/(1− λ)

.

Furthermore, since f is arbitrary, we may write

g ≤ inf
f∈F

J(f) +
(1− λ)d/η
Bη/(1− λ)

= g +
(1− λ)d/η
Bη/(1− λ)

.

However, this contradicts the fact that d < 0.

Case 2: d > 0. From Lemma C(b), for any ε > 0 there exists a univer-
sally measurable function f ε such that from (10) we have

(12) h(x) = inf
a∈A(x)

(
c(x, a)− g∗τ(x, a) +

�

X

h(y) q(dy |x, a)
)

+ d1C(x)

≥ c(x, fε(x))− g∗τ(x, fε(x)) +
�

X

h(y) q(dy |x, fε(x)) + d1C(x)− ε.

Further, we proceed as above, that is, we first integrate both sides of (12)
with respect to πfε . By Lemma 1(a) and (2) we obtain

g ≥
	
X c(x, f

ε(x))πfε(dx)	
X τ(x, fε(x))πfε(dx)

+
dπfε(C)− ε	

X τ(x, fε(x))πfε(dx)

≥ J(f ε) +
d(1− λ)/η − ε	

X τ(x, fε(x))πfε(dx)
.

Since ε is arbitrary, we may choose ε < d(1− λ)/η. Therefore, from Lem-
ma 1(b) we conclude

g ≥ J(f ε) +
d(1− λ)/η − ε
Bη/(1− λ)

.

Moreover,

g ≥ inf
f∈F

J(f) +
d(1− λ)/η − ε
Bη/(1− λ)

.

Since ε > 0 is arbitrarily small, we get

g ≥ inf
f∈F

J(f) +
d(1− λ)/η
Bη/(1− λ)

= g +
d(1− λ)/η
Bη/(1− λ)

.

This contradicts our assumption that d > 0.
We have proved that d = 0. Hence, the optimality equation (6) is satisfied

with g∗ := g and h∗ = h. Part (b) follows directly from Lemma C(b).
Part (c) is an immediate consequence of a standard dynamic programming
argument [5].
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4. Examples. In this section we give two examples of Markov con-
trolled processes arising from economics. Here, we do not deal with semi-
Markov controlled models, since randomness between successive jumps does
not change the crux of the problem. The most important issue we wish to
focus on is non-compactness of the admissible action sets and a merely Borel
measurable transition law.

Our first example concerns the economic growth model (see, e.g., [2, 13])
in which the admissible action sets are compact, but the transition law in-
duced by a certain recurrence equation is not necessarily weakly or setwise
continuous. In our second example, neither compactness nor continuity con-
ditions are satisfied.

We first recall that q is called weakly continuous if the function

(x, a) 7→
�
w(y) q(dy |x, a)

is continuous for any bounded continuous function w. On the other hand,
we say that q is setwise continuous if the function

a 7→ q(B |x, a)

is continuous for each x ∈ X and any Borel set B ⊂ X.

Example 1. Let X = A = [0,∞). Let xn ∈ X denote a capital avail-
able for consumption in period n. By restricting xn to be non-negative, we
assume the economy to be debt free. The decision maker chooses the level
of consumption an ∈ A(xn) := [0, xn] ⊂ A, and invests the remaining capi-
tal xn − an. The consumption generates the immediate utility U(an), where
U : [0,∞) → R is some Borel measurable (or continuous) function. The
investment produces capital at the next decision epoch according to the
dynamic equation

(13) xn+1 = Ψ(xn − an)ξn,

where the function Ψ : [0,∞) → [0,∞) represents the existing technology
and anticipated inflation, and the quantity ξn denotes a random disturbance
which accounts for unanticipated inflation and random shocks to the system.
We impose the following assumptions:

(A1) {ξn} is an i.i.d. sequence of nonnegative random variables with a
distribution G; Eξ0 = θ < 1 and P (ξ0 = 0) = ε > 0;

(A2) Ψ(0) = 0, Ψ is non-decreasing, and there exists an s > 0 such that
Ψ(s) > 1;

(A3) there is β > 0 such that Ψ(y) > y for 0 < y < β, and Ψ(y) < y for
y > β.
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Assume for the moment that

G(z) :=


0, z ≤ 0,
ε, 0 < z ≤ 1,
1, z > 1.

First we show that the transition law induced by the recurrence equation
(13) need not be setwise continuous. With this in view, we put Ψ(x) :=

√
x.

Let x∗ = 1 and a∗ = 0, and define ak := 1/k for k = 2, 3, . . . . Obviously,
ak ∈ A(1), and ak → a∗ as k →∞. If B = (0, 1), then

q(B |x∗, a∗) =
∞�

0

1B((
√

1− 0)z)G(dz) = ε1B(0) + (1− ε)1B(1) = 0

and

q(B |x∗, ak) =
∞�

0

1B

((√
1− 1

k

)
z

)
G(dz) = ε1B(0) + (1− ε)1B

(√
1− 1

k

)
= 1− ε.

Hence, we see that

q(B |x∗, ak) 9 q(B |x∗, a∗) as k →∞.

