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MAXIMUM LENGTH OF A SERIES IN A MARKOVIAN
BINARY SEQUENCE WITH AN APPLICATION
TO THE DESCRIPTION OF A BASKETBALL GAME

Abstract. The recurrence formulas for the probability distribution func-
tion of the maximum length of a series of 1’s in a binary 0-1 Markovian
sequence are analysed and the limiting distribution estimated. The result is
used to test a semi-Markov model of basketball games.

1. Main recurrence formula. Consider a stationary Markovian binary
0-1 sequence {Uy,,n > 0} with transition matrix

Poo Po1
)= ( )
P10 P11

Define the bivariate sequence {(7,, X,,), n > 1}, where T,, denotes the maxi-
mum length of a series of 1’s in the sequence {Uy, 1 < k < n} and X,, denotes
the length of the series of 1’s located at the end of this sequence. Note that
T,=0if U, =0for 1 <k <n; X, =0if U, = 0. It is easy to see that
{T),, X} is Markovian, and the set S,, of states (¢, j) changes in consecutive
steps. Let pijime(n) = P(Th41 = m, Xpy1 = |1, = i, X, = j). These
transition probabilities depend upon n. They are as follows:

Poo;00(n) = Poo, Poo;11(n) = Ppot,

Ppiizio(1) = P10, Piiit1iv1(n) =p11, 1<i<n,
pio;io(n) = poo, pioji,1(n) =po1, 1<i<n-—1,
Pij:io(n) = p1o, 1<j<i,i+j5<n-1,
Pijsij+1(n) = p11, I1<j<i—-1,i+j<n-—-1
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Table 1. The distribution of 7;, and its moments

n 0 1 2 3 4 5 6 7 | E(T,) D*(T,)
11050 0.50 0.500  0.250
21025 050 0.25 1.000  0.707
31013 050 025 0.13 1.375  0.857
40.06 044 031 0.13 0.06 1.688  0.982
5]003 038 034 0.16 0.06 0.03 1.938  1.088
6 |0.02 031 036 019 0.08 0.03 0.02 2.156  1.176
71001 026 037 021 009 0.04 0.02 001 | 2.344  1.246
80.00 0.21 037 023 011 0.05 0.02 001 | 2512 1.305
90.00 017 036 025 0.12 0.05 0.02 001 | 2662 1.352
10 | 0.00 0.14 035 0.26 0.14 0.06 0.03 0.01 | 2.799  1.392

Let pij(n) = P(T, =i, X5, = j), (1,7) € Sp- The initial state of the sequence
(T, X,,) for the stationary process {U,} has the following probability dis-
tribution function:

1 —pu

]_:PU :O: ==,
Poo(1) G =0)=n 2 —poo — p11

pu(l) = P(Ur =1)=p1 =1—po.
The Markov dependence leads to the recursive formula

pn—l—l(max) = Z pn(i7j)pij;ma:7 (m71’) S 8n+1-
(4,§)ESn
Next, having these distributions, the boundary distribution of 7;, and its
moments may be calculated. The results for 1 < n < 10 assuming pgy =
p11 = 1/2 are shown in Table 1. This suggests that the expectation tends to
infinity and the variances are limited.

2. Rationalization of calculations. The transition matrix (pij.ma)
has sparse positive elements, hence the complexity of the calculation of
the distributions of the bivariate sequence can be reduced. Now we present
the recurrence formulas in new notation. The initial distribution function is
poo(1) = po, po1(1) = p1o(1) =0, p11(1) = p1. From the boundary conditions

Pn+1(0,0) = prn(0,0)poo,
Pr+1(1,0) = pn(1, 1)p1o + pn(1, 0)poo,
Prt1(1,1) = pn(1,0)por + pn(0,0)por,
for 1 > 2 we have:
m
Prt1(i,0) = pn(i,0)poo + Y _ pnld, 5)P10 + P (i, 1)pro,

j=1
i<n—1, m=min(i —1,n—1i—1),
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pn—f—l(n?O) :pn(nvn)p107
Pn+1(3,1) = pp(i,0)por, i <n—1,
1,1 + i+1,4 , 1+1<n/2,
pn+1(i+1,i+1) _ {pn( .)Pn pn( )pn . /
Pn(i,9)p11, n/2<i+1<n.

