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ProTr KACPRzYK (Warszawa)

GLOBAL EXISTENCE FOR THE
INFLOW-OUTFLOW PROBLEM FOR THE
NAVIER-STOKES EQUATIONS IN A CYLINDER

Abstract. Global existence of regular solutions to the Navier—Stokes equa-
tions describing the motion of an incompressible viscous fluid in a cylindrical
pipe with large inflow and outflow is shown. To prove the long time existence
we need smallness of derivatives, with respect to the variable along the axis
of the cylinder, of the external force and of the initial velocity in Lo-norms.
Moreover, we need smallness of derivatives of inflow and outflow with re-
spect to tangent directions to the boundary and with respect to time in
some norms. The global existence is proved step by step using the existence
on the time interval [0, 7], with T sufficiently large.

1. Introduction. We consider viscous incompressible fluid motions in
a finite cylinder with large inflow and outflow and under boundary slip con-
ditions. The following initial-boundary value problem is examined:

vit+v-Vo—divT(v,p) = f in QT:QX(O,T),

dive =0 in 27,

v-n=0 on ST =8, x (0,7),
(1.1) vit - D) - Ta+70- 7o =0, a=1,2, onS7,

v-n=d on ST =8, x (0,7,

n-DW) Ta =0, a=1,2, on ST,

V=0 = v(0) in £2,

where 2 C R3, S = S1USy = 002, v = v(x,t) = (vi(x,t),v2(x,t),v3(z, 1))
€ R3 is the velocity vector of the fluid motion, p = p(z,t) € R! the pressure,
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f = flx,t) = (filz,t), fo(x, 1), f3(z,t)) € R3 the external force field, @ the
unit outward vector normal to the boundary S, and 7., a = 1,2, are tangent
vectors to S. Moreover, T(v, p) is the stress tensor of the form

T(v,p) = vD(v) — pI,
where v is the constant viscosity coefficient, I the unit matrix and D(v) the
dilatation tensor
D(v) = {viz; + Vja; tij=123-
Finally, v > 0 is the slip coefficient.
Here 2 C R? is a cylindrical type domain parallel to the z3 axis with

arbitrary cross section. We assume that .57 is the part of the boundary which
is parallel to the x3 axis and S5 is perpendicular to x3. Hence

Sy ={z € R®: p(x1,29) = o, —a < x3 < a},
So(—a) = {z € R®: p(z1,13) < ¢y, 3 = —al,
So(a) = {x e R : p(z1,22) < ¢, 3 = a},
where a, ¢ are given positive numbers and ¢(x1,x2) = ¢ describes a suffi-
ciently smooth closed curve in the plane x3 = const.
To describe inflow and outflow we define
(1.2) di = —v-nlgy—a), d2 =V N|gy0),
sod; > 0,4 = 1,2, and by (1.1)23 and (1.2) we have the compatibility
condition
(1.3) o= | didSy= | dpdS,
S2(—a) S2(a)
where @ is the flux.
Let us introduce an extension a = a(x,t) € R such that

(1.4) Oz|52(_a) = dl, Ck’SQ(a) = dg.

Then equations (1.1)236 and (1.3) imply the compatibility condition
Vamdr=— | al——adS+ | als—adS2=0.
0 Sa(—a) Sa(a)

The aim of this paper is to show the global in time existence of regular
solutions to (1.1). We base on [1], where the existence of a regular solution
for large time has been proved by the Leray—Schauder fixed point theorem.

The proof of global existence in [1] is not explicit. It depends on showing
that for a long time solution the norms |[v(t)||z,(2), [[A()|lL,(2) decrease
with time. Therefore for T' sufficiently large we have

(1.5) [o(T) [ La2) < 0Ol Lo(2)s 1T L22) < 17 O0) ][ 22(02)-
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Hence, (1.5) and appropriate estimates of data functions (f, g, d) imply pro-
longation of a local solution from the interval [0, T].

Hence, global existence follows.

In this paper the proof of global existence is explicit because we control
all estimates step by step. Moreover, we show that

(1.6) [0(RT) | o) < [10(O0)[ Lo, VR EN.

Using the existence of solution on [0, 7] we inductively prolong it on R
by employing some cut-off functions. A similar technique has been used in
[5, 6].

