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GLOBAL ATTRACTOR FOR NAVIER–STOKES EQUATIONS
IN CYLINDRICAL DOMAINS

Abstract. Global and regular solutions of the Navier–Stokes system in
cylindrical domains have already been obtained under the assumption of
smallness of (1) the derivative of the velocity field with respect to the variable
along the axis of the cylinder, (2) the derivative of force field with respect
to the variable along the axis of the cylinder and (3) the projection of the
force field on the axis of the cylinder restricted to the part of the boundary
perpendicular to the axis of the cylinder. With the same assumptions we
prove in this paper the existence of a global attractor for the Navier–Stokes
equations and convergence of solutions to the stationary solutions for the
large viscosity coefficient.

1. Introduction. We consider the following initial-boundary value prob-
lem:

(1.1)

v,t + v · ∇v − div T(v, p) = f in Ω × (0,∞),

div v = 0 in Ω × (0,∞),

v · n = 0 on S × (0,∞),

n · T(v, p) · τα = 0, α = 1, 2, on S × (0,∞),

v|t=0 = v(0) in Ω.

The domain Ω is an open and bounded subset of R3 of cylindrical type.
The boundary, denoted by S, consists of two parts S1 and S2, where S1 is
parallel to the axis of the cylinder and S2 is perpendicular to that axis. By n
and τα we denote the unit normal outward vector and unit tangent vectors
to S. We denote by v = v(x, t) ∈ R3 the velocity field, by f = f(x, t) ∈ R3

the external force field, and by p = p(x, t) ∈ R the pressure, where x =
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(x1, x2, x3) is a global Cartesian coordinates system such that the x3-axis
is the axis of the cylinder. T(v, p) is the stress tensor equal to νD(v) − Ip,
where D(v) = ∇v + (∇v)T denotes the dilatation tensor, ν is the constant
viscosity coefficient and I is the unit matrix. Moreover, the dot denotes the
scalar product in R3.

The existence of regular solutions to the problem (1.1) has been proved
in [8], [11], [12], [13] by the Leray–Schauder fixed point theorem under some
smallness assumptions on the L2-norms of the x3-derivatives of the external
force and the initial velocity. The next step was to obtain a global in time
solution (see e.g. [6]). This is stated in the following theorem which has been
proved in [7].

Theorem 1 (global existence). Let T > 0 be fixed and let

δk(T ) := ‖f,x3‖L2(Ω×(kT,(k+1)T )) + ‖f3‖L2(S2×(kT,(k+1)T )) + ‖v,x3(kT )‖L2(Ω),

where k ∈ N. Assume that

f ∈ L∞(kT, (k + 1)T ;L6/5(Ω)) ∩ L2(Ω × (kT, (k + 1)T )),

f3 ∈ L2(S2 × (kT, (k + 1)T )),

(rot f)3 ∈ L2(kT, (k + 1)T ;L6/5(Ω)),

f,x3 ∈ L2(Ω × (kT, (k + 1)T )) ∩ Lσ(Ω × (kT, (k + 1)T ))

and v(kT ) ∈ H1(Ω). Then there exists a global and regular solution (v, p) to
the problem (1.1) such that

‖v,x3‖W 2,1
σ (Ω×(kT,(k+1)T ))

+ ‖∇p,x3‖Lσ(Ω×(kT,(k+1)T )) < A

and

(1.2) ‖v‖
W 2,1

2 (Ω×(kT,(k+1)T ))
+ ‖∇p‖L2(Ω×(kT,(k+1)T )) < c(A2 + 1),

with any σ ∈ (25/8, 10/3) and the constant A is chosen for given T indepen-
dently of k and it satisfies the inequalities

ϕ(3A+Dk)δk(T ) + cEk ≤ A, cEk < A,

where ϕ is some nonlinear , positive and increasing function, the constant c
comes from an imbedding theorem for Sobolev spaces and the constants Dk

and Ek are given by

Dk := ‖f‖L∞(kT,(k+1)T ;L6/5(Ω))+‖f3‖L2(S2×(kT,(k+1)T ))+‖f‖L2(Ω×(kT,(k+1)T ))

+ ‖(rot f)3‖L2(kT,(k+1)T ;L6/5(Ω)) + ‖f,x3‖L2(Ω×(kT,(k+1)T )) + d1 + d2,

Ek := ‖f,x3‖Lσ(Ω×(kT,(k+1)T )),

where d1 and d2 come from the energy estimates of weak solutions to the
problem (1.1) (see Lemma 2.3).
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In this paper we will show the existence of a global attractor for prob-
lem (1.1). We will apply the methods derived in [5] and [11] and use the
theory of semiprocesses since in our case the external force f may depend
on time.

