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ECONOMIC EQUILIBRIUM THROUGH
VARIATIONAL INEQUALITIES

Abstract. The purpose of this paper is to present an alternative proof of
the existence of the Walrasian equilibrium for the Arrow–Debreu–McKenzie
model by the variational inequality technique. Moreover, examples of the
generalized Arrow–Debreu–McKenzie model are given in which the price
vector can reach the boundary of the orthant allowing a commodity to be
of price zero at equilibrium. In such a case its supply exceeds demand. It is
worth mentioning that utility functions in this model are allowed not to be
strictly concave and they can reach their maximum in the commodity space.

1. Introduction. Let us consider the Arrow–Debreu–McKenzie model
with m consumers (indexed by j ∈ J := {1, . . . ,m}), n firms (indexed by
i ∈ I := {1, . . . , n}), and s goods (indexed by l ∈ L := {1, . . . , s}). In such
economy, society’s initial endowments and technological possibilities (i.e.,
the firms) are owned by consumers. The preference of the jth consumer is
represented by a utility function, denoted by uj . The initial endowment of
the jth consumer is given by ωj ∈ Rn

+. In addition, we suppose that consumer
j owns a share κji of firm i, where

∑
j∈J κji = 1. Denote by Yi ⊂ Rn the

production set associated with the ith firm.
Recall that an allocation (x?

1, . . . , x
?
m, y

?
1, . . . , y

?
n), x?

j ∈ Rn
+, j ∈ J , y?

i ∈
Rn, i ∈ I, and price vector π ∈ Int Rn

+ constitute a classical competitive (or
Walrasian) equilibrium if the following conditions are satisfied ([6]):

• Profit maximization: For each firm i ∈ I, y?
i solves

max
yi∈Yi

〈π, yi〉;
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• Utility maximization: For each consumer j ∈ J , x?
j solves

max
{
uj(xj) : 〈π, xj〉 ≤ 〈π, ωj〉+

∑
i∈I

κij〈π, y?
i 〉, xj ∈ Rn

+

}
;

• Market clearing :

(1.1)
∑
j∈J

x?
j =

∑
j∈J

ωj +
∑
i∈I

y?
i .

If Yi = {0} for all i ∈ J , then the Arrow–Debreu–McKenzie model is the
Arrow–Debreu model of pure exchange (cf. [1], [2], [5], [12]).

It is usually assumed that π ∈ Int Rn
+ or π ∈ Fr Rn

+, π 6= 0 (cf. [1], [5],
[12]).

For the Arrow–Debreu–McKenzie model we introduce the functions

Vj := −uj , φj(π) := 〈π, ωj〉+
∑
i∈I

κij sup
yi∈Yi

〈π, yi〉, j = 1, . . . ,m,

Φ(π) :=
∑
j∈J

φj(π) =
〈
π,
∑
j∈J

ωj

〉
+
∑
i∈I

sup
yi∈Yi

〈π, yi〉, π ∈ Rn
+.

For the Arrow–Debreu model we set Vj := −uj , φj(π) := 〈π, ωj〉, j =
1, . . . ,m, and Φ(π) :=

∑
j∈J φj(π) = 〈π,

∑
j∈J ωj〉.

In both models instead of (1.1) the following variational inequality, called
the balance condition, will be considered:〈

τ − π,−
∑
j∈J

x?
j

〉
+ Φ(τ)− Φ(π) ≥ 0, ∀τ ∈ Rn

+.

It states that the market clears for a commodity if its equilibrium price is
positive. Otherwise, there may be an excess supply of the commodity in
equilibrium and then its price is zero ([5], [12]).

Thus, we get the following problem: Find π ∈ Rn
+, π 6= 0, and xj ∈ Rn

+,
j = 1, . . . ,m, such that

(P )


Vj(xj) = min{Vj(x) : 〈π, x〉 ≤ φj(π), x ∈ Rn

+},〈
−

m∑
j=1

xj , τ − π
〉

+ Φ(τ)− Φ(π) ≥ 0, ∀τ ∈ Rn
+.

The problem (P ) has been first considered under the assumption that φj(π)
≥ γj for some γj > 0 (cf. [7]). In further research the functions φj were
assumed to be nonnegative, continuous, positive homogeneous of degree 1
and Φ =

∑m
j=1 φj (see [8]–[10]).

The results of [8], [9] allow us to prove the existence of a classical com-
petitive (Walrasian) equilibrium in the alternative way in Section 3.

The results in [10] include examples with classical assumptions while for
certain cases the assumption of strict monotonicity of −Vj is substantially
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weakened. Rejection of this assumption leads to a significant consequence:
the problem (P ) can be replaced by the problem (PQ): Find r ∈ (0, 1],
π ∈ Rn

+, π 6= 0, and xj ∈ Rn
+, αj ∈ R ∪ {∞}, j = 1, . . . ,m, such that

(PQ)


−αjπ ∈ ∂Vj(xj), 〈π, xj〉 − φj(π) ∈ ∂ ind≥0(αj), if αj ∈ R+,

−π ∈ ∂∞Vj(xj), 〈π, xj〉 = φj(π) = 0, if αj =∞,

Φ(τ)− Φ(π) ≥
〈
τ − π, 1

r

m∑
j=1

xj

〉
, ∀τ ∈ Rn

+.

