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ESTIMATION OF THE DRIFT FUNCTION FOR ITO
PROCESSES AND A CLASS OF SEMIMARTINGALES
VIA HISTOGRAM SIEVE

Abstract. A histogram sieve estimator of the drift function in Ito pro-
cesses and some semimartingales is constructed. It is proved that the esti-
mator is pointwise and L' consistent and its finite-dimensional distributions
are asymptotically normal. Our approach extends the results of Leskow and
Rozanski (1989a).

1. Introduction. Since Grenander (1981) the method of sieves has
turned out to be a very useful approach in nonparametric estimation. Many
authors have applied different sieves for estimation of time dependent func-
tions which are functional parameters of stochastic processes such as point
processes belonging to a multiplicative intensity model (for results on sieve
estimation of the intensity function in the multiplicative intensity model see
Karr (1987), Leskow and Rozaniski (1989b), Rozanski and Zagdaniski (2001)),
diffusion processes, Ito processes and more generally, semimartingale regres-
sion models; all these models are known to be widely used for describing the
behaviour of dynamical systems.

Geman and Hwang (1982), using a sieve based on an orthonormal system,
obtained a consistent estimator of an unknown functional parameter o in L?
norm in the model

AX(t) = a(t)dt +dW (), te[-1/2,1/2],

where W (t) is a Wiener process. This result was generalized by Nguyen and
Pham (1982) who considered the model

dX (1) = a(t) X (D)dt + dW (),  X(0) = o.
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Using a sieve based on Fourier expansion the authors proved L? consistency
for an estimator of the unknown function «. Further, Leskow and Roézanski
(1989a) using a histogram sieve constructed a consistent and asymptotically
normal estimator of the unknown function « in the more general diffusion
model

dX (t) = a(t)a(t, X (t))dt + dW (t).

It should also be noted that the method of Fourier expansion in L? was used
by McKeague (1986) in a more general semimartingale regression model.
Further, Stone and Huang (2003) have applied another sieve, polynomial
splines, to nonparametric estimation of the drift coefficient n(-,-) in a diffu-
sion type process Y (t), where

dY (t) = n(t, X (£))dt + o(t)dW (1)

with known random diffusion coefficient o(t) and observable stochastic co-
variate process X (t). They have obtained the rates of convergence for spline
estimates. All the estimators constructed in the above mentioned papers are
based on n independent identically distributed (or with some conditions of
mixing) copies of a stochastic process (model), which can be rather restric-
tive when one needs to take into consideration some dependence structure
between observations.

In the present paper, we consider the problem of histogram sieve estima-
tion of the drift function « for Ito processes and more generally for a class
of semimartingale models. We prove that the histogram sieve estimator of
the function « is consistent, L' consistent and asymptotically normal. In
contrast to the above mentioned papers, the estimator we construct is based
on a sequence of n processes (Ito processes or semimartingales) satisfying
Conditions (Al), (A2), (A3), (B1), (A4) defined in Sections 3 and 4. The
interpretation and meaning of these conditions, especially of Condition (B1),
depends on the model describing a dynamical system. One can easily inter-
pret the conditions in models described by the Langevin equation. It is also
worth noting that if Conditions I-III from Leskow and Rozanski (1989a)
are satisfied then after some transformation of the processes observed we
get a model for which the conditions from our paper hold. The histogram
sieve estimator which we construct retains its properties in the semimartin-
gale regression model considered by McKeague (1986), satisfying Condition
(A1).

The paper is organized as follows: Section 2 contains a short description
of the method of sieves and the histogram sieve, Section 3 presents the
general results for [to processes and their proofs, and Section 4 is devoted to
analogous results for some semimartingale models. In Section 5 we present
some examples and simulation results.
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2. Sieve maximum likelihood estimation. Let us start from a short
description of Grenander’s (1981) method of sieves.

A family S(n) of subsets of a space A C L! is called a sieve if S(n) is
increasing in n and (J,, S(n) is dense in A. We assume that the family S(n)
is a histogram sieve, that is,

(2.1) S(n):{aeA: af lelBl mm (8) for all s € [0, 1]}

where 1p, denotes the indicator of

-1 l
Bl,m(n) = <

m(n)’ m(n)

1
Bl,m(n) = |:07 W:| )

and >, 27 > 0. The sequence {m(n)} expresses the speed of growth of the
sieve S(n).

The maximum likelihood estimator &, based on the sieve S(n) is defined
through the equation

2.2 L, (d,) = L(a).
(2.2) (Qn) e (a)

] for il =2,...,m(n),

For the histogram sieve we can easily derive an exact expression for a,.

