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UNBIASED ESTIMATION
FOR TWO-PARAMETER EXPONENTIAL DISTRIBUTION

UNDER TIME CENSORED SAMPLING

Abstract. The problem considered is that of unbiased estimation for a
two-parameter exponential distribution under time censored sampling. We
obtain a necessary form of an unbiasedly estimable parametric function and
prove that there does not exist any unbiased estimator of the parameters
and the mean of the distribution. For reliability estimation at a specified
time point, we give a necessary and sufficient condition for the existence
of an unbiased estimator and suggest an unbiased estimator based on a
sufficient statistic in situations where unbiased estimators exist. Unbiased
estimation of the variance of an unbiased estimator of reliability is also ad-
dressed.

1. Introduction. A two-parameter exponential distribution with real
parameters µ and λ (> 0), to be denoted hereafter as exp(µ, λ) distribution,
is defined by the probability function (p.f.)

f(x | µ, λ) =
1
λ
e−(x−µ)/λ, x > µ.(1)

This distribution is widely used as a model in reliability theory.
Suppose the life-length X of an item follows an exp(µ, λ) distribution

with unknown parameters, and consider the problem of unbiased estimation
of a real-valued parametric function Ψ(µ, λ). Some particular parametric
functions of interest are (i) the location parameter µ; (ii) the scale param-
eter λ; (iii) the mean life-length E(X) = µ + λ; (iv) the reliability at a
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specified time point t (> 0), viz.

R(t) = P (X > t) =
{

1, t ≤ µ,
e−(t−µ)/λ, t > µ,

(2)

and (v) the variance of an unbiased estimator of R(t) or equivalently R2(t).
For a complete life-testing experiment, the uniformly minimum variance

unbiased estimators (UMVUE’s) of these parametric functions based on
observed life-lengths X1, . . . , Xn of n test items are well known (see Johnson
et al. [3, Chapter 19]; Laurent [4]) and are functions of the complete sufficient
statistic (X(1), S) where X(i) is the life-length of the ith failed item and
S =

∑n
i=2(X(i) −X(1)).

In many practical situations, however, a complete life-testing experiment
is neither feasible nor desirable due to constraints on time and cost, and
estimation is to be based on data obtained from a censored sample wherein
the experiment is terminated either after a pre-assigned time T (> 0) or
when a pre-assigned number of items, say r (< n), have failed. For a censored
sample of second type, called a failure censored sample, a complete sufficient
statistic is (X(1), S

∗), where S∗ =
∑r

i=2(X(i)−X(1))+(n−r)(X(r)−X(1)), and
UMVUE’s of parametric functions such as (i)–(v) are obtained as functions
of this statistic by suitably modifying the UMVUE’s for a complete life-
testing experiment (see Mann et al. [5, Chapter 5]; Basu [2]).

In this paper we address the problem of unbiased estimation for a cen-
sored sample of first type, known as a time censored sample, and obtain
a necessary form of an unbiasedly estimable parametric function Ψ(µ, λ).
We also prove that there does not exist any unbiased estimator of µ, λ and
µ+λ, and give necessary and sufficient conditions for unbiased estimability
of R(t) and R2(t).

In situations where unbiased estimators exist, an unbiased estimator of
R(t) based on a sufficient statistic was given in Bartoszewicz [1], and an
unbiased estimator of R2(t) can be derived by similar arguments (see Sec-
tion 3). Bartoszewicz [1], further showed that the sufficient statistic is not,
however, complete except for n = 1, 2, and hence an unbiased estimator
based on it is not generally unique. In the final section of the paper we sug-
gest alternative unbiased estimators of R(t) and R2(t) based on the sufficient
statistic in situations where unbiased estimators exist.

2. Existence of unbiased estimators. For a time censored sample,
the data consist of D and X(0), X(1), . . . , X(D), where D is the number of
items failed up to pre-assigned time T (> 0) out of n test items, X(i) being
the life-length of the ith failed item, 1 ≤ i ≤ D, and X(0) = 0. Let p = R(T )
and note that D follows a binomial distribution with mean nq, q = 1 − p.
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The joint p.f. of D and X(0), X(1), . . . , X(D) is (see Bartoszewicz [1])

(3) p(d, x(0), x(1), . . . , x(d))

=


pn, d = 0,

d!
(
n

d

)
pn−dI(T > µ)

1
λd

e−
Pd

i=1(x(i)−µ)/λI(x(1) > µ),

1 ≤ d ≤ n, x(1) < · · · < x(d) ≤ T
where I(A) is the indicator function of the set A. Clearly a sufficient statistic
is V = (D,ZD) where

Zd =


X(d), d = 0, 1,(
X(1), Sd =

d∑
i=2

(X(i) −X(1))
)
, 2 ≤ d ≤ n.