Notice that if r = 1 then a solution of the problem (PQ) becomes a Wal-
rasian equilibrium in the sense of the Arrow–Debreu model with π ∈ Rn

+ (in
the classical approach, π ∈ Int Rn

+). The case of αj =∞ does not imply that
xj is a maximizer of the utility function−Vj on the budget set {x : 〈π, x〉 = 0,
x ∈ Rn

+}. Such a bundle can be regarded worthless for the jth trader, mean-
ing that he cannot gain any commodities with a positive price. Any traders
with zero initial endowment are obviously irrelevant to the market. A solu-
tion of the problem (PQ) with r ∈ (0, 1) describes the situation when the
total supply exceeds the total demand on the market; such a solution cannot
be regarded as a Walrasian equilibrium in the classical sense. A solution of
the problem (PQ) with r ∈ (0, 1) can occur only when for at least one trader
the value of his commodity bundle does not reach the budget line.

Conditions guaranteeing that r = 1 and π ∈ Int Rn
+ are given in Sec-

tion 4. In Section 4 three markets with two traders and two commodities
are considered. In the second example the solution of the problem (PQ) is
the Walrasian equilibrium. In the first example both coordinates of the price
vectors obtained are positive. In the remaining ones, the second coordinate
of the price vectors is 0. In each example, the price vector is unique on the
sphere. Moreover, in all examples at least one utility function attains its
global maximum on R2

+.

2. Statement of the problem and preliminaries. Denote by Rn the
Euclidean vector space equipped with the inner product 〈· , ·〉 : Rn×Rn → R.
Set

Rn
+ = {x = [x1, . . . , xn] ∈ Rn : xi ≥ 0, ∀i = 1, . . . , n}.

Denote by indK the indicator function of a set K, i.e.

indK(y) =
{

0 if y ∈ K,
∞ otherwise.

Throughout the paper it will be assumed that the functions

Vj : Rn → R ∪ {∞}, j = 1, . . . ,m,

are convex, proper and lower semicontinuous, and we set Vj := Vj + indRn
+
.
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Assume that the functions
φj : Rn → R+, φj 6≡ 0, j = 1, . . . ,m,

are continuous and positive homogeneous of degree 1, i.e.
φj(tτ) = tφj(τ), ∀τ ∈ Rn

+, ∀t > 0.

Furthermore, let

Φ : Rn → R ∪ {∞}, Φ =
m∑

j=1

φj ;

it is a convex, proper, lower semicontinuous function, positive homogeneous
of degree 1.

We consider the problem (P ): Find π ∈ Rn
+, π 6= 0, and xj ∈ Rn

+,
j = 1, . . . ,m, such that

(P )


Vj(xj) = min{Vj(x) : 〈π, x〉 ≤ φj(π), x ∈ Rn

+},〈
−

m∑
j=1

xj , τ − π
〉

+ Φ(τ)− Φ(π) ≥ 0, τ ∈ Rn
+.

Remark 2.1. The problem (P ) has an equivalent form: find (π, (xj), (αj))
∈ Rn

+ × (Rn
+)m × (R+)m such that

−αjπ ∈ ∂Vj(xj),
〈π, xj〉 − φj(π) ∈ ∂ ind≥0(αj),

Φ(τ)− Φ(π) ≥
〈
τ − π,

m∑
j=1

xj

〉
, ∀τ ∈ Rn

+,

where (αj) are the Lagrange multipliers for the problem (P ).
Remark 2.2. Recall that if H is a Hilbert space and V : H → R∪ {∞}

is a convex function, the subdifferential ∂V : H → 2H is defined by
∂V (u) = {w ∈ H : V (v)− V (u) ≥ 〈w, v − u〉, ∀v ∈ H}

provided that V (u) <∞, and ∂V (u) = ∅ otherwise.
Moreover, for a convex set K and x ∈ K, ∂ indK(x) is called the normal

cone to K at x and is denoted by NK(x) (see [3]). For a convex function
V : X → R ∪ {∞}, X being a Banach space, the asymptotic generalized
gradient of V at x is defined by

∂∞V (x) := {x? ∈ X ? : (x?, 0) ∈ Nepi V (x, V (x))},
where epiV denotes the epigraph of V (see [4], [11]).

Remark 2.3. For the function Φ+ = Φ+ indRn
+
, which is convex, lower

semicontinuous, and positive homogeneous of degree 1, there exists a non-
empty, convex, closed set W ⊂ Rn such that Φ+(τ) = supy∈W 〈τ, y〉 for
τ ∈ Rn

+ (see [3]).
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3. The existence of a competitive equilibrium. In the classical
approach for the Arrow–Debreu–McKenzie and Arrow–Debreu models the
vector price is positive and it is assumed that the function Vj = −uj satisfies
one of the conditions:

(H0
3 ) Vj is strictly decreasing on Rn

+, that is, Vj(x+y) < Vj(x) for all x ∈ Rn
+

and y ∈ Rn
+ \ {0},

or

(H1
3 ) Vj is strictly decreasing on Int Rn

+, that is, Vj(x + y) < Vj(x) for all
x ∈ Int Rn

+ and y ∈ Rn
+ \ {0}, and moreover Vj(x) < Vj(y) for all

x ∈ Int Rn
+ and y ∈ Fr Rn

+.

