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ON TWO-POINT NASH EQUILIBRIA IN
BIMATRIX GAMES WITH CONVEXITY PROPERTIES

Abstract. This paper considers bimatrix games with matrices having con-
cavity properties. The games described by such payoff matrices well approx-
imate two-person non-zero-sum games on the unit square, with payoff func-
tions Fi(x,y) concave in z for each y, and/or F5(x,y) concave in y for each x.
For these games it is shown that there are Nash equilibria in players’ strate-
gies with supports consisting of at most two points. Also a simple search
procedure for such Nash equilibria is given.

1. Introduction. The assumption of concavity of payoff functions is
very often used, both in theoretical considerations and practical applications
of noncooperative games. A classical result in this field belongs to Glicksberg
[1] and concerns n-person games on R* with continuous quasi-concave payoffs
(see Theorem 1).

Non-zero-sum n-person finite games were first studied by Nash [3], who
proved that such games always have Nash equilibria. Shapley [8] gave some
conditions for existence of saddle points in zero-sum matrix games. Radzik
[5, 7] extended Shapley’s results to games with matrices having some con-
cavity-convexity properties. Next, a generalization of his result from [5] to
bimatrix games was given in [4]. In these two papers [4, 5], pure Nash equi-
libria were considered. In |7], Radzik discussed two-point optimal strategies,
i.e. strategies having supports with at most two elements. In the present
paper we use the same concept of solution, generalizing the results from [7]
to bimatrix games.

The organization of the paper is as follows. In Section 2 we present basic
definitions and some background results. Section 3 contains our new results
for bimatrix games. Finally, Sections 4 and 5 are devoted to their proofs.
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2. Preliminary results. In this section we recall four background the-
orems, essential for our further considerations. First we need to fix some
notation. We will consider n-person non-zero-sum games in normal form

G = <N, {X’i}iENa {Fi}ieN>7 where

1. N ={1,...,n} is a finite set of players;

2. for each ¢ € N, X; is a space of pure strategies x; of Player 1.

3. for each i € N and z = (v1,...,2,) € [[;cy Xi, Fi(z) is the pay-
off function of Player ¢ in the situation when the players use pure
strategies 1, ..., z,, respectively.

A mized strategy for Player ¢ is any probability measure u; on X;, ¢ =
1,...,n.

The first background theorem belongs to Glicksberg [1]. We recall that
by definition, a real-valued function f on a convex set X is quasi-concave
if for each real ¢, the set {x : f(z) > c} is convex. Clearly, every concave
function is quasi-concave.

THEOREM 1. Let X; C RF be non-empty, convexr and compact for all
i € N. If every function F; is continuous on [[,cy X; and quasi-concave
i x;, then the n-person non-zero-sum game G has a pure strategy Nash
equelibrium.

In the next two theorems, a two-person non-zero-sum game on the unit
square G’ = ({1, 2}, {[0, 1], [0, 1]}, {F, G}) is considered. The payoff functions
F(z,y) and G(z,y) for Players 1 and 2, respectively, are assumed to be
bounded and bounded from above on [0, 1] x [0, 1], respectively. Both these
results were proved by Radzik in [6]. (Here and throughout the paper, §; is
the degenerate probability distribution concentrated at the point ¢.)

THEOREM 2. Let F(x,y) be concave in x for each y. Then for any e > 0,
the game G’ has an e-Nash equilibrium of the form (ad, + (1 — a)dy, 36 +
(1 —=B)bq) for some 0 < «, B a,b,c,d <1 with |a —b| <e.

THEOREM 3. Let F(z,y) be convez in x for each y. Then for any e > 0,
the game G’ has an e-Nash equilibrium of the form (adp + (1 — )d1, 30c +
(1 —B3)dq) for some 0 < «, B,¢,d < 1, where « is independent of .

In many situations, the players’ strategy spaces are finite and the above
theorems cannot be applied. In this paper we try to answer the question if
the theorems have any “discrete” counterparts. We will study this problem
for the two-person non-zero-sum case.

For the rest of the paper we will consider two-person non-zero-sum finite
games with strategy spaces of the form X; = {1,...,m}and Xo = {1,...,n}
for two natural numbers m and n, and with payoff functions F; and F5 for
Players 1 and 2, respectively. Let A and B denote the (m x n)-matrices such
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that a;; = Fi(i,7) and bj; = Fy(4,7) for all ¢ and j. We will denote this
bimatrix game by I'(A, B). It will also be called an (m x n)-game I'(A, B)
or denoted by I'(A, B)mxn, to emphasize the size of the payoff matrices A
and B.

Now we give the definitions of concavity for finite games, which are basic
for our paper.