In Section 4, we construct a histogram sieve estimator in another way.
Namely, instead of the maximum likelihood sieve estimator we derive an
estimator which is a solution of an estimating equation in the set of the
histogram sieve for a suitably chosen estimating function.

3. Histogram sieve estimator

3.1. Model formulation. In this section we present the general form of the
model considered. Let (§2, F, P) denote a probability space with filtration
{Fnt}. We consider an Ito process X,,(¢), t € [0,1], which is a strong solution
of the following stochastic differential equation:

(3.1) dX,(t) = a(t)Dy(t)dt + Vi, ()dW,(t),  X,(0) =0.
The following assumptions will be imposed:

(A1)  Wy(t) is the standard Wiener process, adapted to the filtration

{Forit
(A.2) Dn() and V ( ) are nonanticipating processes relative to {Fp,+}.
(A.3) g n(t)|dt < oo} =1 and P{§ 2(t)dt < oo} = 1.
(A4) V(¢ )| > O P—as
(A.5)  «(t) is bounded on [0, 1].
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3.2. Histogram estimator for diffusion processes. Let us start by con-
structing a histogram sieve estimator for a diffusion process which is a spe-
cial case of model (3.1). In this section we will assume that X,, is a strong
solution of the equation

(32)  dXn(t) = a(t)Dalt, X,)dt + Vi (t, Xn)dWa(t),  Xn(0) = 0.

Furthermore, we will assume that the following conditions hold:
t
(A6)  (a) [Valt,2) = Valt,w)|* < Ln V| — ysl? dK () + Lolae — uf?,

¢ 0

(b) Vi2(t,2) < Ly | (1 4 22) dK (s) + Lo(1 + 27),
0
where Ly, Ly are some positive constants, K (+) is nondecreasing and

right-continuous, 0 < K(s) < 1, and z,y € C([0,1]).
(A.7)  For any 0 <t <1, the equation

Vo (t, X)) Cr(w) = a(t) Dy (t, X)
has a P-a.s. bounded solution (relative to C¢(w)), which may be

written as
Ci(w) = Vn+(t, Xn)a(t)Dy(t, Xp),
where
1/V,(t, X,) for V,(t, X, 0,
S I i
0 for V,,(t, X,,) = 0.

o o] (Y )

(
(A.9) E(exp( §Ct th—liCE(w)dt>>:

0

Condition (A.6) guarantees the existence and uniqueness of strong solution
of the stochastic differential equation

dYn(t) = Vn(ta Yn)de(t)

It is known (Liptser and Shiryayev (1981), Theorem 7.18) that under
assumptions (A.1)-(A.9) the measure u generated by the process X, is
dominated by the measure py; corresponding to the process Y, defined by
dY,(t) = Vo (t, Y, )dW,(t). The density of ul» with respect to py;, is

dun ¢ Da(t, X W) oy 1
(3.3) —% —exp ((S)a(t) W -5

Denote the logarithm of the above density by L, («).



Estimation of drift function for Ito processes 25

For simplicity of notation, we will write D,,(t), V,,(t) instead of Dy, (¢, Xy,),
Vo (t, Xp). Our aim is to construct an estimator for the unknown functional
drift parameter «(t). This problem is addressed via Grenander’s (1981)
method of sieves applied for the histogram sieve as defined in Section 2.
Standard computations for the likelihood equation (2.2) with the density of
the form (3.3) yield the exact expression for a,:

LEMMA 3.1. The mazimum likelihood estimator &, based on the his-
togram sieve S(n) is

~ By mny ViE(t)
(34) Oén(s) — Z I,m(n) 5 ( 1Bl,m(n) (8) 1Cl,m(n) (8)7
V,

where

D3(t)
Clim(n) = {B | T &> 0}, I=1,...,m(n).
L

m(n)

Let s € [0,1] be fixed and choose I(n,s) € {1,...,m(n)} such that s €
Bi(n,),m(n)- If we put Bp,,)(5) = By s),m(n) then the estimator @, (s) may

be rewritten in the following compact form:
Dy (t)
B0y (0) T ()

SBm(n) (S) Vrg (t)

(3.5) Gn(s) =

3.2.1. Consistency and asymptotic normality. Consider the following
conditions:

(B.1)  There exists a positive and continuous function y : [0,1] — Ry such

that )
Dz(t) 1
sup TZL( )1_ y(t) ..
te[0,1] | Vn (t)n n—eo
( P, denotes as usual convergence in probability).
n—oo

(B.2)  The function a(s) is continuous on [0, 1].
(B.3)  The speed of growth of the sieve is m(n) = n'/2.
(B.4)  There exists # > 1/2 and a positive constant C'(«) such that
Voren  lals) —a(t)] < Cla)lt - s/,
in other words the Hélder condition holds.