The existence of a competitive equilibrium for the Arrow–Debreu–McKenzie
and Arrow–Debreu models follows from the results in [8] for the case Aj = I,
the identity matrix.

Theorem 3.1 ([8, Theorem 3, p. 66]). Suppose that for any j = 1, . . . ,m
the following conditions are satisfied :

(H1) 0 ∈ cl(Dom ∂Vj) and (Rn
− \ {0}) ∩ BRn(0, rj) ⊂ Int DomV

?
j for some

rj > 0;
(H2) {x ∈ Rn

+ : {〈x?, x〉 : x? ∈ ∂Vj(x)} ∩ R− 6= ∅} ⊂ BRn(0,Mj) for some
Mj > 0;

(H4) γj := min{φj(τ) : τ ∈ Rn
+, |τ | = 1} > 0;

(H5)
∑m

j=1 xj 6∈ ∂Φ+(0) for any xj ∈ ∂V
?

j (0).

Then there exist s ≥ 1 and (π, (xj), (αj)) ∈ Rn
+ × (Rn

+)m × (R+)m, π 6= 0,
such that 

−αjπ ∈ ∂Vj(xj),
〈π, xj〉 − sφj(π) ∈ ∂ ind≥0(αj),

Φ(τ)− Φ(π) ≥
〈
τ − π,

m∑
j=1

xj

〉
, ∀τ ∈ Rn

+.

Now we are in a position to prove the following theorem:

Theorem 3.2. Suppose that for any j = 1, . . . ,m the following condi-
tions are satisfied :

(H1) 0 ∈ cl(Dom ∂Vj) and (Rn
− \ {0}) ∩ BRn(0, rj) ⊂ Int DomV

?
j for some

rj > 0;
(H6) φj(τ) > 0 for all τ ∈ Int Rn

+;
(H7) there exists δ > 0 such that δ‖τ‖ ≥ Φ(τ) for all τ ∈ Rn

+.

Moreover assume that for any j = 1, . . . ,m condition (H0
3 ) or (H1

3 ) holds.
Then there exists a solution of the following problem (P̂ ): Find π ∈ Int Rn

+
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and xj ∈ Rn
+, j = 1, . . . ,m, such that

Vj(xj) = min{Vj(x) : 〈π, x〉 ≤ φj(π), x ∈ Rn
+}, j = 1, . . . ,m,〈

−
m∑

j=1

xj , τ − π
〉

+ Φ(τ)− Φ(π) ≥ 0, ∀τ ∈ Rn
+.

Proof. Let

(3.1) Ṽj(·) = Vj(·) + indBRn (0,K)(·), K > δ +m, j = 1, . . . ,m,

where δ is the constant from (H7). We claim that the assumptions of Theo-
rem 3.1 are satisfied for the system

(Ṽj(·), φj(·) + ε‖·‖, Φ+(·) + εm‖·‖), 0 < ε ≤ 1.

Indeed, the function Φ+(·)+εm‖·‖ (where Φ+ = Φ+indRn
+
) is convex, proper,

l.s.c. and positive homogeneous of degree 1 for 0 < ε ≤ 1. Hence there exists
a convex, closed subsetW ε of Rn such that (Φ+(·)+εm‖·‖)? = indW ε . From
(H7) we deduce thatW ε∩Rn

+ ⊂ BRn(0, δ+m) for 0 < ε ≤ 1. If xj ∈ ∂Ṽ ?
j (0),

j = 1, . . . ,m, then (H0
3 ) and (H1

3 ) imply that ‖xj‖ = K, j = 1, . . . ,m.
Therefore

∑m
j=1 xj /∈ BRn(0, δ+m)∩Rn

+ and
∑m

j=1 xj /∈ ∂(Φ+ + εm‖·‖)(0),
for all 0 < ε ≤ 1. Thus assumption (H5) holds. The remaining assumptions
can be easily verified.

Accordingly, Theorem 3.1 implies that for any 0 < ε ≤ 1 there exist
sε ≥ 1 and πε ∈ Rn

+, πε 6= 0, xε
j ∈ Rn

+, αε
j ∈ R+, j = 1, . . . ,m, such that

(3.2)


−αε

jπ
ε ∈ ∂Ṽj(xε

j),

〈πε, xε
j〉 − sε(φj(πε) + ε‖πε‖) ∈ ∂ ind≥0(αε

j),

Φ(τ)− Φ(πε) + εm(‖τ‖ − ‖πε‖) ≥
〈
τ − πε,

m∑
j=1

xε
j

〉
, ∀τ ∈ Rn

+.

From the definition of Ṽj we get ‖xε
j‖ ≤ K for all 0 < ε ≤ 1 and j ∈

{1, . . . ,m}.
Notice that

αε
j > 0, ∀0 < ε ≤ 1, ∀j ∈ {1, . . . ,m}.

