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MINIMAX MUTUAL PREDICTION OF MULTINOMIAL
RANDOM VARIABLES

Abstract. The problem of minimax mutual prediction is considered for
multinomial random variables with the loss function being a linear combi-
nation of quadratic losses connected with prediction of particular variables.
The basic parameter of the minimax mutual predictor is determined by
numerical solution of some equation.

1. Introduction. Suppose that m statisticians take part in a predic-
tion process, m ≥ 2. Let a random variable Xi = (Xi1, . . . ,Xir) be ob-
served by the ith statistician. The random variables Xi, i = 1, . . . ,m, are
independent and have the multinomial distribution with parameters ni,
p = (p1, . . . , pr). The statisticians do not know the observations of their
partners but they know all the numbers ni. They cooperate with each other.
The problem solved in this paper is to determine the minimax mutual pre-
dictor

d =



− d12 . . . d1m

d21 − . . . d2m

. . . . . . . . . . . . . . . . . . . .
dm1 dm2 . . . −


 =: [dij ]mi,j=1,

where dij(Xi) = (d(1)
ij (Xi), . . . , d

(r)
ij (Xi)) is the predictor of Xj = (Xj1, . . .

. . . ,Xjr) used by the ith statistician to predict this random variable, i, j =
1, . . . ,m, i 6= j.

Thus each statistician observes only his “own” random variable and pre-
dicts only the others.
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The total loss of all the statisticians is

(1) L(X, d) =
m∑

i,j=1
i6=j

kij

r∑

l=1

cl(d
(l)
ij (Xi)−Xjl)2

where kij ≥ 0,
∑m
i,j=1, i6=j kij > 0, cl ≥ 0 are constants. Without loss of

generality we can assume that c1 ≥ . . . ≥ cr ≥ 0.
Let R(p, d) be the risk function connected with the predictor d,

(2) R(p, d) = Ep(L(X, d)) =
m∑

i,j=1
i6=j

kij

r∑

l=1

clEp(d
(l)
ij (Xi)−Xjl)2.

We then look for a mutual predictor d0 for which

sup
p
R(p, d0) = inf

d
sup
p
R(p, d).

2. Determining the minimax predictor in the main case. Let
the random variables Xi, i = 1, . . . ,m, be independent and distributed
according to the multinomial law

Pp(Xi1 = xi1, . . . ,Xir = xir) =
ni!

xi1! . . . xir!
pxi11 . . . pxirr .

Then the risk (2) takes the form

R(p, d) =
m∑

i,j=1
i6=j

kij

r∑

l=1

cl[Ep(d
(l)
ij (Xi)− njpl)2 + njpl(1− pl)].

Let us consider the predictors

(3) d
(l)
ij (Xi) = nj

Xil + αl
ni + γ

, i, j = 1, . . . ,m, i 6= j, l = 1, . . . , r,

where αl ≥ 0, γ > 0 and

(4)
r∑

l=1

αl = γ.

For this mutual predictor the risk is as follows:

(5) R(p, d)

=
m∑

i,j=1
i6=j

kij

r∑

l=1

cl

[
Ep

(
nj

Xil + αl
ni + γ

− njpl
)2

+ njpl(1− pl)
]

=
m∑

i,j=1
i6=j

kij

r∑

l=1

cl

{
n2
j

(ni + γ)2 [nipl(1− pl) + (αl − γpl)2] + njpl(1− pl)
}
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=
m∑

i,j=1
i6=j

kij

r∑

l=1

cl

{[
n2
j

(ni + γ)2 (−ni + γ2)− nj
]
p2
l

+
[

n2
j

(ni + γ)2 (ni − 2αlγ) + nj

]
pl +

n2
j

(ni + γ)2 α
2
l

}
.

Assume that

(6) ϕ(γ) :=
m∑

i,j=1
i6=j

kij

[
n2
j

(ni + γ)2 (−ni + γ2)− nj
]

= 0.