2. Auxiliary results. We introduce the standard notation that will be
frequently used in this paper. Let δ > 0 be fixed and

V =
{
v ∈ C∞(Ω) : div v = 0 in Ω, v · n|S = 0

and
( �
Ω

|v,x3 |2 dx
)1/2

< δ
}
,

and
H = closure of V in the L2-norm,

V = closure of V in the H1-norm.

We need the space V k
2 (ΩT ) defined as follows:

V k
2 (ΩT ) =

{
v : ‖v‖V k2 (ΩT ) = ess sup

t∈(0,T )
‖v‖Hk(Ω)

+
(T�

0

‖∇v‖2Hk(Ω) dt
)1/2

<∞
}
, k ∈ N.

Now we can define a weak solution to the problem (1.1).

Definition 2.1. By a weak solution to the problem (1.1) we mean a
function v ∈ V 0

2 (ΩT ) such that div v = 0, v · n|S = 0, satisfying the integral
identity�

ΩT

(−v · ϕ,t + νD(v) · D(ϕ) + v · ∇v · ϕ) dx dt

+
�

Ω

v · ϕ|t=T dx−
�

Ω

v · ϕ|t=0 dx =
�

ΩT

f · ϕdx dt

for any ϕ ∈W 1,1
2 (ΩT ).

In order to prove the existence of a weak solution we need the Korn
inequality and energy type estimates. The proofs can be found in [12].

Lemma 2.2 (Korn inequality). Assume that v ∈ H1(Ω) is such that

‖D(v)‖2L2(Ω) <∞,
v · n|S = 0,
div v = 0.
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If Ω is not axially symmetric, then there exists some constant c1 such that
‖v‖2H1(Ω) ≤ c1‖D(v)‖2L2(Ω).

Lemma 2.3 (Energy estimates). Let T > 0 be given. Let

(2.1)

a1 = sup
t
‖f(t)‖L6/5(Ω),

d2
1 =

c

ν1
a2

1 + ‖v(0)‖2L2(Ω),

d2
2 = (min(1, ν2))−1eν1T

(
c

ν1
a2

1 + d2
1

)
,

which do not depend on k ∈ N and ν/c1 = ν1 + ν2, where c1 is the constant
from the Korn inequality (Lemma 2.2). Assume a1 < ∞ and v(0) ∈ L2(Ω).
Then

(2.2)
‖v(t)‖L2(Ω) ≤ d1 for any t ≥ 0,

‖v‖V 0
2 (Ω×(kT,t)) ≤ d2 for t ∈ (kT, (k + 1)T ), k ∈ N.

Applying now the Galerkin method and repeating some considerations
from [4, Ch. 6], we have

Lemma 2.4. Assume a1 <∞, v(0) ∈ L2(Ω) and let T > 0 be given. Then
there exists a weak solution to the problem (1.1) in any interval (kT, (k+1)T ),
k ∈ N, satisfying

‖v‖V 0
2 (Ω×(kT,(k+1)T )) ≤ d2.

Before we can focus on global attractors, we need two estimates and the
uniform Gronwall inequality.

Lemma 2.5. Any solution v ∈ H2(Ω) of the elliptic problem
div D(v) = f,

v · n|S = 0,

n · D(v) · τα|S = 0, α = 1, 2,

satisfies the estimate
‖v‖H2(Ω) ≤ c‖f‖L2(Ω).