Under assumptions (B.1)—(B.4) we prove the following theorems on consis-
tency and asymptotic distribution of the histogram sieve estimator &, (s).

THEOREM 3.1. If conditions (B.1) to (B.3) hold then the maximum like-
lihood estimator &, (s) defined in (3.4) and (3.5) is pointwise consistent for
each s € [0,1], that is, &y, (s) converges to a(s) in probability for any s € [0, 1]
as n — oo.
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THEOREM 3.2. Let {s1,...,5p} be an arbitrary finite collection of points
from the interval [0,1]. If conditions (B.1) to (B.4) are fulfilled then the
sequence of random vectors

nH(@n(s1) = als1), ., @nlsp) — alsy))
converges in distribution, as n — o0, to the p-dimensional normal distri-

bution with zero expectation and diagonal covariance matriz with diagonal
entries o; = 1/y(s;), i =1,...,p.

REMARK. It is worth pointing out that assumption (B.3) can be var-
ied. Namely, we can replace the sequence m(n) = y/n, which determines
the speed of growth of the sieve, by any sequence m(n) tending to infinity
more slowly than y/n. This assumption still ensures the consistency of the
estimator &, (t).

In order to prove results on asymptotic distribution we need to impose
some additional assumption on the smoothness of the estimated function
a(t) and use the normalizing sequence (n/m(n))'/2. For instance, assuming
that o is differentiable at s and n'/2/m(n) — oo, n/m(n)* — 0 we deduce
that a,(s) is asymptotically normal N (a(s), m(n)?/ny(s)).

Moreover, if we impose the additional conditions (B.5)—(B.6) below, it is
possible to obtain L' consistency of the derived estimator.

2
(B.5)  The function ‘D’g(t))%‘ is bounded away from zero, i.e. there exists

2(t
2
o > 0 such that infyc(g q “D/j—gtt))%‘ > o P-almost everywhere.

(B.6)  The function y(t) defined in condition (B.1) satisfies

D3(t) 1
’ T v

— 0 Vte[o,m

n—oo

2
and Ee.g((f)) is continuous in t for every n.
n

THEOREM 3.3. Assume that conditions (B.1)—(B.3), (B.5) and (B.6) are
satisfied. Then the histogram sieve estimator Q,(s) is L' consistent, i.e.
1

S |an(s) — a(s)|ds 0.
0

3.2.2. Proofs

Proof of Theorem 3.1. To prove the consistency of a,(s) write
(3.6)  an(s) —als)

DEL t D (t
T2 38,00 TR (@(0) — () db+ =T 9 dWa(t)
B Bl D2 (1)
n SBm<n>(8) V2(t) dt
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Consider the sequence of martingales

¢ D, (u)
Mn(t) = %(S) Vn(u)

which is also a sequence of random elements of D([0, 1]) (the space of right-
continuous functions having left sided limits with Skorokhod topology). By
Rebolledo’s theorem (Rebolledo (1980)) the sequence M,y (+) is convergent in

distribution in D([0,1]) to an element M () which is a continuous Gaussian

AWy (u),

martingale with independent increments for which EM> (t) = Sé y(u) du.
Further, using Theorem 5.5 from Billingsley (1968) on weak convergence
of a sequence of continuous mappings of random elements we obtain

My (Bon()(8)) = M (tmmy +1(8)) = M () (8)) — 0,

n—~oo

where

Bm(n) (8) = (tm(n) (8)7tm(n)+1(8)]7 tm(n)(s) /8, tm(n)+1(s) N\ S
By conditions (B.1)—(B.3),

1 Dy(t) .. P
7V gt
and
1 D2(t) P
= S 0 (at) — als))dt — 0,
Bm(n)(s)

which implies that (3.6) converges to zero in probability.

Proof of Theorem 3.2. We will first show the convergence of one-dimen-
sional distributions. One can write

(3.7 nY*(@n(s) — af(s))

D2
”1/4(ﬁ 3B (5) —v,?((f)) (alt)—a(s))dt) +”1/4(ﬁ $B,0my () TalD
1 SB D%(t) dt

% m(n) (5) V’rg (t)

We have shown that the denominator of (3.7) converges in probability to
y(s). Note that by (B.4) the first term in the numerator of (3.7) converges
to zero in probability.

