APPLICATIONES MATHEMATICAE
36,2 (2009), pp. 129-138

KoONRAD FURMANCZYK (Warszawa)

A UNIFORM CENTRAL LIMIT THEOREM
FOR DEPENDENT VARIABLES

Abstract. Niemiro and Zieliriski (2007) have recently obtained uniform
asymptotic normality for the Bernoulli scheme. This paper concerns a sim-
ilar problem. We show the uniform central limit theorem for a sequence of
stationary random variables.

1. Introduction. We consider a strictly stationary sequence of random
variables X1, Xa,... defined on a statistical space (2,F,{Fy : 6 € 0}),
where Py is a marginal distribution of the sequence X7, Xo,... with EgX;
= 11(0) and finite variance Varg X; = o2(0).

We assume that there exist a function o2,(6) > 0 and a sequence a, — 0
such that
1 n

(Ala) sup|— Varg (Z Xi) - 025(9)‘ < ay,

geo| M im1
(A1b) oln(g 02,(8) > M,  for some M; > 0.

€
Define

NN
where S, ;=31 | X;.

Let @ be the c.d.f. of N(0,1). We say that the sequence S} is uniformly
asymptotically normal (UAN) over O if

(1) supsup |Py(S; < z) — d(x)] =o(l) asn — oo.
0cO zeR
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Clearly, (1) implies that X,, is UAN(u(0), 0as(0)/+v/1), i.e.

Py (ﬁw < 93) — &(x)

This fact is useful for example when constructing the asymptotic confidence
interval for (@) or 6 for dependent statistical data.

In Section 2 we show UAN for dependent random variables together with
some necessary lemmas. In Section 3 we give applications of our results to
linear processes and AR(1) processes.

sup sup =o(1).

0eO zeR

2. Main results. Now, we present a basic lemma to obtain UAN for
dependent random variables.

LEMMA 1. If there exists a sequence ¢, — 0 such that, for every t € R,

(2) sup |Eg exp(itS) — exp(—t2/2)| < cp(|t| 4+ 2 + [t]?),
(USC
then there exists an absolute constant C' > 0 such that
(3) supsup | Py(S; < ) — B(x)| < Cr/en.
0cO zeR

Proof. The main tool is the following well-known inequality:

T
Lo(t) — ot
(@) supl RS, <) B(x) < C | M’wﬂ?
r€eR _r t T

for every T' > 0, for some absolute constants C7, Ca, where ¢, ¢(t) =
Eg exp(itS}) and p(t) := exp(—t2/2). Using (2), we have
T

supsup |Py(S; < z) — d(x)| < Cy S
0O zeR _T

< Chen(T+ T4+ T3) + CoT 7,
where C is an absolute constant. Putting 7' = ¢,;* with o = 1/2 we get

supsup | Py(S, < ) — B(x)| < C'et
6eO zeR

dt + —

. [t| + 2 + |t Cy
" It| r

for some absolute constant C’. u

Now, we formulate some assumptions which imply (2). We will use Bern-
stein’s “large block - small block” technique. Let p = p(n) and ¢ = ¢(n)
be sequences of positive integers such that p — oo, ¢ — o0, ¢/p — oo as
n — oo, and let k = [n/(p + ¢)]. Moreover,

Bi=(p+-D+1L....p+a)i —1)+p|NN
is a block of size p and B;- is the block between B; and Bj41 of size q.
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Set

PO B U o

Tas (9) 1€B;
We consider the following assumptions:

(A3) there exists a sequence b, — 0 such that, for every t € R,
it 1t
sup Cova{exp< U > exp< U, > H < |t|bp;
> L5 o

00 1
(A4)  we have
Sugz |Covg(X1,X145)| < Mo
€

for some My > 0;
(A5)  for every n € N there exists an absolute constant C” such that

o3
(5) supIE(;’ZXi <

THEOREM 2. The assumptions (Ala)-(Alb) and (A3)-(Ab) imply (2).
Proof. For fixed t € R we define f : R — C by f(z) = exp(itx) and set

1 N 1 & 1 &
Si=—-N"Xi, Z2:=——=SNU;, zv:=—SNU
B S NEEE >

where the sequence (U7) is i.i.d., and Uy has the same distribution as Us.
Moreover, let Y := ﬁ Z§:1 Nj, where N; ~ N(0, Var(Uj)) and (NV;) is i.i.d.
Then, similarly to Doukhan and Wintenberger (2007), we have
Eg exp(itS:) — exp(—t2/2)
=Eo(f(5) = £(2)) + Eo(f(2) = £(Z27)) + Eo(f(27) — f(V))
+Eg(£(Y)) — exp(~t/2)
=thp+Ihg+I39+ 40
Using Taylor expansion we obtain

