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MINIMAX MUTUAL PREDICTION OF MULTINOMIAL
RANDOM VARIABLES

Abstract. The problem of minimax mutual prediction is considered for
multinomial random variables with the loss function being a linear combi-
nation of quadratic losses connected with prediction of particular variables.
The basic parameter of the minimax mutual predictor is determined by
numerical solution of some equation.

1. Introduction. Suppose that m statisticians take part in a predic-
tion process, m > 2. Let a random variable X; = (X;1,...,X;-) be ob-
served by the ith statistician. The random variables X;, i = 1,...,m, are
independent and have the multinomial distribution with parameters n;,
p = (p1,...,pr). The statisticians do not know the observations of their
partners but they know all the numbers n;. They cooperate with each other.
The problem solved in this paper is to determine the minimax mutual pre-
dictor

where d;;(X;) = (dl(»;)(Xi), e ,dz(-;)(X,-)) is the predictor of X; = (Xj1,...
..., Xjr) used by the ith statistician to predict this random variable, i, j =
1,....,m, i #j.

Thus each statistician observes only his “own” random variable and pre-
dicts only the others.
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The total loss of all the statisticians is

(1) Z kl] ch d(l) 31)2

1,j=1

i#]
where k;; > 0, Z” 1,ij ki; > 0, ¢ > 0 are constants. Without loss of
generality we can assume that ¢y > ... > ¢, > 0.

Let R(p,d) be the risk function connected with the predictor d,

(2)  R(p,d) = E,(L Z k‘”chE (@D (X3) — Xj0)%.
i,j=1
i#j

We then look for a mutual predictor dg for which
sup R(p, dop) = inf sup R(p, d).
P d p

2. Determining the minimax predictor in the main case. Let
the random variables X;, ¢ = 1,...,m, be independent and distributed
according to the multinomial law

Til X
'pl’L . prlr.

Py(Xi1 = 21,0, Xip = T4) = pr
L1 Lipr

Then the risk (2) takes the form

Z kij ch d() —np)? +nip(l—pr).

4,j=1
i#]
Let us consider the predictors
3)  dD(X) =, T it D=1,
i 1 g nz‘i"}/ ) ) ) ) ) ) ) s by

where a; > 0, v > 0 and

(4) Zal =7.
=1

For this mutual predictor the risk is as follows:
(5) R(p, d)

2
il
= Z kuzcl[ <anl7+71—”jpl) +”jpl(1—Pl)]

3,j=1
i#]

55 kz{ s (1= )+ (o =)+ L)
1,j=1
1#]
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m T 2
= Z Kij Cl{ [nijQ (—n; +°) — ”J’]p%
— (n; +7)

1,j=1
i#]
n; nj 2
+ | ———=(n; —20qy) +nj|p+ ———=af ;.
e 2o st ot

Assume that

(6) Zk: [ _E (— n¢+72)—nj]:0.

Since p(0) < 0, the equation (6) always has a solution vy > 0 if

(7) A= Wh_{gogo Z kijni(n > 0.
t,j=1
7]

In this section we will suppose that the condition (7) holds and that v is a
solution of (6).
Applying the formula (6) to (5) we obtain

(8) Rp,d) = ) ki (7])2 > aly? = 2ya)p

2
+ Z kiijclalZ.

=1

Assume that ¢y # 0. Let Iy be the greatest index [ for which ¢; # 0 and
let

-2
(9) L= max{s<l0 Zc_ SC }
k S

k=1

LEMMA. Under the above notation, forl =L+ 1,...,r,

L—-2
(10) ¢ =—F—— 2=¢-

it e
Proof. Notice that the proof of the inequality (10) is only necessary for
l=L+1.1If cp41 # 0 from (9) it follows that
L+1

L
1

11 L—-1> =1 —.

(11) CL+1 Z +cr41 ; o

The inequality (10) follows frorn (11).
If ¢z 41 = 0 the inequality (10) obviously holds since L > 2. m
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We shall prove the following theorem:

THEOREM 1. If A > 0 then the game defined by the statistical deci-

sion problem considered has a value and the mutual predictor d = [d;;]7"_,
defined by (3) for

v L-2 )

(1- — orl=1,...,L,
(12) o) = 2( c Zf}lzl 1/Ck f

0 forl=L+1,....r,

where 7y is the solution of (6), is minimaz for the loss function given by (1).