By Rebolledo’s theorem the sequence M, (+) is convergent in distribution

in D([0,1]) to an element M (+) which is a continuous Gaussian martingale
with independent increments. Denote by @, @ the measures generated by
M, (-) and M(-) in D(]0,1]) respectively.
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Let A denote the following class of subsets of D(]0,1]):
A= {A C D([0,1]) : A= {z: 2(tr(s) <z} N[ [z 2 2(til(s) < yl}},
k l

where {t;(s)} and {#;(s)} are finite or infinite subsets of the sets {t,,(,)(s)}
and {t,,(n)41(5)} respectively, with arbitrary real numbers {4}, {;}. From
Theorem 3 in Topsge (1967) it follows that A is a Q-uniformity class. Thus

sup |@n(A) — Q(A)] — 0.
AeA n—0oo

It is easy to see that the o-algebra o(A) generated by the class A is also a
Q-uniformity class.

Let F,, and G, denote the distribution functions of M, (B,,x)(s)) and
M (B, (n)(s)) respectively. Since o(My(tpn)(8)); Mn(tmm)+1(s )) >1)is
contained in o(A), which is a Q-uniformity class, we obtain

(3.8) sgp |Fn(x) — G ()] — 0.

Obviously, nl/4M (Bmn)(s)) BUasn— oo, where U is a random variable
normally distributed with zero expectation and variance y(s). Thus, from
(3.8) it follows that also n1/4Mn(Bm(n)(s)) DU asn — oo.

Now, we have proved that the numerator of (3.7) converges in distribu-
tion to the random variable U and the denominator of (3.7) converges in
probability to y(s).

This shows the asymptotical normality of (3.7) with zero expectation and
variance 1/y(s).

Now we will show the convergence of the two-dimensional distributions.
We can write

[n'/*(@n(s1) — o(s1)), 1/4(a (s2) — a(s2))]

2
[nlM(ﬁSBm(n)(m 7? ( t) — as1)) dt)
HOWY ’

735
Vn By (n) (s1) n(
2
n1/4(ﬁ SBm<n)(sz) V:?L((zf)) a(t) — a(s2)) dt)
1 D2(t) dt

75 3By (32) T2

Dy, (t
|:n1/4(ﬁ SBm(n)(Sl) Vn(()) dW ( )) nl/4(ﬁ SBm(n)(SQ) Vn((t)) dW ( )):|

S D2 (1) ) N D)
77 3B, (1) TP U 7 38,0 (s2) T U

By earlier considerations the first term of the above sum is convergent to
0 in probability.

)

+
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In order to show the asymptotical normality of the second term we in-
troduce the following notations:

Yn,i _ n1/4<% S ‘,in(t) de(t)),
B

m(n)(51)
1 D2(t)
Tpi= —= Y =12
=) e

Using the same arguments as for the one-dimensional case, including Re-
bolledo’s theorem and P-uniformity one can show that for all t = (¢1,t2),

D
(t,Yn) =t1Yn1 +t2Yno —_ t1Yo,1 + t2Y0,2,

where Yp 1 and Yp o are independent random variables, normally distributed
with zero expectation and variance y(s;) and y(s2) respectively. By the
Cramer—Wold device this shows the asymptotical normality of the vector
[Yn,la Yn,?] .

Define Ry, ; = t;/Zy;, i = 1,2. We may write

Yo1 Y,
<§a |: ol n,2:| > = Rn,lyn,l + Rn,QYn,Z = <&7 £>

Zn,l ’ Zn,2
Applying Slutsky’s lemma we observe that
D t1 to
R,.Y, Y
(Bn, Yn) — JGory Y1 T gy Yoo

and using again the Cramer—Wold device we get the convergence for the
two-dimensional case.

The proof of the convergence for the p-dimensional case goes along the
same lines.

Proof of Theorem 3.3. Assumption (B.5) allows us to write
Elan(s) — a(s)]
D2(t
| ﬁ)(a@y—a@»dr+
Vi (t)
Bm(n)(s) Bm(n)(s)
From condition (B.6) we see that there exists a positive constant Cj such
that for any ¢ € [0,1] and n € N,
Dy(t)
< Chn.
Vi -
Applying now the Holder condition (B.7) and Cauchy inequality we observe
that E|a,(t) — a(t)] < o (C(a)Cin8/? 4 /Oy n~'/4). Therefore, we get

lim E|an(t) — a(t)| = 0.
n—oo

S Dn(t)

<o ln12E
=7 7A0)

AW ()|

E
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Using the dominated convergence theorem and Fubini’s theorem we obtain
1
lim E||an(s) — a(s)|ds =0,

n—00
0

which by the Chebyshev inequality concludes the proof of the theorem.