To formulate the main result we need the notation (see Section 2 for
definitions of norms)

P2(KT,t) = |afy g, + aulg s o+ lawstlss o + (U+ [eli s 0)Val3 o
+ ‘f|§/5’97
t

FERT ) = el erpsna)) + N@aslll o erssna)) + | a1 0,0 ',
KT

(KT, t) = cexp c(|dil§ 6.5, x sy + VU3 2 00 k7))
t

- < S T2t dt' + TE(ET, t) + |v(k:T)|§VQ>,
kT

+ [Fsl10/7,0x (k1) T+ 1d1]oo,0x (k7t),  Where  F3 = (rotv)s,
G'(kT,t) = |glo,oxkre) + (KT, t) + [|d1 o |3/2,2,8 x (k7.4

where g = f .., and

N(kT,t) = [|d1 || Lo e,t:11 (52)) T 11t Lo (kT8 (52))
1
13l LakTt:L 5(2)) T 19 Lokt 5 (2)) + T L(KT, 1),
where t € (KT, (k+1)T).

THEOREM 1.1 (global existence). Assume that t € (KT, (k+ 1)T), k €
NuU {O} = Np,
t
| P2(kT,t) dt’ < SFQ "yt
kT
DT, < 11(0,T),  G(KT, 1)
ll(kTﬂ t) < ll(O,T), n(kTv t)

[e=]

G(0,T), G'(kT,t)<G'(0,T),
n(0,7).

IA A
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Assume that n(kT, (k+ 1)T) is so small that there exists a positive constant
A such that

o(A, G(KT, t))n(kT,t) + G'(kT,t) < A,

where p is some positive increasing function. Then there exists a solution to
problem (1.1) such that

V.25 llw2:t (e sy ) < A5

2
||UHW22’1((I€T,(k+1)T)><Q) < (A7 +1),

where A > 0 is a constant chosen for a given T and independent of k € N.

REMARK. A global solution to problem (1.1) exists if d; — 0 as t — oc.

In [9, 11, 12] the existence of global regular solutions which are close to
axially symmetric solutions is proved in axially symmetric domains by the
method of successive approximations. The main step in the proofs of [11, 12]
is the proof of an estimate and the existence of solutions to a problem for
X = (rotv), with appropriate boundary conditions such that x|s depends
on v|g only (and not on v 4|g).

In [5, 6, 9, 10| the long time existence of solutions which are close to 2d
solutions is proved in non-axially cylindrical domains. In |7, 10] the existence
is proved in Besov spaces, and in [6] the proof is simplified, so it is done in
Sobolev spaces only. In [5] global existence by prolongation of long time
solution from [6] is proved. In [10] the inflow-outflow problem is considered
by using Besov spaces.

In this paper the proof of global existence is simplified because the Besov
spaces are replaced by Sobolev spaces. This makes the proof totally different
and much clearer.

As we examine the inflow-outflow problem, all proofs in this paper are
different from the corresponding proofs in [12| because the expressions in-
volving the inflow-outflow flux must be additionally estimated. Moreover, in
this case we consider problems with nonhomogeneous boundary conditions,
so our approach must be different.

In [6, 7, 9, 10] the Leray—Schauder fixed point theorem was applied.
We mention that the present paper generalizes the result from [5] to the
inflow-outflow case and simplifies the proof from [10].

We underline that the main step in the proofs of long time existence in
[6, 7, 9, 10] is an estimate for the component x = (rotwv)s of the vorticity,
which is possible because the slip boundary conditions are assumed.
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2. Notation and auxiliary results. To simplify the presentation we
introduce the following notation:

|U|P7Q = ||u”Lp(Q)a Q € {QT, ST7 .Q,S}, pe []'a OO],
HUH&Q = HUHHS(Q)a Q € {Qa S}v s € R-I— U {0}7
”uHs,QT = ||UHW25’5/2(QT)5 Q € {97 S}a s € ]R-i- U {0}7

Iulp,q,QT = ||u”Lq(O,T;Lp(Q))a Q € {Q> S}v P, q € [1700]7
HuHs,q,QT - HUHW(?S/?(QT)? Qe {Qv S}v seRyU {0}7 q € [1700]7

HUHS,%Q = HUHW;(Q)a Q € {Qa S}a s € RJr U {0}7 qc [I,OO]
By ¢ we denote a generic constant which changes its magnitude from formula
to formula. By ¢(o) and ¢(0) we understand generic functions which are
always positive and increasing. Finally, we do not distinguish scalar and
vector-valued functions in notation.
We introduce the space

V@) = {u lulygor) = esssup lulln o
te(0,7)

T

1/2
+ <§ ||Vu(t)H§Ik(m dt) < oo}, ke N.
0

From [10] we get the following result for weak solutions to problem (1.1):
LEMMA 2.1. Assume that di € Lg(0,T; L3(S2)), Va € Ly(0,T; L3(2)),
Sg I%(t) dt < oo, where

(2.1)  I*(t)=lalg + ’@,t\g/s,rz + ’a,xst\g/an + (L4 lalli 3.0)Val3 g

+ ‘f|§/57()a

and

T
THT) =0l o0 + Qg3 oo o + | l(t)]1F 2 dt < 0.