Pry1(i, j + 1) = pu(d, j)p11,
i<n—2,1<j<m=min(i —2,n—1i—1).

3. Distribution of T),,. The maximal length of a series of 1’s in a Mar-
kovian binary sequence may also be analysed without explicitly applying the
extended process to the bivariate process. We introduce the notation:

pn(k) = P(T,, = k), P, (k) = P(T, < k),
PO (k) = P(Ty = k|Uy = 0), PO (k) = P(T, < k|Up =0),
0<k<n, n>1.

Consider the series of the same symbols at the beginning of the sequence
{Un,n > 1} and denote by Y the length of the initial series of 0’s and by X
the length of the initial series of 1’s. Define

p0() = P(Y = j|Us = i),
pM()=P(X =j|Uy=1i), i=0,1,3>0,
p0G) =Py =4, p3) = P(X = ).

We have
PO G) = phopor, PV G) = e, 520,
PG = porp} oo, G > 1,
‘0)(0) =p1i,  p1V(0) = po,
93) = popdy 'por, P () = pawli P10, G =1

THEOREM 1. Given the boundary values

pn(0) = poply ', pu(n) =pipiy t

and 1 < k <n —1 the following recurrence formulas involving n hold:

Zp WGP (k) +p P k) PO, (k)

zp°'1 (k) + O (k) PO, ().
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4. Series of 0’s and 1’s. Let Z,, denote the maximum length of a se-
ries of 0’s in the sequence {Ug,1 < k < n}, and let T}, as before denote
the maximum length of a series of 1’s in this sequence. Let (ZT(LO),T,gO)) =
((Zn,Ty) | Uy = 0). The mutual dependence of the random variables Z,, and
T, is clearly visible for small n. Therefore, we now extend the recurrence
formulas given in Section 3 to the joint distribution of this pair of random
variables. We introduce the notation for the fourth version of partially cu-
mulated distributions:

pp, (k) = P(Zy =k, T, =1), 0<kl,k+1<n,
Pp, (k1) =P(Z, <k, T, =1), k>0,0<1<n,
pP, (k1) =P(Zy =k, T, <1), 0<k<mn, >0,
PP, (k1) = P(Z, <k, T, <1), k1>0, n>1.

Moreover, we also define the functions pp(®), Pp(o), pP(O), PP© indexed by
) under the condition that U; = 0. The following theorem may be easily
proved by considering the initial series of 0’s and of 1’s in {U,}.

THEOREM 2. Given the boundary values

pp,(0,n) = g(0,n,n),  pp,(n,0) = g(n,0,n),
pp)(n,0) = go(n,0,n),
pp,(k,n— k) = g(k,n —k,n) + g(0,n — k,n — k)piogo(k,0, k),
ppg))(k,n—k):go(kz,n—k,n), 1<k<n-1,
and 1 < k,1,k+1 < n—1 the following recurrence formulas involving n hold:

k—11-1

ok ) = S g, 4,n) ol (k, 1) +Zg i) pPYY, (k. 1)
= 0] 1

+Zg<k,j,n> P, (k1) + g(k,1,n) PP (k,1),

k—11-1 -1
o (k1) = S5 goli..n) pplys (k. D) +Zgo i) pP (ks )
= 1] 1 =1
-1

+ 3" golk, 4.n) Ppl (k. 1) + go(k, 1,n) PP, (K, 1),
j=1

where, for 0 <i,7,i+ 7 <mn,
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pop&;l, i=n, j=0,
popoo p01p11 17 1>0,7>0,1+7=n,
90, jm) = PoPoo pmp{l po, ©>0,7>0,i+j<n-—1,
plpn ) 1=0,7=mn,
p1pl1 P10, t=0,7>0,7<n-1,
L 0, i=7=0,
p&)l, i=n, j=0,
o) = {0
poo pOan P107 1>0,7>0,i+j<n-1,
0, otherwise,

and if the arguments are beyond the allowed domain the expressions are equal

to zero.