Indeed, suppose that αbε
j0

= 0 for some 0 < ε̂ ≤ 1 and j0 ∈ {1, . . . ,m}. From
(3.2)1, (H0

3 ), (H1
3 ) we obtain ‖xbε

j0
‖ = K. From (3.2)3 we get ‖

∑m
j=1 x

bε
j‖ ≤

δ +m, which contradicts (3.1).
Since αε

j > 0 for j = 1, . . . ,m, the condition (3.2)2 has the equivalent
form

〈πε, xε
j〉 = sε(φj(πε) + ε‖πε‖), j = 1, . . . ,m.
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Summing up these equalities and applying (3.2)3 we get

Φ(πε) + εm‖πε‖ =
〈 m∑

j=1

xε
j , π

ε
〉

= sε
m∑

j=1

(φj(πε) + ε‖πε‖)

= sε(Φ(πε) + εm‖πε‖).
Hence sε = 1 for all 0 < ε ≤ 1.

Let pε = πε/‖πε‖ for 0 < ε ≤ 1. There exist (εk)k∈N and p ∈ Rn
+ with

‖p‖ = 1 such that εk → 0 and pεk → p as k →∞.
Moreover, notice that

p ∈ Int Rn
+.

Indeed, suppose that p ∈ Fr Rn
+. We can assume that p1 = 0. As Φ(p) > 0,

there exists j0 ∈ {1, . . . ,m} such that φj0(p) > 0.
We now prove that (αεk

j0
‖πε

k‖)k∈N is bounded. Suppose to the contrary
αεk

j0
‖πε

k‖ → ∞ as k → ∞ (passing to a subsequence if necessary). Since
Ṽ ?

j0
(0) 6= ∅ there exists cj0 ∈ R such that

Ṽj0(y) ≥ −cj0 , ∀y ∈ Dom Ṽj0 .

From (3.2)1, (3.2)2 we get

φj0(p
εk) ≤ cj0 + Ṽj0(y)

αεk
j0
‖πε

k‖
+ ‖y‖, ∀y ∈ Dom Ṽj0 .

Letting k →∞ we obtain

0 < φj0(p) ≤ ‖y‖, ∀y ∈ Dom Ṽj0 ,

which contradicts the assumption 0 ∈ cl(Dom ∂Ṽj0).
Hence we can assume that there exist xj0 ∈ Rn

+ and α̃j0 ∈ R+ such that
xεk

j0
→ xj0 and αεk

j0
‖πε

k‖ → α̃j0 as k → ∞ (passing to a subsequence if nec-
essary). From positive homogeneity of φj0 of degree 1 we get the equivalent
form of (3.2)1, (3.2)2:

−αεk
j0
‖πε

k‖pεk ∈ ∂Ṽj0(x
εk
j0

), 〈pεk , xεk
j0
〉 − φj0(p

εk)− εk ∈ ∂ ind≥0(α
εk
j0
‖πε

k‖).
Letting k →∞ yields

−α̃j0p ∈ ∂Ṽj0(xj0), 〈p, xj0〉 − φj0(p) ∈ ∂ ind≥0(α̃j0),

Hence

Vj0(xj0) = min{Vj0(x) : 〈p, x〉 ≤ φj0(p), x ∈ Rn
+ ∩BRn(0,K)}.

From (3.2)3 we infer that xj0 ∈ BRn(0, δ + m). It is easy to check that
‖xj0‖ < K and α̃j0 > 0.

Using the fact p ∈ Int Rn
+ and assumption (H6) we get φj(p) > 0, j =

1, . . . ,m. Similarly to the above case, there exist xj ∈ Rn
+ and α̃j ∈ R+,
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j = 1, . . . ,m, such that xεk
j → xj and αεk

j ‖πε
k‖ → α̃j as k → ∞ (passing to

a subsequence if necessary) and

−α̃jp ∈ ∂Ṽj(xj), 〈p, xj〉 − φj(p) ∈ ∂ ind≥0(α̃j), j = 1, . . . ,m.

and ‖xj‖ < K. Hence ∂Ṽj(xj) = ∂Vj(xj) and

(3.3) Vj(xj) = min{Vj(x) : 〈p, x〉 ≤ φj(p), x ∈ Rn
+}, j = 1, . . . ,m.

From positive homogeneity of Φ of degree 1 the condition (3.2)3 has the
equivalent form

Φ(τ)− Φ(pεk) + εkm(‖τ‖ − 1) ≥
〈
τ − pεk ,

m∑
j=1

xεk
j

〉
, ∀τ ∈ Rn

+,

(after substituting τ/‖πε
k‖ for τ). Letting k →∞ we get

Φ(τ)− Φ(p) ≥
〈
τ − p,

m∑
j=1

xj

〉
, ∀τ ∈ Rn

+.

Taking into account (3.3) we conclude that p ∈ Int Rn
+, xj ∈ Rn

+, j =
1, . . . ,m, are a solution of the problem (P̂ ).

Theorem 3.2 implies

Corollary 3.3. There exists a classical competitive equilibrium in the
Arrow–Debreu and Arrow–Debreu–McKenzie models under the classical as-
sumptions.

4. Examples. Now we recall the main Theorem 5 from [9] (Theorem 10
of [10]).

Theorem 4.1. Suppose that for any j = 1, . . . ,m the following hypothe-
ses hold :

(H0
1 ) 0 ∈ cl(Dom ∂Vj),

(H8) 0 /∈ ∂Vj(0).