0

Then

(2:2)  olZ . omza) + 100010 2))

T
< cexp(c(ldil g gy +1Val3 5 ) (§ 720 dt + FHT) + [o(0) 3 o)

0
= 12(0,7).
From [10, (2.13)] we get

d
(2.3) £|w|g,(z < e(|difs g, + [Vali g = v)|wl3 o + el (2).
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From (2.3) we obtain
(24) w(t).0 < exp(e(ldilg g g +1Val3s g — vt)
: (c§F2(t’) at' + [w(0)3 ).
0

If T is sufficiently large, then |w(T")|2,o < |w(0)|2, and from [10, (1.7)] we
obtain |v(T')|2,0 < |v(0)|2,0. For t € (KT, (k + 1)T') assume that

6 2 6 2
ldil5 6 50 +1Val3, or 2 ldillzggrts(so)) T IVOlL (k7 6L5(02))

T t
(25) | r2yat > | r*)at.
0 kT

Repeating the above considerations we obtain
(2.6) v(k+1)T)|2.0 < |v(kT)|2.0, keN.

From (2.5) we have, for t € (KT, (k + 1)T),

T

(2.7) 1al3 0 or + a3 o or + | la®)]f o dt
0
t

> a7 krisza2) + 10as oo priray + § 1) o dt'.
KT

Then repeating the considerations from [10, Lemma 2.3] in the interval
(KT, (k+1)T) and using (2.6) we obtain, for t € (KT, (k + 1)T),

t

(2.8) loBy iy + § 102 dt’ < 50,7,
kT

This concludes the proof.

Finally, we introduce the quantities

(29) h = v,aﬁgu q = D,x3> g = f73337 w = vs, X = v2,$1 - ’1)173;2.

3. Basic formulations. To prove the existence of global solutions to
problem (1.1) we follow [10]. Therefore we need problems for the quantities
(2.9). First, from [10] we have



Inflow-outflow problem for the Navier—Stokes equations 201

LEMMA 3.1. The quantities h,q are solutions to the problem

hy—divT(h,q) = —v-Vh—h-Vo+g in 27,

divh =0 in 27,
n-h=0 on ST,
(3.1) vi - D(h) - To +7h-Tu =0, a=1,2, on ST,
hi=—dg,, i=12, on ST,
h .y = A'd on ST,
hli—o = h(0) in £,

where A = 92 +03,, d replaces dy and da, because d|g,(_qy = d1, d|s,(q) = do.

Proof. Equations (3.1)1234,7 follow directly from the corresponding
equations in (1.1) by differentiation with respect to z3, because S; is parallel
to the x3 axis.

To show (3.1)56 we recall that

(3'2) U3|SQ =d, (Ui,ﬂcs + U371’i)’52 =0, i=1,2.
Hence v; z4|5, = —d 4;, i = 1,2, and (3.1)5 holds.
From (1'1)2 we have U3,z323 |S2 = _(vl,lswl +1}2,1312)’52 = d73«“1x1 +d7$2:102 =

A’d. Hence (3.1)g follows. This ends the proof.

LEMMA 3.2. The function X = vz, — V14, 1S @ solution to the problem

Xt +v-Vx—=h3x+hwg —hwg, —vAx =F; in QT,

Xlsy = —vi(Niz;T1j + Triw,nj) + ngle
(3-3) + v T1(T12,2, — Til,20) = X on S{a
X,z3 =0 on S5,
Xlt=0 = x(0) in §2,
where
(P,a15 P2, 0) (=22, $,21,0) Tals, = (0,0,1) = &,

ﬁ|Sl = ’ 77—1‘51 = 9
7_7“|52 = e3, 7_-1|Sg = €1, 7_'2|S2 = é9,
where €1 = (1,0,0), &2 = (0,1,0) and F3 = fou, — f1,2,-