Proof. Let the constants a; > 0 satisfy the equations

(13) 7—204:2 forl=1,...,L,
Cl
(14) =0 forl=L+1,...,r

Taking into account the equations (4), (13) and (14) we obtain

|
(15) (L—2)7:azc—l.
=1

Since v and L are known, the constant @ is known and a > 0 because v > 0
and L > 2. Moreover, from (10) and (15) it follows that

(16) a=qy
and from (13)—(15) we obtain the formula (12).
From (8) it follows that

(17) R(p7d)
2 L T r
Z k:m o + [ch (v — 2yaq)p; + Z cwng—Fchaﬂ
i,j=1 i T7)? =1 I=L+1 =1
Z#J
(13)
> & [Zawz+ > pz+ZCzaz]
| TZH-’Y iy
i,j= +1
z#]
(16)
Z o [qu p+ Z cry pz+ZCzal}
4,5=1 7)? I=L+1
i#]

Thus R(p,d) = const = C' if Zlel p; = 1 and always, by the inequality
(10), R(p,d) < C for the mutual predictor d defined by (3) where v and oy
are determined by (6) and (12). On the other hand, for any d and the loss
function (1) the Bayes risk r(m,d) = E;(R(p,d)) attains its minimum if

di) (X;) = n; E(pi| X3).
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In the above formulae F,(-) denotes the expectation with respect to the
prior distribution 7 of the parameter p = (p1,...,p,) and E(p; | X;) is the
conditional expectation of p; for given Xj;.

To prove that, assume that p = (p1,...,p,) is a random variable. Let
X; = (Xi1,...,X;). The expression

1 1
Eﬂ(Ep(dl(j)(Xi) - X;)?) = EW(EP(dEj) (Xi) —nip)® + nyp(1 — pr))
attains its minimum when
!
dij () = E(pi | X;) = E(pr| (Xavs o, Xar)-
Let the prior distribution 7 of p = (p1,...,p,) be defined as follows:

Plpr+...+pr=1)=1, p;>0,

18
" opropn) = r(al)F.@f(aL) R

where g is a density. For the prior density (18) and the loss function (1) the
Bayes predictor is
dz(;)(xil’ s 2r,0,...,0)

=n;E(pi | Xi1 = vi1,, ..., Xir = @i, Xy =0for [ > L)

_{nj i+ o forl=1,...,L,
— n; +
forl=L+1,...;r;4,j=1,...,m, 1 # j.

Then d = [d;;]}";_; defined by (3) for v and «, satisfying (6) and (12) is the
Bayes predictor and from the Hodges—Lehmann theorem (see [2]) it follows
that the game defined by the statistical decision problem considered has a
value and this predictor is minimax. m

3. Solution of the cases not solved in Section 2. Let ¢(y) be
defined by (6). Suppose that

m
A= lim o(y) = > kiyni(n; —1) =0.
i,j=1
i#j
Since ¢(0) < 0 and ¢(y) is an increasing function of +, in this case there
does not exist any finite 4 > 0 for which ¢(vy) = 0. But it is easy to prove
that in this case the minimax mutual predictor is obtained by taking into

account the formula (12) and letting v — oo in (3),

X;
(19) dY(X,) = lim n, At
e IR
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; L—2

_ ni(l—L—)::njwl forl=1,...,L,

=9 2 a1 1/ck ol Lt
orl=L+1...,r

For the mutual predictor d = [d;;];"—; obtained in the above formula by

I
letting v — oo the risk is (see (17))

T

L
Z kijn? (ZQP1+ > Clpl+zclwl)

ij=1 =1 I=L+1

i#i
The fact that the mutual predictor obtained in this way is minimax for
the loss function (1) results from the following well known theorem (see [1,
p. 90]) which can be adapted to the above situation.

THEOREM. If d,, is the Bayes rule with respect to m,, if r(my,,d,) — C,
and if R(u,do) < C for all u then the game has a value and dy is a minimaz
rule.

To define m, it is enough to put v = n in (12) for o; in (18).
Then we have proved the theorem.

THEOREM 2. If A = 0 then the game defined by the statistical decision
problem considered has a value and the mutual predictor d = [dij]Z‘j:l given
by (19) is minimazx for the loss function (1).

Up to this point we have assumed that co # 0. If only ¢; # 0 the problem
considered reduces to the minimax mutual prediction problem of a random
variable X = (X1,...,X,,), where X,’s are independent and have binomial
distributions with the parameters n;, p;. The loss function is now of the

form
m

1
L(X, d) = Z clk”(dij)(Xl) - X]')Q.
ij=1
i#]
In this case if A > 0 the minimax mutual predictor d = [d;;]{";_, is given by
X 2
d (X;) = n; Xitn/2 )
ni + 7y

where the parameter 7 satisfies the equation (6), whereas when A = 0 the
minimax mutual predictor is given by the formula

dgp (X;) =n;/2.

The problems of minimax estimation and prediction of binomial and multi-
nomial random variables were considered by Hodges and Lehmann [2], Try-
buta [3]-[5], Wilczynski [6] and others.
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