3.3. Histogram estimator for Ito processes. In this section we extend the
results obtained in Section 3.2 to a more general class of Ito processes.

In order to take advantage of the results obtained for diffusion processes
it is necessary to put some restriction on D, (t) and «(t¢) in addition to
assumptions (A.1)—(A.5) given in Section 3.1.

Namely, we will assume that

1
(A.10) | Ela(t)Dy(t)| dt < oo.

0
By assumption (A.10) we may represent the Ito process given by (3.1) in the
following form (see Liptser and Shiryayev (1981), Theorem 7.17):

(3.9)  dXn(t) = a(t)Dn(Xp, t)dt + Viu(Xn, )dWn(t), X, (0) =0,

where
Dy (X, t) = E(Da(t) | F*)
and F" = 0{X,(s) : s < t}. Moreover, by (A.4) the Wiener process Wn(t)
is adapted to the filtration (F;"), 0 <t < 1.
Replacing Dy, (t, X,,(t)) by Dy (t, Xn(t)) and formulating the assumptions
analogous to (A.6)—(A.9) one may obtain the following

LEMMA 3.2. The mazimum likelihood estimator @, based on the his-
togram sieve S(n) s

m(n)g Dyt dX,(t)
~ Bimm) Vi) ™"
Ba0) A=y e B

=1 SBl,'m(n) Vr?(t) d

1Bl,m(n) (S) 1Cl,m(n) (S)

Along the same lines as in Section 3.2.1 it is possible to obtain results on
consistency and asymptotic normality of the estimator (3.10).

4. General semimartingale model. The results of Section 3 for diffu-
sion and Ito processes can be generalized to semimartingale models. In this
case we assume that the process X,,(t) admits the following representation:

(41)  Xu(t) = a(s)Dn(s)ds + | Va(s) dMy(s),  Xn(0) =0.

Instead of (A.1) and (A.2) assume that
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(A.1") M, is a cadlag martingale for which the predictable variation pro-
cess satisfies d(M,,)(t) = q(t)dt, where ¢ is a continuous function.

(A.2")  Dy(t) and V,,(t) are adapted to the filtration {F,+} and (t)vggt) is
locally integrable with respect to t.

Writing M), (t) = \/1_ Sé 6:(@)) dM,(v) we assume that for the martingale

M (t) the following condition holds:

(A3') Vi), eso0 (ML) (t) L 0asn — oo, where M, is alocally square
integrable martingale containing all the jumps of the martingale M),
larger than e in absolute value.

Unfortunately, in such a general semimartingale model with discontin-
uous realizations it is difficult to derive the form of the likelihood func-
tion analogous to (3.3). Instead, we will follow the ideas of Hutton and
Nelson (1986) and construct a histogram sieve estimator which is a so-
lution of an estimating equation in the set of the histogram sieve for an
appropriately chosen estimating function. Let S(n) be a histogram sieve

as in (2.1). For a(s) = Z;i(ln) 1B, (5), define the estimating function
Qn(am(n)) - (Qn,l(am(n))a R 7Qn,l(0m(n))a R 7Qn,m(n) (am(n))) as
1 Da(!)

(4.2)  Qni(Omen) =\ 15,,... (t)i
\Ym(n) (S)B, (n) ()VQ()

_ S 1By pm) (t)< Z N e (t)) Wv(nzzt) dt

dX,(t)

0
Dn(t) D3 (t)
dX ( ) x] & dt7
N ovew N ovew
l,m(n) 1,m(n)
where 0,,,(,) = (71, ..., Tpyp)) and [ = 1,,...,m(n). It is easily seen that the
solution gm(n) = (T1,...,Tpy(n)) of the estimating equation

has the form

Dy, (t)
I P >v2(>dX (t)

Tinp =
: D20
$B1my TOV2ED U

Thus, the histogram sieve estimator derived through the estimating function
(4.2) may be written in the form

- Z /jlm 1Bl,m(n) (t) 10““(") (t)7
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where

D3 (t) }
Clomn) = — 2L _dt>0p,1=1,...,m(n).
mie) {Bl Ve "

For fixed s € [0, 1] we obtain

D, (t)
3B,y () a0V2 @ 4Xn(t)

_DZ(y)
$ By () TOVED U

in the same way as in (3.5).

In what follows, we assume that all conditions (A.1"), (A.2"), (A.3") and
(A.4) hold and that for D, (t) and V;,(t) satisfying these conditions some of
assumptions (B.1)—(B.6) are fulfilled.

Along the same lines as in the previous section we obtain the following
theorems.