Proof. Differentiating the first equation of (1.1); with respect to z, the
second equation of (1.1); with respect to 1, and subtracting the results
yields (3.3);.
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To show (3.3)2 we extend the vectors 71, i to a neighbourhood of Sp. In
this neighbourhood v = (v1,v2) can be expressed in the form

v =wv-77 + v - hn.
Then

(3.4) Xls, = [(v-Timi2 +v-ng) oy — (V- T1T1L + U - AN1) 2|5
' =[-n-V(v-71)+ v 7171221 — T11,22)] 515

where (1.1)3 was employed and 714, n; are the ith Cartesian coordinates.
Utilizing (1.1)3 in (1.1)4 for a = 1 yields

(3.5) vin-V(v-T71) — Vvl-(nmjﬁj + 7'12'7xjnj) +v -7 =0.

Employing (3.5) in (3.4) yields (3.3)2. By the definition of y and (3.1)5 we
have

X,I3|SQ + (0271‘1503 - Ul,ﬂﬁzx:;)’SQ = _(d@lxz - d,x2x1)|52 =0.
This ends the proof.
For solutions to problem (3.1) we get (see [10])

LEMMA 3.3. Assume that v is a weak solution to problem (1.1). Then

T

(3.6) sup B(®)3.0 + v | IR@)IF 0 dt +~|h- Tals 7
0

< ()O(Id1|3,675’2T7 Ivvl372,QT7 L(0,7), |d1|3,oo7Sg)77%(T)v
where ¢ is an increasing positive function, ly is defined by (2.7) and
(3.7 m(t) = Sup ldyar (E)11,5, + 1d1er | £y 0,607 (52))

+ ||d1,tHL2(0,t;W61/5(SQ)) +1f3lay3.2,55 +19l6/5,2,00 +17(0)]2,0.

4. Estimates. In our estimates we will use cut-off functions &) e
C5°(0, 00) with

e [ 1 forte ((k—n)T,(k+1)T),
§(k)(t)—{0 fort <(k—n—-1)T,

and fftk") < 1/T. Moreover, from now on let u(kn) = ¢(kn)y,
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Using the notation we obtain from (3.1) the problem

P — divT(nE), g = —u - TRt — p) . Ty

+ g(kn) + gftk“)h in 2,

div htF) =0 in 2,

(4.1) htkn) .y = gkn) on St
n- T(h(k"),q(k")) “Ta=0, a=1,2, on St,

h =0, i=12, B =0 on S5,
h(k")|t:(k—n—1)T =0 in (2,

in the interval ((k—n—1)T, (k+1)T). In view of the energy type inequality
[10, Lemma 3.7] we obtain, for t € ((k —n —1)T, (k+ 1)T),
t

42) sup ™ BOBo+v | [AE)F g dt + A lhE) 7]

t ’ ’ M1

(k—n—1)T
kn kn
< <P(|d§ )|3,6,S§a | Vo) |5 o oo, 1 (2), |d§ )|3,oo,sg)
g, (k= n —1)T,1),

where

(4.3) i, (k= n = DT,8) = A8 p (rmnryrsn s
+ 111 * N o hmn )T 11 (50)) T ||d§]f;/)HLg((kfnfl)T,t;Hl(Sg))
1
+ |f§kn)|4/3,2,9t + |9(k")|6/5,2,(zf Tr L((k—n—-1T,1).

First we examine problem (3.3). Let x be a solution of the problem

Xi—vAx =0 in QT

X = X* on S{a
X,z3 =0 on SZT,
)~(|t:0 =0 in (2.

Then y/ = x — x satisfies
X+ v VX = h3(vaz, — V12,) + how ey — hiw,g,

—vAY =F3—v-Vy in 27,
(4.4) X' =0 on S7,
Xs =0 on ST,

X'|t=0 = x(0) in £2.
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LEMMA 4.1. Assume that h®») € Ls(((k —n — )T, t) x 2), Fék”) €
Lojr((k = n — D)T,8) x 2), o) € W2 (((k —n — V)T, t) x Q) with
5/r —3/2 < s. Assume also that v is a weak solution satisfying (2.8). Then

t

@5 K"OBe+ | IR g
(k—n—1)T

(G ((k=n =T ) (1053 g + 1055 00)