Proof. Let X,Y denote the length of the series of 0’s and the length of the
series of 1’s at the beginning of {U,, n > 1}, (Xo,Y)) = (X,Y)|U; = 0).
Let us introduce the notations for the probability distribution functions:

9(i,j,n) = P(X =1, Y = j),
go(i,j,n) = P(Xo=1,Yo=3j), 0<4,ji+j<n, n>1L
We have the recurrence formulas:
Z(O) — 0, (0) -0, Z{O) —1, (0) — 0,
(Zn,To) £ (max(X, 2,y _y), max(¥, T,E ),
(23,17 £ (max(Xo, 2, , ) max(Y0, 7,7y, y,))-
Therefore
P(Z,=0,T,=n) :plp?l_l, P(Z,=n,T,=0) = popgo_l,
Pz =0, T =n)y=0, PZY =n, T =0)=py",

P(Zy=Fk Thn=n—k)= p0p§61p01p?fk + p1pt * prophy t
P(Zy(lo):k, Téo):n—k) poo p01p7111k 17 1<k<n—-1,

and for 1 < k,l,k+1 <n—1 we have:

+Y P(X=i,y=0)P(Z" =k T <)
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n—k—j — —J
j=1
+P(X =k Y=0PZz%, <k TY , <)
k—11-1
P(Z;ZO) = kZ,Téo) = l) = ZZP(XO =1, Yo = ])P(Z,(Io_)l_] = k» Téo_)i_j = l)
i=1 j=1
k—1
+> P(Xo=i, Yo =0)P(Z, =k T, <)
=1

-1
+3 P(Xo=k Yo=)P(ZY, <k T _ =1
j=1

+P(Xo=k, Yo=0P(Z", <k T, , <.
Substituting notations we obtain Theorem 1. u

Next, having the distributions, we can calculate the correlations
c(Ty, Zy). The results for 3 < n < 10 assuming pgp = p11 = 1/2 are shown
in Table 2.

Table 2. The correlations of T, Z,

n 3 4 5 6 7 8 9 10
c(Tn,Zyn) | —0.87 —0.75 0.64 —0.56 0.50 —0.45 —0.41 —0.38

5. Limiting distributions. Let X(p) denote a geometrically distri-
buted random variable with parameter p: P(X(p) = k) = p*"1¢, 0 < p < 1,
g=1—p, k> 1. Note that E(X(p)) = 1/p. The binary Markovian sequence
{U,} generates alternating series of 1’s of length X;(p11) and of 0’s of length
Y;j(poo), 7 > 1, which are independent geometrically distributed random
variables with the given parameters. Consider the maximum

T, = max(Xi(p),..., Xn(p)), mn>1.

Obviously, P(T,, < k) = (1—p*)", k > 1. We prove that the random variable
T,, does not have a limiting distribution. Let [x] denote the integer part of x,
and {x} = z — [z] denote the fractional part of .

LEMMA 3. For every k > 0, as n — oo the following asymptotical for-
mula holds:

P(T, + [log, n] < k) — exp(—exp(k, logp)) — 0,
where kn, = k + {log, n}.
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Proof. For every k > 0 we have
P(Ty, + [log,n] < k) = P(T}, + log, n — {log, n} < k)

1 n
- (1 - ﬁpkn) ~ exp(—p™) = exp(—exp(kn logp)). =

Note that in the case p = 1/2, n = 2", m > 0, as m — oo it follows that
P(T, —m <k) — &(k) = exp(—exp(—klog2)), —oo<k< oo,

where the distribution @ is the discrete version of the Gompertz distribution.
Numerical calculations show that the expected value is 1.332 and the variance
is 3.500. For n = 32 the exact moments are E(7,,) = 6.355 and Var(T,,) =
3.443.

Lemma 3 shows that T, + [log, n] is a nondegenerate integer-valued ran-
dom variable for which, as n — oo, the probabilities P(T}, + [log,n] = k)
oscillate for every k. If we consider T;, + log, n, then the following formula
for the distribution function holds:

P(T,, +log,n < z) = P(T, < [z —log,n]) = P(T, <z —log,n — Ap(z))

~exp(—p* (@) —oo <z < o0,

where A, (z) = {z — log, n}.