116 < [|f'|oEolS — Z| < [t[Ey*(S — 2)?

ey ey )

Jj=1 SEB’ SER,

(S 5 ) e )

Jj=1 seB’ sER,
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where R, := {1,...,n}\ ﬂ?zl(Bj U BY). From stationarity of the sequence
(X,), we obtain

k 00

N2 -

Eo(} 3 X)) < 2ka Y [Cova(Kn Kisy)l
Jj=1 seB; J=0

From (A1b) and (A4), we have

sup Ey <Z Z X ) < 2qulelgz |Cove (X1 X14)|
j=0

beo Jj=1seB]

1
< 2kgsup ——=~ p Z |Cove(X1,X14;)] < Cikg

oco 0as(0)

for some constant C7. Similarly,

~ \2
wm&(}:XQ < Ca(n—k(p+q)) < Ca(p+9q)
069 SGRn

for some constant Cy. Hence,

+q q p
<ol Sy P9 <o \[
(6) %yhﬂ_cﬁ(wg+ p <201t p+ -

for some constant C1.
Observe that

Eu(f(2) - (2] < 3| Covof exp( - 5 ) e L0) 1.

7j=2 s=1

-

Then using (A3), we get

(7) sup |I29] < C5|t]by
0cO
for some constant CY.
Clearly,
|13 0] = HEgexp< ) HEgexp( >
it
S k E@ exp(\/ﬁ U1> - Egexp<\z/ﬁ N1> ‘

From the Taylor formula we have

EgGXp(\/ﬁU1> =1- m 7 — 6n3/2 Eg(Ul)t
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and
it EyN? i
Eg exp(\/ﬁ]\h) =1- ;nl t2 — 6n3/2 Eg(Nf)t?’T]Q
EyU? i
=1- 2n1 t? — Py Eo(UD)t3n2

for some |m1], |n2| € (0,1). This and (A5) yield

(8) sup |I39] < k ﬁ sup Bg|U1 > < Cht)3 kp? < C’|t|3\/5
beo 0 T 632 gep | = O a2 =B n
for some constant CY.
Observe that
it

(9) L] = ](Ee exp< ﬁNl))k - exp(—t2/2>\

exp<—¢2ngzxph>>-—exp@-ﬁ/zﬂ

t2

12 k
< — - —
=5 5 1 - Vary(Uy)

k
1 — — Varg(Ny)
n

Let Dy, := 1 Varg(3,cp, X;). Then

k B k ~ . kp Dp
(10) 1= Varg(U) =1- nVafe(;B X) =1
(3 1
Now,
D Dy — o,
(11) R Tt

n o2,(0) n n 00
Therefore and from (Ala)—(Alb), we obtain

kp D, kp kp | D, —025(9)\ p+q ap
12) 1" < < Ly
(12) ’ n azsw)‘ ’ I () R A

as
From (9)—(12), we have, for some constant Cy,

(13) sup | Log| < Cut? <p + ap).
C) n

From (6), (7), (8), (13) we obtain (2) for

(14) e = 0w 0. e \/f»

where a,, is the pth term in the sequence defined by (Ala). u
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3. Linear processes. We consider the following linear process (LP):
oo
Xn = Z ar(e)Zn—ra
r=0
where the innovations (Z,) are i.i.d. r.v.’s with mean zero and unit variance,

and a,(0) is a nonrandom sequence depending on the parameter . We will
consider the following assumptions:

ag sup a-(0)] < oo,
(ao) Heegl ()]
o)
(a1) SupZaz(G) =07 for somet>1 (as j — 00),
S
(b1) E|Z,® < oc.

PROPOSITION 3. Under assumptions (ag), (a1), (b1) we obtain (A3)-
(A5).

Proof. First we will show (A3). Let

s=1
R i -t N it -
hMU) :=exp| —=) Us), h(U):=exp|—F=Uj |,
O =en(T30) 0 =en(T0)
A~ g—1
e SETG s S0
k€ Bs as r=0
Then
Covg(h1(U), ho(U)) = Covg(h1(U) — hi(U), ha(T))
+ Covg(hy(U), ha(U) — ho(0))
+ Covg(hi(U), ho(U))
Hence A
O'(hl(U)) C O'(. cey Z(j,l)er(j,Q)q)
and

o(ha(U)) C o(Z(i-1)ptay+2-q> - > Zip+(i-1)a)s
so the r.v.’s hy(U) and ho(U) are independent, which implies
(15) Cove(h1(U), he(U)) = 0.