Lemma 2.6. Any solution (v, p) ∈ H2(Ω)×H1(Ω) of the elliptic problem
div T(v, p) = f,

div v = 0,

v · n|S = 0,

n · T(v, p) · τα|S = 0, α = 1, 2,

satisfies the estimate
‖v‖H2(Ω) + ‖∇p‖L2(Ω) ≤ c‖f‖L2(Ω).
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Lemma 2.7 (the uniform Gronwall inequality). Let the functions f , h,
y : [t0,∞) → (0,∞) be continuous. Assume that for some r > 0 and all
t > t0 we have

y′(t) ≤ g(t)y(t) + h(t)

and
t+r�

t

g(s) ds ≤ a1,

t+r�

t

h(s) ds ≤ a2,

t+r�

t

y(s) ds ≤ a3.

Then y satisfies the uniform estimate

y(t+ r) ≤
(
a3

r
+ a2

)
ea1 for all t > t0.

The proofs of Lemmas 2.5 and 2.6 are almost the same as in [1]. We
only restrict ourselves to the stationary case. The proof of Lemma 2.7 can
be found in [10, Ch. 3, §1].

3. Existence of a global attractor. In this section we prove the exis-
tence of a global attractor to the problem (1.1). We start by recalling some
facts and definitions from [3, Ch. 4].

Let us rewrite equation (1.1)1 in the abstract form

v,t = A(v, t) = Aσ(t)(v), t ∈ R+,

where the right-hand side depends explicitly on the time symbol σ(t), which
is the collection of all time-dependent coefficients of the equation (in the
Navier–Stokes equations that will be the time-dependent external forces).
By Ψ we denote some metric or Banach space, which contains the values
of σ(t) for a.e. t ∈ R+. Moreover, we assume that σ(t), as a function of t,
belongs to a topological function space Ξ := {ξ(·) : ξ(t) ∈ Ψ for a.e. t ∈ R+}.

Replacing the symbol σ(t) by the shifted symbol σ(t + h) should not
change the attractor, hence we introduce a translation invariant subspace
Σ ⊆ Ξ called the symbol space. Translation invariance means that for all
σ ∈ Σ the relation T (h)σ(t) = σ(t + h) ∈ Σ holds, where T (h) : Ξ → Ξ
is the shift operator. In our case, it will be convenient to set Σ = Σ(σ0) ≡
{σ0(·+ h) : h ∈ R+}, where σ0 is the time symbol of the initial equation and
the closure is taken in the topology of Ξ.

Let v(t) be a unique weak and global solution of problem (1.1) with initial
data v0 = v(0). We define the family of semiprocesses {Uσ(t, τ)}t≥τ≥0 acting
on H, U(t, τ) : H → H, by the formula

(3.1) v(t) = Uσ(t, τ)v(τ),

where vτ is the initial condition and Σ 3 σ(t) = f(·, t) is the external force.
By B(H) we denote the family of all bounded sets of H.
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Definition 3.1. A family of processes {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, is said
to be uniformly bounded if for any B ∈ B(H),⋃

σ∈Σ

⋃
τ∈R+

⋃
t≥τ

Uσ(t, τ)B ∈ B(H).

Definition 3.2. A set B0 ⊂ H is said to be uniformly absorbing for the
family of processes {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, if for any τ ∈ R+ and for every
B ∈ B(H) there exists t0 = t0(τ,B) such that

⋃
σ∈Σ Uσ(t, τ)B ⊆ B0 for all

t ≥ t0. If the set B0 is compact, we call the family of processes uniformly
compact.

Definition 3.3. A set P ⊂ H is said to be uniformly attracting for the
family of processes {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, if for any τ ∈ R+,

lim
t→∞

(
sup
σ∈Σ

distE(Uσ(t, τ)B,P )
)

= 0.

If the set P is compact, we call the family of processes uniformly asympto-
tically compact.

Definition 3.4. A closed set AΣ ⊂ H is said to be a uniform attractor
of the family of processes {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, if it is uniformly attracting
and contained in any closed uniformly attracting set of that family.

The existence of a global attractor is guaranteed by the following theo-
rem:

Theorem 2. If a family of processes {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, is uni-
formly asymptotically compact , then it has a unique uniform global attrac-
tor AΣ. The set AΣ is compact in H.