THEOREM 4.1. If conditions (B.1)—(B.3) hold then the histogram sieve
estimator Qi (s) defined in (4.3) is pointwise consistent for each s € [0, 1].

THEOREM 4.2. Let {s1,...,sp} be an arbitrary finite collection of points
from the interval [0,1]. If conditions (B.1)~(B.4) are fulfilled then the se-
quence of random vectors

n (@, (s1) — a(s1),- .., Qn(sp) — a(sp))
converges in distribution, as n — o0, to the p-dimenstonal normal distri-
bution with zero expectation and diagonal covariance matrix with diagonal
entries o; = q(s;)/y(si), i=1,...,p.
THEOREM 4.3. Assume that conditions (B.1)—(B.3), (B.5) and (B.6) are
satisfied. Then the histogram sieve estimator Q(s) is L' consistent, i.e.

1
S |an(s) — a(s)|ds i)

n—00
0

5. Examples and simulation results. (i) Let Z,,(¢) denote a sequence
of diffusion processes satisfying the following stochastic differential equation:

dZn(t) = a(t) dt + % AW, (t),  Zn(0) =0, tel0,1].

In this case, estimation of the unknown drift function «(t) is asymptotically
equivalent to estimation of the regression function in the model

Y;:a(ti)—l—aai, 1=1,...,n,

where ¢; = i/n and ¢; is an i.i.d. sequence with Fe; = 0 and Vare; = 1.
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(i1) Let Yi(t), K = 1,...,n, be a sequence of independent copies of a
diffusion process Y (¢) for which

dY (1) = a(t)a(t, Y (£))dt + dW (),

where Y'(0) = Y is a random variable and W (¢) is a Wiener process. Assume
that the process Y (t) satisfies Conditions I-III from Leskow and Rozariski
(1989a). Define a sequence X,,(t) of semimartingales by
n
dX(t) =Y alt, Yi(t))dYi(t)

k=1

= a(t) ( ; a2(t, Yk(t))> dt + ; alt, V() dWi(2).

Then the process X, (t) can be written in the form of a semimartingale
model considered in Section 4. Moreover, if Conditions I-III from Leskow
and Rozanski (1989a) hold then Conditions (A1), (A2'), (A3'), (A4), (B1)
are satisfied.

Stmulations. In order to gain insight into the behaviour of the histogram
sieve estimator we carried out some computer experiments. In our simulation
study we considered Examples (i) and (ii) described above. The data were
generated according to the following models:

(ML) dZ,(t) = a(t)dt + % AW (t),  Zn(0)=0, o=1,

(M2)  dXu(t) =) Yi(t)dYi(t),
k=1

where Y}, are independent copies of a diffusion process Y (¢) for which
dYy(t) = a(t)Y(t)dt + dWi(t), Yi(0) ~ N(0,1).

For both models two different drift functions were used: a(t) = sin(47t) and
alt) = t2.

Figures 1-4 show the histogram sieve estimator of the drift function (dot-
ted line) for models M1 and M2, obtained for n = 500 and m(n) = /n.

We have also drawn 95% pointwise confidence intervals (dashed lines)
based on asymptotic normality and variance estimator. Performance of the
constructed intervals was investigated in terms of coverage probabilities
based on 1000 Monte Carlo trials. Simulations were carried out for three
different choices of the sequence m(n), namely m(n) = /n, m(n) = n*?
and m(n) = n?/°. Note that the latter two satisfy the conditions given in
Remark in Section 3.

Tables 1-6 contain coverage percentages with estimated standard errors
in parentheses (in percentages). These results were obtained for selected
central points of the subintervals defining the partition of the interval [0,1].
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Fig. 1. Histogram sieve estimator for M1 and «(t)
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Fig. 3. Histogram sieve estimator for M2 and «(t)
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Fig. 4. Histogram sieve estimator for M2 and a(t) = t2

Table 1. Empirical coverage for model M1 and m(n) = v/n

t a(t) = sin(4nt) a(t) =t
0.0227  93.9%(0.757)  95.8%(0.634)
0.0680  95.7%(0.641)  93.3%(0.791)
0.1133  94.8%(0.702)  95.9%(0.627)
0.1593 95.3%(0.669) 94.8%(0.702)
0.2047  94.1%(0.745)  94.1%(0.745)
0.2500  95.8%(0.634)  96.1%(0.612)
0.2953  94.6%(0.715)  95.3%(0.669)
0.3407  94.9%(0.696)  94.3%(0.733)
0.3867  94.4%(0.727)  95.7%(0.641)
0.4320  94.4%(0.727)  95.3%(0.669)
04773 94.8%(0.702)  94.8%(0.702)
0.5227  95.2%(0.676)  94.4%(0.727)
0.5680  94.0%(0.751)  94.7%(0.708)
0.6133  94.9%(0.696)  94.7%(0.708)
0.6593  95.4%(0.662)  96.0%(0.620)
0.7047  95.1%(0.683)  95.1%(0.683)
0.7500  94.2%(0.739)  94.4%(0.727)
0.7953  95.9%(0.627)  94.1%(0.745)
0.8407  94.4%(0.727)  95.4%(0.662)
0.8867  95.5%(0.656)  95.2%(0.676)
0.9320  95.0%(0.689)  95.9%(0.627)
0.9773  95.1%(0.683)  94.7%(0.708)
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Table 2. Empirical coverage for model M1 and m(n) = n*/°