Moreover , for any j = 1, . . . ,m assume that one of the following conditions
holds:

(H0
9 ) DomVj is closed

or

(H1
9 ) if xk

j → xj and pk → p as k →∞ with ‖pk‖ = 1 and αk
j > 0 are such

that −αk
j p

k ∈ ∂Vj(xk
j ) and φj(p) = 0, then lim infk→∞ V

?
j (−αk

j p
k) >

−∞.

Additionally , assume that

(H7) there exists δ > 0 such that δ‖τ‖ ≥ Φ(τ) for all τ ∈ Rn
+.
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Then there exist 0 < r ≤ 1 and (π, (xj), (αj)) with π ∈ Rn
+, π 6= 0, xj ∈ Rn

+

and αj ∈ R+ ∪ {∞} for j = 1, . . . ,m such that

(PQ)


−αjπ ∈ ∂Vj(xj), 〈π, xj〉 − φj(π) ∈ ∂ ind≥0(αj) if αj ∈ R+,

−π ∈ ∂∞Vj(xj), 〈π, xj〉 = φj(π) = 0 if αj =∞,

Φ(π) =
〈
π,

1
r

m∑
j=1

xj

〉
,

1
r

m∑
j=1

xj ∈W,

where W ⊂ Rn
+ is such that Φ+(τ) = supy∈W 〈τ, y〉 for Φ+ = Φ+ indRn

+
.

Remark 4.2. Note that (H7) implies that W ∩ Rn
+ is bounded. Theo-

rem 4.1 is obtained from [9, Theorem 5] or [10, Theorem 10] by applying
those theorems to the functions Ṽj := Vj + indBRn (0,K)∩Rn

+
, j = 1, . . . ,m,

with the constant K > 0 such that W ∩ Rn
+ ⊂ BRn(0,K). Thanks to the

assumption W ∩ Rn
+ ⊂ BRn(0,K), any solution of the modified problem

becomes a solution of the initial problem (PQ).

Corollary 4.3. Suppose that the hypotheses of Theorem 4.1 are satis-
fied. Moreover , assume that one of the following conditions holds:

(H0
10) for each j = 1, . . . ,m either ∂V ?

j (0) = ∅, or 〈τ, y〉 > φj(τ) for all
y ∈ ∂V ?

j (0) and τ ∈ Rn
+ \ {0},

or

(H1
10) ∂V

?
j (0) ∩ ∂Φ+(0) = ∅ for all j = 1, . . . ,m, where Φ+ = Φ+ indRn

+
.

Then there exists a solution of the problem (PQ) with r = 1.

Remark 4.4. (H0
10) and (H1

10) imply that αj > 0, j = 1, . . . ,m. Hence
〈π, xj〉 = φj(π), j = 1, . . . ,m. Moreover, note that (H0

10) includes the classi-
cal assumptions (H0

3 ), (H1
3 ).

Corollary 4.5. Suppose that the hypotheses of Theorem 4.1 hold and

(H11) for all j = 1, . . . ,m, all τ ∈ Fr Rn
+ \{0} and all zj ∈ Rn

+ with 〈τ, zj〉 ≤
φj(τ), there exists sj ∈ Rn

+ \{0} with 〈sj , τ〉 = 0 such that Vj(zj + sj)
< Vj(zj).

Then there exists a solution of the problem (PQ) with π ∈ Int Rn
+.

Remark 4.6. The proofs of Corollaries 4.3 and 4.5 are similar to the
proof of Theorem 3.2. Hence we can also prove the existence of the compet-
itive equilibrium under the classical assumptions using Theorem 4.1.

Corollary 4.7. Suppose that the hypotheses of Theorem 4.1 are satis-
fied. Moreover , assume that there exists γ > 0 such that for any j = 1, . . . ,m,

(H12) if 〈pk, xk
j 〉 → 0 as k →∞ with ‖pk‖ = 1 then lim infk→∞ φj(pk) ≥ γ.

Then there exists a solution of the problem (PQ) with αj <∞, j = 1, . . . ,m.
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Now we consider three markets with two traders and commodities.

4.1. The equilibrium price with positive coordinates. Consider the fol-
lowing problem: Find r ∈ (0, 1] and π = (π1, π2) ∈ R2

+, π 6= (0, 0), xj =
(xj , yj) ∈ R2

+, αj ∈ R+ ∪ {∞}, j = 1, 2, such that

(4.1)


−αjπ ∈ ∂Ṽj(xj), 〈π, xj〉 − 〈π, ωj〉 ∈ ∂ ind≥0(αj), if αj ∈ R+,

−π ∈ ∂∞Ṽj(xj), 〈π, xj〉 = 〈π, ωj〉 = 0, if αj =∞,
〈π, x1 + x2〉 = r〈π, ω1 + ω2〉, x1 + x2 ≤ r(ω1 + ω2),

where the functions V1, V2 : R2 → R ∪ {∞} take the form

Vj(x, y) = (x− 1)2 + (y − 1)2,

Ṽj(x, y) := Vj(x, y) + indR2
+∩B((0,0),3)(x, y), j = 1, 2,

and ω1 = (2, 1/2), ω2 = (0, 5/4).
Note that W = (−∞, 2] × (−∞, 7/4], Dom Ṽj = R2

+, (0, 0) /∈ ∂Vj(0, 0),
j = 1, 2. The problem (4.1) satisfies all the assumptions of Theorem 4.1,
hence it has a solution. Consider the following cases:

Case 1: π1 > 0, π2 = 0. In this case 〈(π1, 0), ω1〉>0 and 〈(π1, 0), ω2〉 = 0.
This implies that α1 <∞. Therefore (x1, y1) = (1, 1) and α1 = 0.