kn
+ (1 + ||d1||%oo(((k—n—l)T,t)><S2))Hvl(kn)||§,T,Qt + | F )|%0/7,m)>
where v = (v1,v2).
Proof. Multiplying (4.4) by £%*») then by x/*=), and integrating the

result over 2 we get

kn
= S(Ulzl - Ul,m)h:(a )X/(k”) dx

n

1d 2 1(kn) |2
5 =IO 3

{Qt/‘n

’wxl - g n)w7x2)xx(kn) dz + S v - )y k) g
2

9]
Utilizing the Poincaré 1nequahty and integrating with respect to time for
te((k—n—1T, (k+1)T) yields
t
46) " WBe+ | N ed
(k—n—1)T
( } I V] 0 de e
0t
+ | IR/ [V ] [ da dt
Qt
¢
FlT Te) - VR @ ) de i
(k—n—1)T 2

kn 1
TS dadt oy 1 a5 m)m))
Qt

We estimate the first term on the r.h.s. of (4.6) by

kn
Iy )’5,Qt||Vv,”Lz(((lcfnfl)T,t)x.Q)‘Xl(kn)|10/3,Qt
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and the second by

(1) 5 0[] (111720 X * 03,020

where V' = (0y,, 0s,).
The third term on the r.h.s. of (4.6) can be expressed in the form

t
( I (o) v ®) @)yg® (1) de dt
(k—n—1)T £2
t
+ LA @) ) dss dr
(k—n—1)T S2

and estimated by
glvxl(kn)g,(lt + ’vU’%Q(((kfnfl)T,t)XQ)I)Z(kn)lg,oo,ﬂt
+1d17((hon1yTe) x5y | X ’3,55‘

We bound the fourth integral on the r.h.s. of (4.6) by

kn
|X,(k")|10/3,9t’F35 )|10/7,Qt
and the last term by

1 . 1
T2 Ix — X”%g(((kfnfl)T,t)XQ) < T2 l%((k —n—1T,1).

Utilizing the above estimates in (4.6) we obtain

t

K 0Ee+ | I
(k—n—1)T

< e(e(IX'* o 3,00 + IVXF 3. 00)

2
10 dt’

IVl ((emne 1y x ) K15 o
+G((k—n—1)T,t)+ HdlH%OO(((kfnfl)T,t)XSg)W(kn)@,Sg

kn
+ ’h(k’n)’g,ﬂtHV,UH%Q(((k*nfl)T,t)XQ) + ‘F?E )’%0/779t)'
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Since X’ = x — X, for sufficiently small € > 0 we have
t

X OBe+ IR gt
(k—n—1)T

< C(HVUH%Q(((kfnfl)T,t)XQ) 1XE13
+ ||d1||%w(((k_n_1)T,t)xsg)|>Z(k”)|§,s;

+ ‘h(kn)‘g,!?t”va%g(((k:fnfl)T,t)XQ) S Dk
t
- kn
+B(k—n-0T,0+ | IO gt + 1F Ry ).
(k—n—1)T

Now using the inequalities
[ulo/s,0t < c(lulz,co,0t + 1ullLy0,6wi (2)) < cllullsror

where 5/r —3/2 < s, and Lemma 2.1 we obtain

t

X OhBe+ § IO gt
(k—n—1)T

< c(lf((k —n = DT IR o o + B((k—n = DT.1)
+ G ((k—n = DT, )| A" o,
- kn
+ (U4 A1l ((pmn1yry xsa) XN e + | )ﬁo/?,m).
Using the inequalities

IR g < el st st < 0" [ 0
and
13 00,00 < |U/(k")|3,oo,sga
we obtain (4.5). This concludes the proof.

Next we consider the problem

. /
Ve — V221 = X in (2,

. /

(4.7) Vig, + V24, =—h3 in (2,
v’ =0 on 57,

where 2" = 2N {x3 = const € (—a,a)}, S] = S1 N{x3 = const € (—a,a)},
and x3,t are treated as parameters.
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LEMMA 4.2. Let the asumptions of Lemma 4.1 be satisfied. Then
(4.8) Hv’(k")(t)\lin + val(kn) H2L2(o7t,wzl(9))
< o(B((k =n = DT, (R g0 +1)