t a(t) =sin(4nt)  aft) =t
0.0313  94.5%(0.721)  95.6%(0.649)
0.0940  94.1%(0.745)  95.7%(0.641)
0.1560  96.2%(0.605)  95.3%(0.669)
0.2187  95.0%(0.689)  94.8%(0.702)
0.2813  95.2%(0.676)  94.9%(0.696)
0.3440  95.1%(0.683)  95.0%(0.689)
0.4060  94.3%(0.733)  94.6%(0.715)
0.4687  95.1%(0.683)  94.4%(0.727)
0.5313  93.6%(0.774)  94.5%(0.721)
0.5940  95.7%(0.641)  94.3%(0.733)
0.6560  95.6%(0.649)  95.8%(0.634)
0.7187  95.9%(0.627)  95.2%(0.676)
0.7813  95.7%(0.641)  93.3%(0.791)
0.8440  95.0%(0.689)  95.7%(0.641)
0.9060  93.8%(0.763)  93.8%(0.763)
0.9687  95.2%(0.676)  94.2%(0.739)

Table 3. Empirical coverage for model M1 and m(n) = n?/®

t a(t) =sin(4nt)  aft) =t
0.0413  94.8%(0.702)  94.6%(0.715)
0.1253  94.1%(0.745)  95.5%(0.656)
0.2080  94.9%(0.696)  95.4%(0.662)
0.2920  94.8%(0.702)  94.6%(0.715)
0.3753  93.4%(0.785)  95.0%(0.689)
0.4580  95.1%(0.683)  94.7%(0.708)
0.5413  93.8%(0.763)  94.7%(0.708)
0.6247  93.7%(0.768)  95.4%(0.662)
0.7080  95.3%(0.669)  94.2%(0.739)
0.7913  95.4%(0.662)  93.9%(0.757)
0.8747  92.6%(0.828)  94.4%(0.727)
0.9580  93.7%(0.768)  95.4%(0.662)

We observe that the performance of the confidence intervals for models
M1 and M2 with sinusoidal drift function «(t) = sin(4xt) is not satisfactory
when we choose m(n) = n?/% tending to infinity too slowly. Other choices of
the sequence m(n) yield rather similar coverages close to the nominal.
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Table 4. Empirical coverage for model M2 and m(n) = /n

t a(t) =sin(4nt)  oft) =t°
0.0233  94.0%(0.751)  94.4%(0.727)
0.0683  95.4%(0.662)  95.5%(0.656)
0.1133  93.4%(0.785)  94.0%(0.751)
0.1583  95.4%(0.662)  95.6%(0.649)
0.2050  94.9%(0.696)  95.1%(0.683)
0.2500  94.7%(0.708)  94.6%(0.715)
0.2950  93.5%(0.780)  93.2%(0.796)
0.3417  94.8%(0.702)  94.9%(0.696)
0.3867  95.8%(0.634)  95.5%(0.656)
0.4317  95.2%(0.676)  95.2%(0.676)
0.4767  95.5%(0.656)  95.4%(0.662)
0.5233  95.8%(0.634)  96.0%(0.620)
0.5683  93.9%(0.757)  94.4%(0.727)
0.6133  95.2%(0.676)  95.6%(0.649)
0.6583  95.0%(0.689)  95.2%(0.676)
0.7050  95.8%(0.634)  95.8%(0.634)
0.7500  96.9%(0.548)  96.5%(0.581)
0.7950  94.6%(0.715)  94.7%(0.708)
0.8417  94.8%(0.702)  94.4%(0.727)
0.8867  94.7%(0.708)  95.0%(0.689)
0.9317  94.3%(0.733)  94.3%(0.733)
0.9767  94.6%(0.715)  95.0%(0.689)

For the remaining models (with parabolic drift function) the results of
empirical coverage obtained for all sequences m(n) considered are quite
similar and choosing m(n) different from /n generally does not improve
coverage significantly. Nevertheless, the coverage probabilities obtained for
m(n) = /n seem to exhibit more variability across different points of the
interval [0, 1] than for other choices of m(n).