(4)

The p.f. of V is given by (see Bartoszewicz [1])

(5) p(d, zd) =


pn, d = 0,

npn−1qI(T > µ)p(x(1) | d), d = 1,(
n

d

)
pn−dqdI(T > µ)p(x(1) | d)p(sd | d, x(1)), 2 ≤ d ≤ n,

where for d ≥ 1,

(6) p(x(1) | d) = the conditional p.f. of X(1) given D = d

=
d

λqd
e−(x(1)−µ)/λ[e−(x(1)−µ)/λ − e−(T−µ)/λ]d−1, µ < x(1) ≤ T,

and for d ≥ 2,

(7) p(sd | d, x(1)) = the conditional p.f. of Sd given D= d and X(1) = x(1)

=
1

Γ (d− 1)λd−1(1− e−(T−x(1))/λ)d−1
e−sd/λfd(sd, T − x(1)),

0 < sd ≤ (d− 1)(T − x(1)),

with

fd(u,w) =
d−1∑
j=0

(−1)j
(
d− 1
j

)
(u− jw)d−2I(u > jw).(8)

In view of sufficiency of V it is enough to restrict to estimators based on V to
study the existence of unbiased estimators. We obtain a necessary form of an
unbiasedly estimable parametric function Ψ(µ, λ) in the following theorem.

Theorem 1. For exp(µ, λ) distribution, there exists an unbiased esti-
mator of Ψ(µ, λ) under time censored sampling only if

Ψ(µ, λ) = constant ∀µ ≥ T ∀λ > 0.(9)
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Proof. Let there exist an estimator g(V ) satisfying

E[g(V )] = Ψ(µ, λ) ∀µ, λ.(10)

Since for T ≤ µ, D = 0 with probability 1, (10) implies g(0, 0) = Ψ(µ, λ) for
all µ ≥ T and λ > 0, which proves the theorem.

We immediately obtain the following result from Theorem 1.

Theorem 2. For exp(µ, λ) distribution, there does not exist any un-
biased estimator of the parameters µ and λ and also of the population mean
µ+ λ under time censored sampling.

Since R(t) satisfies (9) if and only if t ≤ T , and for t ≤ T, a simple
unbiased estimator of R(t) is

R̂(t) = 1−D0/n(11)
where D0 is the number of items failed up to time t, we also have the
following result.

Theorem 3. For exp(µ, λ) distribution, there exists an unbiased esti-
mator of R(t) under time censored sampling if and only if t ≤ T.

We finally consider unbiased estimation of R2(t) and first prove that
there does not exist any unbiased estimator for n = 1 even for t ≤ T.

Lemma 1. For t ≤ T and n = 1, there does not exist any unbiased
estimator of R2(t).

Proof. Let t ≤ T, n = 1 and suppose there exists an estimator g(V )
satisfying

E[g(V )] = R2(t) ∀µ ∀λ.(12)
As in the proof of Theorem 1, (12) implies that g(0, 0)=1, and (12) reduces to

p+
T�

µ

g(1, z1)p(1, z1) dz1 = R2(t) ∀µ < T ∀λ > 0,

i.e.

(13)
1
λ

T�

µ

g(1, x(1))e
−x(1)/λ dx(1) =

{
e−µ/λ−e−T/λ, t≤ µ≤ T , λ> 0,
e−(2t−µ)/λ − e−T/λ, µ < t, λ > 0.

Differentiating (13) with respect to µ, for any given λ, we get

g(1, µ) =
{

1, t ≤ µ ≤ T ,
−e−2(t−µ)/λ, µ < t,

i.e.

g(1, x(1)) =
{ 1, t ≤ x(1) ≤ T ,
−e−2(t−x(1))/λ, x(1) < t ,

which is impossible as g(1, x(1)) cannot depend on λ. Hence, the lemma
follows.
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Also for t ≤ T and for n ≥ 2, an unbiased estimator of R2(t) is

R̂2(t) =
(

1− D0

n

)(
1− D0

n− 1

)
.(14)

Hence, we obtain the following theorem.

Theorem 4. For exp(µ, λ) distribution, there exists an unbiased esti-
mator of R2(t) under time censored sampling if and only if t≤T and n≥2.

3. Unbiased estimation of R(t) and R2(t). In this section we discuss
some unbiased estimators of R(t) and R2(t) under time censored sampling
for t ≤ T. For unbiased estimation of R2(t), it is further assumed that
n ≥ 2. We note that the sufficient statistic V defined in the earlier section
is complete if and only if n = 1, 2 (see Bartoszewicz [1]).

For n = 1, 2 the unbiased estimator R̂(t) defined in (11) is a function
of the complete sufficient statistic V , and hence is the unique unbiased
estimator of R(t) based on V or the UMVUE of R(t). For n > 2 and for
t < T , R̂(t) is not based on V and can be improved upon by an unbiased
estimator obtained through Rao–Blackwellization. The Rao–Blackwellized
form of R̂(t) is given by

R̂∗(t) = E[R̂(t) | V ] = 1− 1
n

D∑
k=0

kP (D0 = k | V ).(15)

An explicit expression for P (D0 = k | V ) is given in Bartoszewicz [1].
For n > 2, R̂∗(t) is not, however, the only unbiased estimator based on V.
In what follows we obtain an alternative unbiased estimator of R(t) based
on V. We first prove that an estimator R̂0(t) defined as

R̂0(t) =


1, X(1) ≥ t,
n− 1
n

I

(
X(2) −X(1) >

t−X(1)

n− 1

)
, X(1) < t,

(16)

is an unbiased estimator of R(t) for t ≤ T.