Since ϕ(0) < 0, the equation (6) always has a solution γ > 0 if

(7) A =: lim
γ→∞

ϕ(γ) =
m∑

i,j=1
i6=j

kijnj(nj − 1) > 0.

In this section we will suppose that the condition (7) holds and that γ is a
solution of (6).

Applying the formula (6) to (5) we obtain

R(p, d) =
m∑

i,j=1
i6=j

kij
n2
j

(ni + γ)2

r∑

l=1

cl(γ2 − 2γαl)pl(8)

+
m∑

i,j=1
i6=j

kij
n2
j

(ni + γ)2

r∑

l=1

clα
2
l .

Assume that c2 6= 0. Let l0 be the greatest index l for which cl 6= 0 and
let

(9) L = max
s

{
s ≤ l0 :

s∑

k=1

1
ck

>
s− 2
cs

}
.

Lemma. Under the above notation, for l = L+ 1, . . . , r,

(10) q :=
L− 2

∑L
k=1 1/ck

≥ cl.

Proof. Notice that the proof of the inequality (10) is only necessary for
l = L+ 1. If cL+1 6= 0 from (9) it follows that

(11) L− 1 ≥ cL+1

L+1∑

k=1

1
ck

= 1 + cL+1

L∑

k=1

1
ck
.

The inequality (10) follows from (11).
If cL+1 = 0 the inequality (10) obviously holds since L ≥ 2.
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We shall prove the following theorem:

Theorem 1. If A > 0 then the game defined by the statistical deci-
sion problem considered has a value and the mutual predictor d = [dij ]mi,j=1
defined by (3) for

(12) αl =





γ

2

(
1− L− 2

cl
∑L
k=1 1/ck

)
for l = 1, . . . , L,

0 for l = L+ 1, . . . , r,

where γ is the solution of (6), is minimax for the loss function given by (1).

Proof. Let the constants αl ≥ 0 satisfy the equations

γ − 2αl =
a

cl
for l = 1, . . . , L,(13)

αl = 0 for l = L+ 1, . . . , r.(14)

Taking into account the equations (4), (13) and (14) we obtain

(15) (L− 2)γ = a
L∑

l=1

1
cl
.

Since γ and L are known, the constant a is known and a ≥ 0 because γ > 0
and L ≥ 2. Moreover, from (10) and (15) it follows that

(16) a = qγ

and from (13)–(15) we obtain the formula (12).
From (8) it follows that

(17) R(p, d)

=
m∑

i,j=1
i6=j

kij
n2
j

(ni + γ)2

[ L∑

l=1

cl(γ2 − 2γαl)pl +
r∑

l=L+1

clγ
2pl +

r∑

l=1

clα
2
l

]

(13)
=

m∑

i,j=1
i6=j

kij
n2
j

(ni + γ)2

[ L∑

l=1

aγpl +
r∑

l=L+1

clγ
2pl +

L∑

l=1

clα
2
l

]

(16)
=

m∑

i,j=1
i6=j

kij
n2
j

(ni + γ)2

[ L∑

l=1

qγ2pl +
r∑

l=L+1

clγ
2pl +

L∑

l=1

clα
2
l

]
.

Thus R(p, d) = const = C if
∑L
l=1 pl = 1 and always, by the inequality

(10), R(p, d) ≤ C for the mutual predictor d defined by (3) where γ and αl
are determined by (6) and (12). On the other hand, for any d and the loss
function (1) the Bayes risk r(π, d) = Eπ(R(p, d)) attains its minimum if

d
(l)
ij (Xi) = njE(pl |Xi).
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In the above formulae Eπ(·) denotes the expectation with respect to the
prior distribution π of the parameter p = (p1, . . . , pr) and E(pl |Xi) is the
conditional expectation of pl for given Xi.

To prove that, assume that p = (p1, . . . , pr) is a random variable. Let
Xi = (Xi1, . . . ,Xir). The expression

Eπ(Ep(d
(l)
ij (Xi)−Xjl)2) = Eπ(Ep(d

(l)
ij (Xi)− njpl)2 + njpl(1− pl))

attains its minimum when

d
(l)
ij (Xi) = njE(pl |Xj) = E(pl | (Xi1, . . . ,Xir)).