Additionally, it is worth noting that for all cases considered, smaller m(n)
yields narrower confidence intervals.

One can also analyse the accuracy of the histogram sieve estimator with
respect to some measure of goodness of fit such as mean integrated abso-
lute error MIAE = F S(l) |a(u) — a(u))| du, or mean integrated squared error

MISE = E S[l)(&(u) — a(u))? du. We recall that L' consistency was proved in
Section 3 (Theorem 3.3).
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Table 5. Empirical coverage for model M2 and m(n) = n*/®

t a(t) =sin(4nt)  aft) =t
0.0317  95.0%(0.689)  95.1%(0.683)
0.0933  95.7%(0.641)  96.0%(0.620)
0.1567  95.0%(0.689)  94.5%(0.721)
0.2183  94.0%(0.751)  94.2%(0.739)
0.2817  94.5%(0.721)  94.4%(0.727)
0.3433  95.0%(0.689)  95.6%(0.649)
0.4067  95.0%(0.689)  95.0%(0.689)
0.4683  95.8%(0.634)  96.1%(0.612)
0.5317  95.4%(0.662)  95.5%(0.656)
0.5933  94.1%(0.745)  95.3%(0.669)
0.6567  95.4%(0.662)  95.2%(0.676)
0.7183  95.5%(0.656)  95.6%(0.649)
0.7817  94.9%(0.696)  95.3%(0.669)
0.8433  94.9%(0.696)  95.3%(0.669)
0.9067  94.8%(0.702)  95.3%(0.669)
0.9683  94.3%(0.733)  94.6%(0.715)

5

Table 6. Empirical coverage for model M2 and m(n) = n?/

t a(t) =sin(4nt)  aft) =t
0.0417  95.3%(0.669)  95.8%(0.634)
0.1250  92.8%(0.817)  94.0%(0.751)
0.2083  94.9%(0.696)  95.0%(0.689)
0.2917  93.8%(0.763)  94.6%(0.715)
0.3750  93.1%(0.801)  94.2%(0.739)
0.4583  94.6%(0.715)  95.3%(0.669)
0.5417  94.2%(0.739)  94.8%(0.702)
0.6250  93.2%(0.796)  94.4%(0.727)
0.7083  95.1%(0.683)  95.0%(0.689)
0.7917  94.8%(0.702)  94.5%(0.721)
0.8750  93.0%(0.807)  95.5%(0.656)
0.9583  94.3%(0.733)  95.1%(0.683)

A closely related issue is choosing an optimal sequence m(n) (determining
the speed of growth of the sieve) which minimizes a given criterion. A detailed
discussion of these problems is beyond the scope of this paper and will be
given elsewhere. We restrict ourselves to presenting some numerical results.
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Table 7. Empirical MIAE for model M1

a(t) n m(n)
vn nd/9 2/
sin(4wt) 500 0.192 0.191 0.208
1000 0.156 0.151 0.163
t? 500 0.167 0.144 0.125
1000 0.142 0.118 0.102

Table 8. Empirical MIAE for model M2

a(t) n m(n)
NG e n2/5
sin(4wt) 500 0.161 0.169 0.193
1000 0.129 0.131 0.150
t? 500 0.131 0.112 0.099
1000 0.111 0.093 0.081

Table 9. Empirical MISE for model M1

a(t) n m(n)
N Rk
sin(4rt) 500 0.058 0.057 0.068
1000 0.038 0.036 0.041
t2 500 0.044 0.033 0.025
1000 0.032 0.022 0.016

Table 10. Empirical MISE for model M2

a(t) n m(n)
N R
sin(47t) 500 0.041 0.045 0.059
1000 0.026 0.027 0.035
t? 500 0.028 0.020 0.016
1000 0.020 0.014 0.010

Tables 7-10 contain results of empirical MIAE and MISE based on 1000
Monte Carlo realizations obtained for models M1 and M2 and for three dif-
ferent choices of the sequence m(n). Roughly speaking, both criteria behave
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in a similar manner with respect to the choice of m(n). Namely, for both
models and drift function a(t) = t? we observe that MIAE as well as MISE is
decreasing when m(n) decreases. On the other hand, for the sinusoidal drift
function the behaviour is not so regular. Namely, for M1 and «(t) = sin(4nt)
the best result is attained for the sequence m(n) = n*/? whereas for M2 the
values of both criteria are minimal when m(n) = \/n.
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