If α2 =∞, then (x2, y2) = (0, y2), y2 ∈ [0, 3].
If α2 <∞, then (x2, y2) = (0, 1) and α2 > 0 with α2π1 ≥ 2.
Moreover, the following conditions must hold:

x1 + x2 = 2r, y1 + y2 ≤ 7
4r, 0 < r ≤ 1,

which is impossible.

Case 2: π1 = 0, π2 > 0. Then 〈(0, π2), ω1〉 > 0 and 〈(0, π2), ω2〉 > 0.
From this we infer α1, α2 < ∞. Then (x1, y1) = (1, 1/2), α1 = 1/π2,
(x2, y2) = (1, 1), α2 = 0, which contradicts the conditions: x1 + x2 ≤ 2r,
y1 + y2 = 7

4r, 0 < r ≤ 1.

Case 3: π1 > 0, π2 > 0. In this case 〈(π1, π2), ω1〉 > 0 and 〈(π1, π2), ω2〉
> 0. We get α1, α2 <∞. Therefore

(x1, y1) =


(1, 1) if π2 ≤ 2π1,(

1 +
π1(2π1 − π2)
2(π2

1 + π2
2)

, 1 +
π2(2π1 − π2)
2(π2

1 + π2
2)

)
if π2 > 2π1,

(x2, y2) =


(1, 1) if π2 ≥ 4π1,(

1 +
π1(π2 − 4π1)
4(π2

1 + π2
2)

, 1 +
π2(π2 − 4π1)
4(π2

1 + π2
2)

)
if π2 < 4π1.

Moreover, the following conditions must hold:

x1 + x2 = 2r, y1 + y2 = 7
4r, 0 < r ≤ 1.
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Therefore

(4.2) 7(x1 + x2) = 8(y1 + y2).

Consider the following subcases:

• π2 ≤ 2π1. Then from (4.2) we get the equation 16π2
2−39π1π2+36π2

1 = 0,
which does not have a solution.
• 2π1 < π2 < 4π1. Using (4.2) we get the equation 8π2

1 + 7π1π2 = 0,
which does not have a solution for π1 > 0, π2 > 0.
• π2 ≥ 4π1. Then from (4.2) we get 4π2

2 − 23π1π2 + 10π2
1 = 0. Hence

π2 =
23− 3

√
41

8
π1 ≈ 0.47π1 < 4π1 ∨ π2 =

23 + 3
√

41
8

π1 ≈ 5.27π1 > 4π1.

Finally, we have shown that the system

π =
(
π1,

23 + 3
√

41
8

π1

)
, π1 > 0, r =

129− 3
√

41
113

≈ 0.97,

x1 =
(

145− 6
√

41
113

,
451− 21

√
41

452

)
, x2 = (1, 1)

is a solution of the problem: Find r ∈ (0, 1], π = (π1, π2) ∈ R2
+, π 6= (0, 0),

and xj = (xj , yj) ∈ R2
+, j = 1, 2, such that

V1(x1, y1) = min
{
V1(x, y) : π1x+ π2y ≤ 2π1 + 1

2π2, x, y ≥ 0
}

V2(x2, y2) = min
{
V2(x, y) : π1x+ π2y ≤ 5

4π2, x, y ≥ 0
}

π1(x1 + x2) + π2(y1 + y2) = r
(
2π1 + 7

4π2

)
, x1 + x2 ≤ 2r, y1 + y2 ≤ 7

4r.

Note that the price vector is uniquely determined among all normalized
prices, i.e. elements of the simplex S2 := {q = (q1, q2) ∈ R2

+ : q1 + q2 = 1}.
In the above example, there are price vectors for which the budget sets of

two traders include the global maximizers of their utility functions. However,
at equilibrium understood in the sense of the variational inequality (PQ)3,
there exists exactly one normalized price vector for which the traders can-
not both attain their global maximum on the corresponding budget sets.
Moreover, the above unique solution is not a Walrasian equilibrium. This is
a consequence of the fact that x2 globally maximizes the utility functions of
the second trader −V2 in the interior of his budget set. Finally, what is worth
mentioning, the prices of the two commodities are positive and therefore they
are attractive from the point of view of pure exchange economy.