2

kn
H’Ul( ) s,r, {2t

+(1+ |d1|%oo(((kfn71)T,t)><Sg))
. t
+|Fy ")ﬁo/zm o LA EPPE S (AN dt,)
(k—n—-1)T
= (A% ((k —n—1DT,t)?, te((k—n—-1DT,(k+1)T).
Proof. For solutions of problem (4.7) we get the estimates
lo®R o < eIx® 3 o + 151 ),
kn
2o 10517 ),

where v/ = (v1,v2). Integrating the above estimates with respect to x3 and
the second one also with respect to time, and adding the results, we obtain

o113 o0 < e[lx ™)

a t a
Do @, 0 grdes + | | 0 (e, )3 g das dt
—a (k—n—1)T —a

t
<c( | IR qa
(k—n—1)T
t
IO o dt + Wl + B (O ).
(k—n—1)T
In view of the above estimates we obtain
t

e+ § 0SB gar
(k—n—1)T
t
<c[ § OB + XIS o
(k—n—1)T

t
IR e+ | IR @R g dr).
(k—n—1)T
Applying (4.5) to estimate the first two norms in the last inequality and
the inequality |U/(k”)|3,oo,s§ < EHUI(kn)HLw(O,t,Hl(Q)) =+ 0(1/5)|U(k")|2,oo,m we
obtain (4.8). This concludes the proof.
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Now we increase the regularity of v. Let us consider problem (1.1) in the
form

vftk") — div T(v®n) pn)y = o/ . gylFn) — gy(kn)p,
4 fla) gy i 0T,

divols) =0 in 27,
(4.9) k) =0 on ST,
vn - ]D)(v(k”)) T+ 'yv(k") Ta=0, a=1,2, on Sf,
okn) o = k) on ST,
n-De*)). 7, =0, a=1,2, on ST,
v(k")|t:(k_n_1)T =0 in £2.

For this problem we obtain the inequality
Hv(k")||2,5/3,m + ’Vp(k")|5/3,m
< el - ol g0+ S hls s g+ o ol (ononiTee)
+ ||dgkn)||7/5,5/3,s§ + [|yoltn) '7_'a||2/3,5/3,sf + |f(k")|5/3,m-

We estimate the first term of the r.h.s. by

W' vU(k”)|5/3,(zt < ’U/(k"“)ho,mfvv(k")b,m,
and the second term by

\w(k”)h|5/3,m < |w(k")\10/3,m|h(k”“)|10/3,m-
Using the above estimates and

Hv(k")\|2/5,5/3,sg < el |ly5/3,0t + c(1/e) o]y o,

we obtain the inequality

(4.10) |\U(k")||2,5/3,m + VP55 o
kn,
< (A (| —n = 2T, )1 ((k —n — 1T, t) + | d )H7/5,5/3,S§)

+ (1 + \h(k"“)ho/s,m)ll((k —n—1T,t)+ |f(k")|5/3,m)‘
Using (4.8) and the inequality

”U(kn)Hs,r,Qt < EHU(k")||2,5/3,Qt + C(l/€)‘v(kn)|279t,
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with 14+ s < 5/r, in (4.10), we obtain, for t € ((k —n — 1)T, (k+ 1)T),
@11) oy 5800 < e(li((k—n—DT, )11 ((k—n— DT, 8)(|AF |5 o
+ 1] Lo (((k=n—1)T 1) xS2)) T |F3(k"+1)|10/7,m
+ ”h(kn+1)“v20(nt)) + [ 155300
+ (1 + |h(k"“)’10/3,m)ll((k —n—1T,t)+ ||d§kn) l7/5,5/3,52)
= A (K —n — 1)T,t).
Next for problem (4.9) we obtain the inequality

[0#) ||g.0.00 + [VpEn) |y or < C<W Vo) |y g + [wF Ry o
1 (kn)
+ 7 [0l ((enyry <) T 1T 372,25

kn) = kn
+ [lyolhn) ‘Tall1j2,2,5t + |f¢ )fz,m)-
We estimate the first term on the r.h.s. by
v’ - Vv(k")b,m < |U,(k"“)|1o,m|Vv(k")|5/2,m,
and the second term by
|w(k")h|2,m < |w(k")|5,(zt|h(k”+1)|10/3,mo
Using the inequalities
|Vv(kn)|5/2,m + |U(k”)|5,nt < C||U(k")”2,5/3,9t,
[0 * 122,50 < ellv® a0, 00 + e(1/e)[0* ) |3 r,
we obtain

(4.12)  |joten))