Now we turn to discussing weak continuity of q. We do not presume that
Ψ is a continuous function, and, for instance, Ψ can only be left continuous,
say at 1. This and (A2) imply that

Ψ(1) = lim
y→1−

Ψ(y) < lim
y→1+

Ψ(y).

Let xk := 1 + 1/k and ak := 1/k2 with k = 2, 3, . . . . Clearly, ak ∈ A(xk),
and xk → x∗ := 1 and ak → a∗ := 0 as k → ∞. If w(x) := arctan(x), we
easily notice that

∞�

0

w(Ψ(x∗ − a∗)z)G(dz) = (1− ε) arctan(Ψ(1)),

whilst
∞�

0

w(Ψ(xk − ak)z)G(dz) = (1− ε) arctan
(
Ψ

(
1 +

1
k
− 1
k2

))
9 (1− ε) arctan(Ψ(1)) as k →∞.

Thus, q need not be weakly continuous.
Finally, we are going to prove that our assumptions (GE) are satisfied

with V (x) = x+ 1. Let now G be any distribution of ξ0 satisfying (A1). We
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begin by showing inequality (GE)(i):

�

X

V (y) q(dy |x, a) =
∞�

0

(Ψ(x− a)z + 1)G(dz) = θΨ(x− a) + 1(14)

≤ θΨ(x) + 1 ≤ 1 + θ

2
(Ψ(x) + 1),

where the last inequality holds when Ψ(x) ≥ 1. We consider two cases:

(I) Ψ(β) ≤ 1 and C := {x ∈ [0,∞) : Ψ(x) ≤ 1} (note that by (A2),
C = [0, β∗] or C = [0, β∗) for some constant β∗ ≥ β);

(II) Ψ(β) > 1 and C := [0, β].

(GE)(i) Let (I) hold true. For x 6∈ C, from (14) by (A3) we get

(15)
�

X

V (y) q(dy |x, a) ≤ θ + 1
2

(x+ 1).

On the other hand, for x ∈ C,
�

X

V (y) q(dy |x, a) ≤ θΨ(x) + 1 ≤ θ + 1
2

(Ψ(x) + 1) + 1(16)

≤ θ + 1
2

(x+ 1) + θ + 2.

Combining (15) and (16), we obtain
�

X

V (y) q(dy |x, a) ≤ θ + 1
2

(x+ 1) + (θ + 2)1C(x).

Now, assume (II). We observe that inequality (15) is satisfied for x 6∈ C.
If x ∈ C, then

�

X

V (y) q(dy |x, a) ≤ θΨ(x) + 1 ≤ θ + 1
2

(Ψ(x) + 1) + 1(17)

≤ θ + 1
2

(x+ 1) +
θ + 1

2
(Ψ(β) + 1).

Combining (15) and (17), we obtain
�

X

V (y) q(dy |x, a) ≤ θ + 1
2

(x+ 1) +
θ + 1

2
(Ψ(β) + 1)1C(x).

Thus, in both cases λ := (θ + 1)/2, whilst η := θ + 2 in case (I) and
η := (θ + 1)(Ψ(β) + 1)/2 in case (II).

(GE)(ii) This condition holds in both cases, since C is a finite interval.
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(GE)(iii) We note that for any D ⊂ X, x ∈ X, and a ∈ A(x), from (A1)
it follows that

q(D |x, a) =
∞�

0

1D(Ψ(x− a)z)G(dz) ≥ ε1D(Ψ(x− a)0) = ε1D(0).

Hence, this condition is satisfied with µ(D) := 1D(0) and δ := ε.

Example 2. This example has its roots in economic games (see [11,
12] and references therein). The special feature of these models is that the
transition probability functions are convex combinations of finitely many
probability measures on the state space. More precisely, we assume that
X := [0,∞), A(x) = A := [0,∞), and

q(· |x, a) = α(x, a)ν1(·) + (1− α(x, a))ν2(·),
where ν1, ν2 are probability measures on X, and α : X×A→ [0, 1]. Further,
we assume that
(A) δ′ := sup

x∈X,a∈A
α(x, a) < 1.

Obviously, if α is continuous, then q is both weakly and setwise continuous.
But, if

α(x, a) :=
{
a2, a ≤ 1/4,
1− e−a−0.1, a > 1/4,

then q is neither weakly nor setwise continuous: just take a∗ := 1/4, and
a sequence ak := a∗ + 1/k with k = 1, 2, . . . , and use the fact that α(·, x) is
discontinuous at a∗, for each x ∈ X.

We observe that in this case assumptions (GE) are immediately satisfied.
Indeed, (GE)(i) holds with V ≡ 1, any λ < 1 and C := X, since�

X

V (y) q(dy |x, a) = 1 = λV (x) + (1− λ)1C(x).

Condition (GE)(ii) is clearly satisfied. As for (GE)(iii), by (A) it follows
that

q(D |x, a) = α(x, a)ν1(D) + (1− α(x, a))ν2(D)
≥ (1− α(x, a))ν2(D) ≥ (1− δ′)ν2(D)

for any D ⊂ X, x ∈ X, and a ∈ A. Hence, (GE)(iii) holds with µ := ν2 and
δ := 1− δ′.
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