6. Alternating process. Consider the delayed alternating renewal pro-
cess defined by consecutive series of 1’s of length X and of 0’s of length Y%,
k > 1, which, together, form the sequence {U,,,n > 1}. Here, the parameter
of the geometrically distributed random variable is omitted. Let Z, = Xp+Y}
denote the length of cycles in this alternating process and define the renewal
process n(t) by the inequality S,,;) <t < Sy()41, where Sy, = Z1+ -+ -+ Z,.
We have E(Z,) = 1/p11 + 1/poo = p1. From renewal theory it follows that
n(t)/t > 1/m = poopur/ (poo + p11)-

THEOREM 4. Let T} denote the mazimum length of a series of 1’s in the
sequence {Up,1 <n <t}. Ast — oo the following approzimation holds:

P(T} —log,,, E(n(t)) < k) —exp(—p*®) — 0, —oco <z < oo,
where x(t) = k + {log,,, E(n(t))}.
Proof. We have
P(Ty) + [logy,, E(n(t))] < k)

- P(Tn(t) +1log,,, n(t) — {log,,, E(n(t))} - log,,, E("—tz)) < I<:>

_ (1 _ % exp <<I<: + {log,,, E(n(t))} + log,,, m) log p))n(t).
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Note that T =T}, s 0. Now the fact that n(t) LN may be used, together
with Lemma 3 and the fact that n(t)u,/t LAY

7. Applications. In [2] a semi-Markovian model of the course of a bas-
ketball game is presented in which the points scored in a game form cycles
governed by a binary Markov sequence. It is assumed that the control se-
quence is stationary, but the alternative case that teams have “hot and cold”
periods may also be considered. Using the series of successes we prove that
the hypothesis that the scoring sequence is Markovian is not rejected for
each of the several games monitored.

We consider basketball games played by the following teams (in brack-
ets we give the abbreviation of the name of the team): Nobiles Wloctawek
(No), Lineker Nicosia [Linel TEX Basket Imola| (L), Split Zagreb [Croatia
Osiguranje Split] (Sp), Slask Wroctaw (SI), Trefl Sopot (Tr), Ulker Istan-
bul (Ul), and five national teams: Greece (Gr), Yugoslavia (Yu), Lithua-
nia (Li), Latvia (La) and Germany (Ge). Some games were played in the
Suproliga and Saporta Cup in the 2000/01 season and one in the Polish
basketball league in 2002. They are of different importance, since the teams
present various standards. The games took place in different circumstances.
In particular the Yugoslavia—Latvia game was played in Turkey, so there
was no home team. All games, excluding one, were monitored by M. Trus
and used in the diploma paper [3], the fourth game (see below) was mon-
itored by J. Dembiniski (see [1]). The same data have been used to test a
semi-Markovian model in [2]. The results of the games are as follows:

Nobiles—Lineker 83:51,
Slask-Ulker 80:69,
Split-Slask 75:76,
Slask—Trefl 84:71,
Yugoslavia—Latvia 114:77,
Lithuania—Latvia 77:94,
Greece—Germany 80:75.

Table 3 shows data concerning the number of cycles in a game, the tran-
sition probabilities p;; and the maximum length n; of a scoring series for
the home team (i = 0) and for the away team (i = 1). We also present the
number of points W(# scored in the series of maximum length.

We compare the realizations of the random variables Z and T with their
distribution functions under the appropriate transition probabilities and the
number of cycles. We note that the observed maximum lengths of series are
not placed at the extremities of the domain of the distribution. A significant
result seems to be the last case: we observe a maximum length of six 1’s when
E(T) = 3.38 and Var(T) = 0.956. However, P(T' < 6) = 0.978. In the case
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Table 3. Maximum length of series in selected basketball games

Match P00 P11 ng M1 Zn w Tn w
No-Li | 0.444 0.308 37 29 5 12 3 7
SI-UL | 0.324 0344 36 34 4 10 5 8
Sp-SI | 0.500 0500 35 37 6 15 4 8
SI-Tr | 0.395 0281 41 32 4 10 3 6
Yu-La | 0.511 0.324 49 36 5 11 4 10
Li-La | 0.324 0.368 37 39 4 4 10
Gr-Ge | 0.500 0.379 37 32 4 6 15

where a test is repeated many times, such a probability should not be used
as an argument for the rejection of the semi-Markovian model. It should be
noted that this series of maximum length was realised by the defeated team.
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