4.2. Walrasian equilibrium. Assume that functions V1, Ṽ1 : R2 → R
∪ {∞} take the form

V1(x, y) := (x−1)2 +(y−1)2, Ṽ1(x, y) := V1(x, y)+ indR2
+∩B((0,0),4)(x, y),
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functions V2 : R2
+ → R, Ṽ2 : R2 → R ∪ {∞} are given by

V2(x, y) := −√xy, Ṽ2(x, y) :=
{
−√xy if (x, y) ∈ R2

+ ∩B((0, 0), 4),
∞ otherwise,

and ω1 = (1, 0), ω2 = (0, 3). Consider the following problem: Find r ∈ (0, 1]
and π = (π1, π2) ∈ R2

+, π 6= (0, 0), xj = (xj , yj) ∈ R2
+, αj ∈ R+ ∪ {∞},

j = 1, 2, such that

(4.3)


−αjπ ∈ ∂Ṽj(xj), 〈π, xj〉 − 〈π, ωj〉 ∈ ∂ ind≥0(αj), if αj ∈ R+,

−π ∈ ∂∞Ṽj(xj), 〈π, xj〉 = 〈π, ωj〉 = 0, if αj =∞,
〈π, x1 + x2〉 = r〈π, ω1 + ω2〉, x1 + x2 ≤ r(ω1 + ω2).

Note that W = (−∞, 1] × (−∞, 3] and Dom Ṽj = R2
+ ∩ BR2((0, 0), 4) with

(0, 0) /∈ ∂Ṽj(0, 0), j = 1, 2. From Theorem 4.1 we infer that the problem
(4.3) has a solution.

Consider the following cases:

Case 1: π1 = 0, π2 > 0. We have 〈(0, π2), ω1〉 = 0 and 〈(0, π2), ω2〉 > 0,
which implies α2 < ∞. Therefore (x2, y2) = (

√
8,
√

8) and α2 = 0. This
contradicts the conditions: x1 + x2 ≤ r, y1 + y2 = 3r, 0 < r ≤ 1, x1 ≥ 0.

Case 2. π1 > 0, π2 > 0. Now 〈(π1, π2), ω1〉 > 0 and 〈(π1, π2), ω2〉 > 0.
This implies that α1, α2 <∞. Hence

(x1, y1) =
(

1− π1π2

π1
2 + π2

2

,
π2

1

π2
1 + π2

2

)
,

(x2, y2) =



(
3
2
π2

π1
,
3
2

)
if 0 < π2 ≤

√
55
3

π1,(
x̃2,−

π1

π2
x̃2 + 3

)
if
√

55
3

π1 < π2 ≤ (3
√

8 + 8)π1,

(
√

8,
√

8) if π2 ≥ (3
√

8 + 8)π1,
where

x̃2 =
π2(3π1 +

√
16π2

1 + 7π2
2)

π2
1 + π2

2

, x̃2 ≥
√

8.

Moreover, the following conditions must hold:

x1 + x2 = r, y1 + y2 = 3r, 0 < r ≤ 1.

Analysis similar to that in Case 1 leads to a contradiction if π2 >
√

55
3 π1.

For 0 < π2 ≤
√

55
3 π1 the equation

3(x1 + x2) = y1 + y2

leads to π2
1 + 3π2

2 = 0, which does not have a solution in the set π1, π2 > 0.
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Case 3: π1 > 0, π2 = 0. Then 〈(π1, 0), ω1〉 > 0 and 〈(π1, 0), ω2〉 = 0.
Hence α1 < ∞ and α2 = ∞, because Dom ∂V2 = Int R2

+. Therefore (x1, y1)
= (1, 1), α1 = 0 and (x2, y2) = (0, y2), y2 ∈ [0, 4]. Moreover, the following
conditions must hold:

x1 + x2 = r, y1 + y2 ≤ 3r, 0 < r ≤ 1,

hence r = 1, y2 ∈ [0, 2].
Therefore the following system is a solution of the problem (4.3):

π = (π1, 0), π1 > 0, r = 1, α1 = 0, α2 =∞,
x1 = (x1, y1) = (1, 1), x2 = (x2, y2) = (0, y2), y2 ∈ [0, 2].

Finally, the system

π = (π1, 0), π1 > 0, x1 = (x1, y1) = (1, 1),
x2 = (x2, y2) = (0, y2), y2 ∈ [0, 2],

is a solution of the problem: Find π ∈ R2
+, π 6= (0, 0), and xj = (xj , yj) ∈ R2

+,
j = 1, 2, such that

V1(x1, y1) = min{V1(x, y) : π1x+ π2y ≤ π1, x, y ≥ 0},
V2(x2, y2) = min{V2(x, y) : π1x+ π2y ≤ 3π2, x, y ≥ 0},
π1(x1 + x2) + π2(y1 + y2) = π1 + 3π2, x1 + x2 ≤ 1, y1 + y2 ≤ 3.

In this example the preferences of the two traders are represented by different
utility functions. The first utility function attains its global maximum on
the budget set corresponding to a nonzero price vector of the form (π1, 0),
π1 > 0. The second function is of the Cobb–Douglas type. For the given
initial endowments ω1 and ω2 we get a Walrasian equilibrium with a uniquely
determined normalized price vector whose second coordinate is 0. This means
that in such economy the second commodity is not attractive. Moreover, the
exchange is useless for the second trader because his budget vanishes.