Theorem 5. For t ≤ T, the estimator R̂0(t) defined in (16) is an un-
biased estimator of R(t) for exp(µ, λ) distribution under time censored
sampling.

Proof. For µ ≥ t, it is obvious that E[R̂0(t)] = R(t). For µ < t, it can be
readily verified as before that the conditional p.f. of Y = X(2) − x(1) given
D = d (≥ 2) and X(1) = x(1) (< t) is

(17) p(y | d, x(1)) =
(d− 1)e−y/λ[e−y/λ − e−(T−x(1))/λ]d−1

λ[1− e−(T−x(1))/λ]d−1
,

0 < y < T − x(1),
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whence simple calculations give

(18)
n

n− 1
E[R̂0(t) | D = d, X(1) = x(1)]

= P (Y > (t− x(1))/(n− 1) | D = d, X(1) = x(1))

=
[e−(t−x(1))/(n−1)λ − e−(T−x(1))/λ]d−1

[1− e−(T−x(1))/λ]d−1
,

and consequently by (6) and (18),

ER̂0(t) = pn +
n∑
d=1

(
n

d

)
pn−dqd

×
[ T�
t

p(x(1) | d) dx(1) +
t�

µ

p(x(1) | d)E[R̂0(t) | D = d, X(1) = x(1)] dx(1)

]

= pn+
1
λ

[
n

T�

t

e−n(x(1)−µ)/λ dx(1) +(n−1)e−(t−µ)/λ
t�

µ

e−(n−1)(x(1)−µ)/λ dx(1)

]
= R(t).

This completes the proof of the theorem.

For n > 2, the estimator R̂0(t) is not again a function of V , and an
improved unbiased estimator based on V is R̂∗

0(t) = E[R̂0(t) | V ]. The
explicit form of R̂∗

0(t) is derived in the following theorem.

Theorem 6. We have

(19) R̂∗
0(t) =



1, X(1) ≥ t,
n− 1
n

, X(1) < t, D = 1,

n− 1
n

fD
(
SD −

(D−1)(t−X(1))

n−1 , T −X(1) −
(t−X(1))

n−1

)
fD(SD, T −X(1))

,

X(1) < t, D = 2, . . . , n,

where fd(u,w) is defined in (8).

Proof. For X(1) ≥ t and for X(1) < t,D = 1, (19) is obvious. Let now
d (≥ 2) and x(1) (< t) be conditionally fixed and define Y = X(2) − x(1),
t∗ = (t− x(1))/(n− 1). Then

(20) P (Y > t∗ | D = d, X(1) = x(1), Sd = sd)

=
p(sd | d, x(1), Y > t∗)P (Y > t∗ | d, x(1))

p(sd | d, x(1))
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where P (Y > t∗ | d, x(1)) is given by (18) and p(sd | d, x(1), Y > t∗) is the
conditional p.f. of Sd given D = d,X(1) = x(1) and Y > t∗. It again follows
as before that

(21) p(sd | d, x(1), Y > t∗)

=
e(d−1)t∗/λ

Γ (d− 1)λd−1(1− e−(T−x(1)−t∗)/λ)d−1

× e−sd/λfd(sd − (d− 1)t∗, T − x(1) − t∗),

(d− 1)t∗ < sd < (d− 1)(T − x(1)).

By (18), (20) and (21) we get

P (Y > t∗ | D = d, X(1) = x(1), Sd = sd) =
fd(sd− (d−1)t∗, T −x(1)− t∗)

fd(sd, T − x(1))
,

and this proves the theorem.
It follows similarly that for n = 2, R̂2(t) defined in (14) is the unique

unbiased estimator of R2(t) based on V or the UMVUE. However, for n > 2
and t < T, a uniformly better unbiased estimator is

R̂2∗(t) = E[R̂2(t) | V ] =
D∑
k=0

(
1− k

n

)(
1− k

n− 1

)
P (D0 = k | V ).(22)

Further, an alternative unbiased estimator of R2(t) is

R̂2
0(t) =


1, X(1) ≥ t,
n− 1
n

I

(
X(2) −X(1) >

2(t−X(1))
n− 1

)
, X(1) < t,

(23)

which yields an alternative unbiased estimator based on V , viz.

(24) R̂2∗
0 (t) = E[R̂2

0(t) | V ]

=



1, X(1) ≥ t,
n− 1
n

, X(1) < t, D = 1,

n− 2
n

fD
(
SD −

2(D−1)(t−X(1))

n−1 , T −X(1) −
2(t−X(1))

n−1

)
fD(SD, T −X(1))

,

X(1) < t, D = 2, . . . , n.
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