The main result in this section reads:

Theorem 3. There exists a unique global attractor AΣ in H for the fam-
ily of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ, defined by (3.1). The attractor
is bounded in V , compact and connected in H. It attracts bounded sets in H.

To prove this theorem we need some estimates.

Lemma 3.5. There exists a bounded and absorbing set in H for the family
of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ.

Proof. In view of Lemma 2.3 we see that

lim sup
t→∞

‖v(t)‖L2(Ω) ≤ d1.

Hence for every v0 ∈ H there exists t0 > 0 such that

(3.2) v(t) ∈ B(0, ρ1) for all t ≥ t0,
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where B(0, ρ1) is the ball in H centered at 0 with radius ρ1 > d1. If B(0, r) ⊂
H is any ball such that v0 ∈ B(0, r) then there exists t0 = t0(r) such that
(3.2) holds. This ends the proof.

Lemma 3.6. There exists a bounded and absorbing set in V for the family
of semiprocesses {Uσ(t, τ)}t≥τ≥0, σ ∈ Σ.

Proof. We multiply (1.1) by div T(v, p) and integrate over Ω to obtain

(3.3)
�

Ω

v,t · div T(v, p) dx︸ ︷︷ ︸
I1

−
�

Ω

|div T(v, p)|2 dx︸ ︷︷ ︸
I2

+
�

Ω

v · ∇v · div T(v, p) dx︸ ︷︷ ︸
I3

=
�

Ω

f · div T(v, p) dx.

According to the definition of T(v, p) we have

I1 =
�

Ω

v,t · div(νD(v)− pI) dx =
�

Ω

v,t · div(νD(v)) dx︸ ︷︷ ︸
I11

−
�

Ω

v,t · ∇p dx︸ ︷︷ ︸
I12

.

Integrating by parts, we see that I12 vanishes due to the boundary conditions.
From the Stokes theorem it follows that

I11 =
�

Ω

div(v,t · νD(v)) dx−
�

Ω

∇v,t · νD(v) dx

=
�

S

v,t · νD(v) · ndS − ν

4
d

dt

�

Ω

|D(v)|2 dx.

The boundary integral vanishes due to the boundary conditions:

ν
�

S

v,t · D(v) · ndS = ν
�

S

(vn,t · n+ vτα,t · τα) · D(v) · ndS = 0.

Eventually we get

I1 = −ν
4
d

dt

�

Ω

|D(v)|2 dx.

Next we estimate I3 by the Hölder and the Minkowski inequalities:∣∣∣ �
Ω

v · ∇v · div T(v, p) dx
∣∣∣ ≤ ν‖v‖L6(Ω)‖∇v‖L3(Ω)‖div T(v, p)‖L2(Ω).

Using the interpolation inequality for Lp spaces, the imbedding of H1 into
L6, the Young inequality with ε and Lemma 2.5 yields

c‖v‖L6(Ω)‖∇v‖L3(Ω)‖div T(v, p)‖L2(Ω)

≤ c‖v‖L6(Ω)‖∇v‖
1/2
L2(Ω) · ‖∇v‖

1/2
L6(Ω)‖div T(v, p)‖L2(Ω)
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≤ c‖v‖H1(Ω)‖v‖
1/2
H1(Ω)

‖v‖1/2
H2(Ω)

‖div T(v, p)‖L2(Ω)

≤ c‖v‖3/2
H1(Ω)

‖div T(v, p)‖3/2L2(Ω) ≤ c‖v‖
6
H1(Ω) + ε‖div T(v, p)‖2L2(Ω).

Hence we obtain from (3.3) the following inequality:

−ν
4
d

dt
‖D(v)‖2L2(Ω) − ‖div T(v, p)‖2L2(Ω) + c‖v‖6H1(Ω) + ε‖div T(v, p)‖2L2(Ω)

≥
�

Ω

f · div T(v, p) dx.