4.3. The equilibrium price with one coordinate zero. Consider the fol-
lowing problem: Find r ∈ (0, 1] and π = (π1, π2) ∈ R2

+, π 6= (0, 0), xj =
(xj , yj) ∈ R2

+, αj ∈ R+ ∪ {∞}, j = 1, 2, such that

(4.4)


−αjπ ∈ ∂Ṽj(xj), 〈π, xj〉 − 〈π, ωj〉 ∈ ∂ ind≥0(αj), if αj ∈ R+,

−π ∈ ∂∞Ṽj(xj), 〈π, xj〉 = 〈π, ωj〉 = 0, if αj =∞,
〈π, x1 + x2〉 = r〈π, ω1 + ω2〉, x1 + x2 ≤ r(ω1 + ω2),

where the functions V1, V2, Ṽ1, Ṽ2 : R2 → R ∪ {∞} take the form

Vj(x, y) := (x− 1)2 + (y − 1)2,

Ṽj(x, y) := Vj(x, y) + indR2
+∩B((0,0),4)(x, y), j = 1, 2,
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and ω1 = (3/2, 0), ω2 = (0, 3). As in Example 4.1, we know that the problem
(4.4) has a solution. Consider the following cases:

Case 1: π1 = 0, π2 > 0. Then 〈(0, π2), ω1〉 = 0 and 〈(0, π2), ω2〉 > 0.
Hence α2 <∞. Therefore (x2, y2) = (1, 1) and α2 = 0.

If α1 =∞, then (x1, y1) = (x1, 0) with x1 ∈ [0, 4].
If α1 <∞, then (x1, y1) = (1, 0) and α1π2 ≥ 2.
Moreover, the following conditions must hold:

x1 + x2 ≤ 3
2r, y1 + y2 = 3r, 0 < r ≤ 1,

which is impossible.

Case 2: π1 > 0, π2 > 0. Now we have 〈(π1, π2), ω1〉 > 0 and 〈(π1, π2), ω2〉
> 0. This implies that α1, α2 <∞. Hence

(x1, y1) =


(1, 1) if π2 ≤ 1

2π1,(
1 +

π1(π1 − 2π2)
2(π2

1 + π2
2)

, 1 +
π2(π1 − 2π2)
2(π2

1 + π2
2)

)
if π2 >

1
2π1,

(x2, y2) =


(

1 +
π1(2π2 − π1)
π2

1 + π2
2

, 1 +
π2(2π2 − π1)
π2

1 + π2
2

)
if π2 <

1
2π1,

(1, 1) if π2 ≥ 1
2π1.

Moreover, the following conditions must hold:

x1 + x2 = 3
2r, y1 + y2 = 3r, 0 < r ≤ 1.

Therefore

(4.5) 2(x1 + x2) = y1 + y2.

Consider the following subcases:

• π2 = 1
2π1. Then x1 + x2 = 2, y1 + y2 = 2, contrary to (4.5).

• π2 <
1
2π1. From (4.5) we get the equation 5π1π2 = 0, which does not

have a solution in the set π1 > 0, π2 > 0.
• π2 >

1
2π1. Then (4.5) yields the equation 6π2

2−5π1π2 +6π2
1 = 0, which

does not have a solution.

Case 3: π1 > 0, π2 = 0. Then 〈(π1, 0), ω1〉 > 0 and 〈(π1, 0), ω2〉 = 0.
Hence α1 <∞. Therefore (x1, y1) = (1, 1) and α1 = 0.

If α2 <∞, then (x2, y2) = (0, 1) and α2 > 0 with α2π1 ≥ 2. The following
conditions must hold:

x1 + x2 = 3
2r, y1 + y2 ≤ 3r, 0 < r ≤ 1.

Thus r = 2/3.
If α2 =∞, then (x2, y2) = (0, y2) with y2 ∈ R+, and the same conditions

as above must hold. Hence r = 2/3 and 0 ≤ y2 ≤ 1.
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Therefore the solutions of the problem (4.4) are

π = (π1, 0), π1 > 0, r = 2
3 , α1 = 0, α2π1 ≥ 2, α2 > 0,

x1 = (1, 1), x2 = (0, 1)

or

π = (π1, 0), π1 > 0, r = 2
3 , α1 = 0, α2 =∞,

x1 = (1, 1), x2 = (0, y2), y2 ∈ [0, 1].

Moreover, notice that the system

π = (π1, 0), π1 > 0, r = 2
3 , x1 = (1, 1), x2 = (0, 1)

is a solution of the problem: Find r ∈ (0, 1], π = (π1, π2) ∈ R2
+, π 6= (0, 0)

and xj = (xj , yj) ∈ R2
+, j = 1, 2, such that

V1(x1, y1) = min{V1(x, y) : π1x+ π2y ≤ 3
2π1, x, y ≥ 0}

V2(x2, y2) = min{V2(x, y) : π1x+ π2y ≤ 3π2, x, y ≥ 0}
π1(x1 + x2) + π2(y1 + y2) = r(3

2π1 + 3π2), x1 + x2 ≤ 3
2r, y1 + y2 ≤ 3r.

Note that the utility functions are the same as in Example 4.1, which implies
that the budget sets of both traders can include their global maximizers. We
get the same form of the solution which is not a Walrasian equilibrium, but—
what distinguishes these results—the second coordinate of the price vector
is equal to 0. For the market it is not important whether the bundle of the
second trader maximizes the function −V2 on the budget set corresponding
to the price vectors (π1, 0), π1 > 0, because his initial endowment is zero.
Summing up, the initial endowments have strong influence on the derived
price vector.
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