22,0t T |Vp(k")\2,9t < C(||U(kn)H2,5/3,Qt(|U/(k"“)|1o,m

+ [R5 00) + [FE g 00 + L((k —n = 1T, 1)
+ 1 13 2,2,55)-
Now using in (4.12) the inequality
[, 00 < el ((k = n = DT, ) ([hF1)]5 g0
1 | Lo ((hmne) Tty 52) T+ 1)+ [ES™ 107,00 + [1B5+) [y gy
+ AFne2) ( —n — 3)T, 1)) = BEn2) ((k —n — 3)T t),

we obtain
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LEMMA 4.3. Assume that v € W;/é(ﬁ X ((k—n—1)T,t)). Then

(4.13) HU(k")Hz,Q,Qt + \Vp(k")b,m
< (A Fn)((k —n — 2)T, £)(B%n+2) ((k — n — 3)T, t)

R 0/5.00) + 1F 5.0+ (k= n = 1T 1)

kn
+ 1145 ll33,2,51)-

LEMMA 44. Let v € W3y (2 x ((k —n — 2)T,t)) and g € Ly(2 x
((k—n—1)T,t)). Then any solution of (3.1) satisfies

(4.14) Hh(k")sz,Qt + |Vq(k")|2,rzt < C(@(Hv(k"“)H2,2,Qt)|h(k”)|2,Qt
+ 0 ((k —n — DT, t) + di)

|3/2,2,S§ + |9(k")|2,m)7
where p is an increasing positive function.

Proof. From (3.1) we get
(4.15) B |l0. 00 + [VqF) |5 g

1
< (v - VA |y g + [RFD) - Tu)y o + T |Pl2,0x (k—n—1)T,t)

_ kn
+ [[yhlEn) “Tall1j2,2,5t + Hd(1,x)”3/2,2,s§ + fg(k")b,m)-
Using the Hoélder inequality in (4.15) we obtain
[R5 |0 00 + [VgEm) ]y 00 < e(|o®ntD)] 10 ot VAER |5 5 o

1
+ [RE) |5 e[ Volkne)] 00 or + T L((k—n—-1)T,t)+ Hh(kn)\h/z,z,s{

kn kn
+ ||dg,z)”3/2,2,55 + gt )\z,m)~
Now using the inequalitites

IBED 1 00,60 < ellBE) |0, 0 + c(1/)[FW) |3 g,
o010, 00 VR 5 5 g < el|BF) ||y 5 o 4+ 1 ([0 |19 g0 1) [RE o g,
lvv(kn+1)‘10/3’9t‘h(l’v‘n)|57gt < 5Hh(k")H2,2,Qf

+ o (|VolEn D102 o1 1 )[R |3 e,

where @1, p9 are increasing positive functions, we obtain (4.14). This con-
cludes the proof.
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Finally, from (4.14), (4.13) and (4.2) we obtain
(4.16)  [|hF™)]| 5 0
< o(IhE 2 o0,00, G((k = n = )T, 1)), (k — n = 1T, 1)
+ G ((k —n—1)T,t),
where
G((k—n =3)T,1) = (k= n = VT + 1" 5,570,
+ [ fEne )50 o + \Fékn“)\lo/zm + |d§kn)|3,6,sg + Idgkn)l&oo,Sé
+ 1] Lo (((k=n—1)T8)x 2)
G ((k=n=1T,8) = g™ |y, 00 + (k= n = DT.) + |7 3722 55-

Proof of Theorem 1.1. Let Ty = 3T. In view of [1], HhHW22,1(m) < A,

where A > 0 is a sufficiently large constant. We choose £k = 3 and n = 0
(when n = 0 we write k instead of kg). Then (4.16) implies

0D gz gy < (A DD gz g, GO, O)s(2T, 1) + T 1)
For n3(t) sufficiently small,
(A + |yh<3>||W22,1(m), G(0,8))n3(2T,t) + G'(2T,t) < A and G'(t) < A.
Hence ||h(3)||W22,1(m) < A.

Assume now that for n =0 and 1 < m < s € N we have A
< A. We will show that

(4.17) |[R(s+1

m)Hsz,l(Qt)
)

Iz o) < A
From (4.16) it follows that

Bz ey < QU Mz gy 10 gz + 1D gz

IR 2 s Gl(s — 20T, )i (ST, 1) + G (ST, )
< GBA+ IR s gy, Gl(s = DT, )i (T, )
+ G/ (8T, t).
If ns41(sT,t) is small enough then (4.17) holds. This concludes the proof.
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