Multiplying by −4/ν, using the Hölder and the Young inequalities, and ob-
serving that
(3.4) ‖div D(v)‖2L2(Ω) ≤ c‖div T(v, p)‖2L2(Ω),

we get
d

dt
‖D(v)‖2L2(Ω) + ν̄‖div D(v)‖2L2(Ω) ≤ c‖f‖

2
L2(Ω) + c‖v‖6H1(Ω),

where ν = 4c/ν and the constant c comes from (3.4). Since
‖D(v)‖L2(Ω) ≤ c‖div D(v)‖L2(Ω),

we obtain
d

dt
‖D(v)‖2L2(Ω) + ν̄‖D(v)‖2L2(Ω) ≤ c‖f‖

2
L2(Ω) + c‖v‖6H1(Ω).

In view of (1.2) and by the Sobolev imbedding theorem we get
(k+1)T�

kT

‖D(s)‖2 ds ≤ A =: a3,

(k+1)T�

kT

(‖f(s)‖2L2(Ω) + ‖v(s)‖6H1(Ω)) ds ≤ D
2
k +A3 =: a2.

Applying Lemma 2.7 (the uniform Gronwall inequality) and next Lemma 2.2
(the Korn inequality) yields

‖v(t)‖2H1(Ω) ≤
a3

T
+ a2 for any k ≥ 1.

We see that
(3.5) v(t) ∈ B(0, ρ2) for all t ≥ t0,
where B(0, ρ2) is the ball in V centered at 0 of radius ρ2 > a3/T + a2. If
B(0, r) ⊂ H is any ball such that v0 ∈ B(0, r) then there exists t0 = t0(r)
such that (3.5) holds. This ends the proof.

Proof of Theorem 3. We take ρ = max {ρ1, ρ2}. Then due to Lemmas
3.5 and 3.6 there exists an absorbing set B(0, ρ) which is bounded in V , and
compact in H. From Theorem 2 we conclude the proof.
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4. Convergence to stationary solutions for large ν. In this section
we will prove the following

Theorem 4. Let f and f∞ denote the external force fields in the non-
stationary and stationary problems respectively. Assume that the viscosity ν
is large compared to the external force field f∞, i.e.

(4.1) δ(ν) :=
ν

c1
− 16

c1
ν2
‖f∞‖4H1(Ω) > 0,

If
‖f(t)− f∞‖L6/5(Ω) −−−→

t→∞
0,

then the unique solution v(t) of problem (1.1) converges to the unique sta-
tionary solution v∞ of problem (1.1), and we have the estimate

‖v(t)− v∞‖2L2(Ω) ≤ ‖v(0)− v∞‖2L2(Ω)e
−δ(ν)t + ‖f − f∞‖2L6/5(Ω)

for t > 0.

Proof. From [9, Ch. 2, §1] we know that a stationary solution v∞ exists,
it is unique provided ν2 > c‖f∞‖L2(Ω), and

(4.2) ‖v∞‖H1(Ω) ≤
1
ν
‖f∞‖L2(Ω).

Let V = v(t)− v∞. Then V satisfies the system of equations

V,t − div D(V ) = −v · ∇V − V · ∇v∞ + f − f∞ in ΩT ,

div V = 0 in ΩT ,

V · n = 0 on ST ,

n · D(V ) · τα = 0, α = 1, 2, on ST ,
V |t=0 = v(0)− v∞ in Ω.

Multiplying the first equation by V , integrating over Ω, and using the Korn
inequality (Lemma 2.2) gives

(4.3)
1
2
d

dt
‖V ‖2L2(Ω) +

ν

c1
‖V ‖2H1(Ω)

≤ 2‖V ‖L4(Ω)‖v∞‖H1(Ω)‖V ‖L4(Ω) + ‖f − f∞‖2L6/5(Ω).