From the elementary inequality

lexp(ia) — exp(ib)| < |a —b], a,bER,
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bounding ho we obtain

(16)  |Covp(h1(U) — i (U), h ())|<2Ee|h1() (U]

t
<2 | |\f Z Z M; 4(0) = 2|tin”~ 1/2(j — 1)pM; 4(8),

g
as( s=11€B,

where

My4(0) == Eg‘ZaT(H)Zl_T .

Similarly we obtain

(17) |Cove(hn (U), ha(U) = ha(U))| < 2Eg|ha(U) — hz(ﬁ)\
|t]
<2Uas( NG Z 1

leB;
From (15)—(17),
|Cove(ha(U), ha(U))| < Cltln™""2jpMy4(8),
and from (Alb) we have

k ., g-1 .
it it
(18) ]EZ:Q Covy <exp{\/HZ:Us},exp{\/ﬁ Uj})’
k
<Ot = ZJMM < Ol rvm Mial®) 27
Uas Uas( ) =
< Clt| ﬂMl (0) < C'|tlp~'n3/2 M ,(6)
B gas(B)y/n 7q
for some constants C', C'. By (ag) we get
2
(19) sup My 4(0) < supE, 12 <Z ar(0)Z;— T)
9eo 6c6 —

Y2 g/
<mp(2t0) " <o

for some v > 0. Hence choosing

p(n) ~n'=¥2 g(n) ~n'"=  for some & > 0,

135

we find that the r.h.s. of (18) is less than C|t|by,, where b, — 0. This proves

(A3).
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From (ag), we easily obtain (A4). From Theorem 2.1 of Furmarczyk
(2008) for @ = 3 we get

n3/2

(i |ar(9)l)3 < "3,

< C sup

sup Eg —_
0co 3/2(0)

0c6 ‘ P
which implies (A5). =

COROLLARY 4. Under assumptions (ag), (a1) for somet > 7/2, (by) and
(Ala) we obtain (3) for

(20) cn = O(n~Y8).
Moreover, the constant in (Ala)—(Alb) has the form

1) 02,(0) =3 a2(0) 123" S ag(8)ass5(0).
s=0 j=1s=0
Proof. By (ap),
supz |Covg (X1, X145)| < o0,
00 =

and from stationarity, we easily obtain (21).
Observe that

n

%Varg (ZXJ - 025(0)‘ =

=1

o0
> Cove(X1, X145)
j*n—i—l

<2 3 S janl®) laess (0)]

j=n+1s=0

From (ag) and the Schwarz inequality, we have (Ala) for

an:o( 3 Jsupzaw >:(9< S V) = 0,

j=nt1 \ €€ s=0 j=nt1

therefore putting p(n) ~ n3* and g(n) ~ n'/?, we obtain a, = O(p~/>+1) =
O(n~"#). From (19) and condition (a;) for some ¢t > 7/2 we obtain

n3/2 X
_ — -1/8
bno(pqw) =0(n"7°).
Observe that \/q/p = O(n~Y®) and /p/n = O(n~'/%). Hence from (14)

we obtain (20). Therefore from Lemma 1, Theorem 2 and Proposition 3 we
obtain (3). =
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We now consider an AR(1) process with parameter § € (—1;1) of the
form

(22) X, = i 0" Z_.
r=0

PROPOSITION 5. If0 € (—1+9;1-0) for some § > 0 and (by) holds, then
conditions (ag), (a1), (Ala)—(Alb) are satisfied and the process X,, satisfies
uniform CLT (3) for ¢, of the form (20).

Proof. Since the AR(1) process is a linear process with a,(0) = 6" and
O =(—146;1—90), we have

> > 0] 1-96
sup |ar(0)| = sup |0|" = sup < —,
0692 ' eeeg oco 1 — 0] 0

and condition (ag) is satisfied. Similarly

supia?(@) = sup o < (=0 _ O(A?)  for some A < 1
beo = ' oco 1 — 0%~ 6(2-9) 7

and condition (a;) holds. From (21) we have

‘;Varg (in) - 025(0)‘ = 2‘ i COVO(XMXHJ')‘
i=1 J=n+1

© oo
:2‘ Z Zezsﬂ"
j=n+1 s=0
and
’Q|n+1

g (Y1) - o2(0)| = 2sup

(1—o)t!

<N 7

- 6%(2-9)

for some 0 < A; < 1. Therefore, we obtain condition (Ala). From (21) we
have

= o(4y)

0 = a20) +2 303 a0y 0) = T
s=0

j=1 5=0
because as(f) = 6°. Then
inf ! > !
9o (1 —0)2 = (2—0)%’

and we obtain condition (A1b). Consequently, from Corollary 4 and Lemma 1
we get uniform CLT (3) for X,,. m
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