Let the prior distribution π of p = (p1, . . . , pr) be defined as follows:

(18)
P (p1 + . . .+ pL = 1) = 1, pi ≥ 0,

g(p1, . . . , pL) =
Γ (γ)

Γ (α1) . . . Γ (αL)
pα1−1

1 . . . pαL−1
L ,

where g is a density. For the prior density (18) and the loss function (1) the
Bayes predictor is

d
(l)
ij (xi1, . . . , xiL, 0, . . . , 0)

= njE(pl |Xi1 = xi1, , . . . ,XiL = xiL, Xil = 0 for l > L)

=

{
nj

xil + αl
ni + γ

for l = 1, . . . , L,

0 for l = L+ 1, . . . , r; i, j = 1, . . . ,m, i 6= j.

Then d = [dij ]mi,j=1 defined by (3) for γ and αl satisfying (6) and (12) is the
Bayes predictor and from the Hodges–Lehmann theorem (see [2]) it follows
that the game defined by the statistical decision problem considered has a
value and this predictor is minimax.

3. Solution of the cases not solved in Section 2. Let ϕ(γ) be
defined by (6). Suppose that

A = lim
γ→∞

ϕ(γ) =
m∑

i,j=1
i6=j

kijnj(nj − 1) = 0.

Since ϕ(0) < 0 and ϕ(γ) is an increasing function of γ, in this case there
does not exist any finite γ > 0 for which ϕ(γ) = 0. But it is easy to prove
that in this case the minimax mutual predictor is obtained by taking into
account the formula (12) and letting γ →∞ in (3),

d
(l)
ij (Xi) = lim

γ→∞
nj

Xil + αl
ni + γ

(19)
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=





nj
2

(
1− L− 2

cl
∑L
k=1 1/ck

)
=: njwl for l = 1, . . . , L,

0 for l = L+ 1, . . . , r.

For the mutual predictor d = [dij ]mi,j=1 obtained in the above formula by
letting γ →∞ the risk is (see (17))

R(p, d) =
m∑

i,j=1
i6=j

kijn
2
j

( L∑

l=1

qpl +
r∑

l=L+1

clpl +
L∑

l=1

clw
2
l

)
.

The fact that the mutual predictor obtained in this way is minimax for
the loss function (1) results from the following well known theorem (see [1,
p. 90]) which can be adapted to the above situation.

Theorem. If dn is the Bayes rule with respect to πn, if r(πn, dn)→ C,
and if R(µ, d0) ≤ C for all µ then the game has a value and d0 is a minimax
rule.

To define πn it is enough to put γ = n in (12) for αl in (18).
Then we have proved the theorem.

Theorem 2. If A = 0 then the game defined by the statistical decision
problem considered has a value and the mutual predictor d = [dij ]mi,j=1 given
by (19) is minimax for the loss function (1).

Up to this point we have assumed that c2 6= 0. If only c1 6= 0 the problem
considered reduces to the minimax mutual prediction problem of a random
variable X = (X1, . . . ,Xm), where Xj ’s are independent and have binomial
distributions with the parameters nj , p1. The loss function is now of the
form

L(X, d) =
m∑

i,j=1
i6=j

c1kij(d
(1)
ij (Xi)−Xj)2.

In this case if A > 0 the minimax mutual predictor d = [dij ]mi,j=1 is given by

d
(l)
ij (Xi) = nj

Xi + γ/2
ni + γ

,

where the parameter γ satisfies the equation (6), whereas when A = 0 the
minimax mutual predictor is given by the formula

d
(1)
ij (Xi) = nj/2.

The problems of minimax estimation and prediction of binomial and multi-
nomial random variables were considered by Hodges and Lehmann [2], Try-
buła [3]–[5], Wilczyński [6] and others.
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