The first term on the right hand side is estimated as follows:

4‖V ‖1/2L2(Ω)‖∇V ‖
3/2
L2(Ω)‖v∞‖H1(Ω) ≤

ν

2c1
‖V ‖2H1(Ω)+8

c1
ν
‖V ‖2L2(Ω)‖v∞‖

4
H1(Ω).

Hence we obtain from (4.3)
d

dt
‖V ‖2L2(Ω) +

ν

c1
‖V ‖2L2(Ω) − 16

c1
ν
‖V ‖2L2(Ω)‖v∞‖

4
H1(Ω) ≤ ‖f − f∞‖

2
L6/5(Ω).
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Using (4.2), multiplying by exp(δ(ν)t) (see (4.1)) and integrating over t ≥ 0
gives

‖V (t)‖2L2(Ω)e
δ(ν)t ≤ ‖V (0)‖2L2(Ω) + ‖f − f∞‖2L6/5(Ω)e

δ(ν)t,

or equivalently

‖V (t)‖2L2(Ω) ≤ ‖V (0)‖2L2(Ω)e
−δ(ν)t + ‖f − f∞‖2L6/5(Ω).

Choosing ν large enough so that δ(ν) > 0, we conclude the proof.

5. Regularity of the attractor. In Section 3 we have proved that
there exists a bounded, compact and absorbing set B in H. Now we will
show that this set is in fact compact in V . It suffices to bound this set in
H2(Ω).

Lemma 5.1. Assume that f,t ∈ L2(kT, (k + 1)T ;L6/5(Ω)) ∩ L∞(kT,
(k + 1)T ;L2(Ω)). Then for the family of semiprocessess {Uσ(t, τ)}t≥τ≥0,
σ ∈ Σ there exists a bounded and absorbing set in H2(Ω).

Proof. First we differentiate (1.1)1 with respect to time and take the
inner product with vt so that

1
2
d

dt
‖v,t‖2L2(Ω) +

ν

c1
‖v,t‖2H1(Ω)

≤ 2‖v‖H1(Ω)‖v,t‖
1/2
L2(Ω)‖v,t‖

3/2
H1(Ω)

+ ‖v,t‖H1(Ω)‖f,t‖L6/5(Ω)

≤ ε‖v,t‖2H1(Ω) + c(1/ε)‖v,t‖2L2(Ω)‖v‖
4
H1(Ω) + c(1/ε)‖f,t‖2L6/5(Ω).

In view of (1.2) and using the uniform Gronwall inequality (Lemma 2.7), we
get

‖v,t(t)‖2L2(Ω) ≤
(
b3
T

+ b2

)
eb1 , t ≥ T,(5.1)

where

c

(k+1)T�

kT

‖v(s)‖4H1(Ω)(s) ds ≤ cA
2 =: b1,

c

(k+1)T�

kT

‖f,t‖2L6/5(Ω)(s) ds ≤ b2,

(k+1)T�

kT

‖v,t(t)‖2L2(Ω)(s) ds ≤ A
2 =: b3.



Global attractor for Navier–Stokes equations 193

Now we multiply (1.1)1 by div T(v, p), integrate over Ω and use the Hölder
inequality, so that

‖div T(v, p)‖2L2(Ω) ≤ ‖v,t‖L2(Ω)‖div T(v, p)‖L2(Ω)

+ ‖v‖L6(Ω))‖∇v‖L3(Ω))‖div T(v, p)‖L2(Ω) + ‖div T(v, p)‖L2(Ω)‖f‖L2(Ω).

Applying the Young inequality and repeating the calculation for I3 in (3.3),
we obtain
‖div T(v, p)‖2L2(Ω) ≤ c‖v,t‖

2
L2(Ω)+c‖v‖

6
H1(Ω)+ε‖div T(v, p)‖2L2(Ω)+c‖f‖

2
L2(Ω).

In view of (1.2), (3.4), (5.1) and the Korn inequality (Lemma 2.2) we con-
clude that

ν‖v(t)‖H2(Ω) <∞ for almost all t > T .

Hence there exists a ball B(0, ρ3) ⊂ H2(Ω) centered at 0 with sufficiently
large radius ρ3 so that v(t) ∈ B(0, ρ3) for almost all t > t0 = t0(v0).

In view of Theorem 2 and considerations from Section 3 there exists a
global attractor in V . Thus, we have proved the following

Theorem 5. There exists a unique global attractor A in V for the family
of semiprocessess {Uσ(t, τ)}t≥τ≥0 defined by (3.1). The attractor is bounded
in H2(Ω), compact and connected in V . It attracts bounded sets in V .
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