DEFINITION 1. A bimatrix game I'(A, B)mxn is said to be column-
concave [row-concave| if there exists a function Fi(z,y) [Fa(z,y)] on the
unit square, concave in x for each y [concave in y for each x| and if there
are two strictly increasing sequences {z;}{"; and {y;}}_; in [0,1] such that
Fi(xi,y;) = aij [Fa(xi,y;) = byj] for all 4 and j. A column-convezr [row-
conver| game is defined analogously.

DEFINITION 2. A game I'(A, B) is called concave [conver| when it is

column-concave and row-concave [column-convex and row-convex|. For a
zero-sum game (B = —A), the equality F, = —F} is also required.

For a given game I'(A, B) it is rather difficult to check directly if it
is concave or not. It turns out, however, that there exists an alternative
(equivalent) characterization of concavity of bimatrix games, which allows
us to check this property without difficulty. The proof of the following result
is identical to the one for zero-sum two-person games, given in Radzik [7].

THEOREM 4. A game I'(A, B)pmxn is column-concave |row-concave| if
and only if there exist positive numbers 01,...,0m_1 [T1,...,Th—1] such that

(1) Hl(agj — alj) Z 92(a3j — agj) Z s Z Gm,l(amj — am,Lj) for all j
(2)  [11(biz — bi1) > 12(bis — big) > -+ > T—1(bin, — bin—1)  for all i].

When all the inequalities in (1) and/or in (2) are reverse, the game I'(A, B)
is column-conver and/or row-convez.

REMARK 1. Note that (1) and/or (2) hold with positive 601,...,60,,_1
and 71,...,7,—1 if and only if for any 1 < k <m —2and 1 <[ < n—2 there
are ag > 0 and §; > 0 such that

(3) (k41 — Qkj) = Ato,j — akp1,;  forall j
and/or
(4) ﬁl(bi,lJrl — bzl) Z bi,l+2 — bi’lJrl for all 7.

These two conditions are easily verifiable, allowing one to check whether a
)

game is column-concave and/or row-concave. An analogous algorithm can

be used in the “convex” case.

To end this section, we quote Theorem 4.3 from Radzik [7], essential for
our paper. It describes the structure of players’ optimal strategies in two-
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person zero-sum concave matrix games. This result can be seen as a “discrete”
counterpart of Theorem 1 for zero-sum games, with quasi-concavity replaced
by concavity.

THEOREM 5. Let I'(A, —A)mxn be a concave zero-sum matriz game.
Then there exist 0 < A,y < 1 and 1 < s < m and 1 < r < n such that
(", v*) = (MNos+ (1= AN)0st1,70r + (1 —7)0r+1) is a pair of optimal strategies
in I'(A,—A).

It is worth adding here that a simple procedure of searching for optimal
strategies described in the above theorem is also given in [7].

REMARK 2. In view of Theorem 1, one could ask if Theorem 5 remains
true when “concavity” of I'(A, —A) is replaced by “quasi-concavity” (defined
analogously to concavity). Unfortunately, as shown in [7], the result of The-
orem 5 does not hold under this new weaker assumption.

In the next sections, we study two problems. The first is to generalize
Theorem 5 to concave bimatrix games. The second problem is to get discrete
counterparts of Theorems 2 and 3.

3. Main theorems. In this section we formulate our four main results.
The first of them (Theorem 6) generalizes Theorem 5 to non-zero-sum games.
It may also be seen as a discrete counterpart of Theorem 1 for the two-person
case. To formulate it, we need to introduce some notation.

Let A = [ai;] and B = [b;;] be fixed matrices of the same size m x n,
m,n > 2.

The game I (A1, By) is said to be a subgame of I'(A, B) if the matrices
A; and Bj can be obtained by removing some rows and (or) columns from
A and B (the same for A and B).

Now let I}J = I'(A¥), BY)), 1 <i <k <m, 1<j <1<mn, where for any
(m x n)-matrix W = [wg,] we put

Wij Wi, j+1 cee Wy
Wil Wi+1,5 Wit+1+1 - Witl]
kl — .
Wi Wk, j+1 cee o Wg

Obviously, each game Flg is a subgame of I'(A, B).
Further, define

.. . .. .. 1 = .. .. 1
(5) Apy = min(b, b5, A = max(b, by,

.. . .. . 1’ . —— .. . 1’ .
(6) ’y_gl = min(ay), a?;l,]l), v, = max(ap, a?;l,]l),
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where
¥ b — br;
7 b = ! :
(7) ML by — brj + bij — by
aj — ag
(8) a =

Q;] — Qg + Qg — Q4

REMARK 3. One can easily check that if a game of the form

ez [ )
apj Qg brj b

does not have a pure Nash equlhbrlum then the pair (p*,v*) with p*
bﬁjlé + (1 b;gl)ék and v* = a}d; + (1 akl)dl is a Nash equilibrium in I

Now we are ready to formulate our first main theorem.

THEOREM 6. Let I' = I'(A, B)mxn be a concave game. Then one of the
following four cases must occur:

CASE 1: There exists a pure Nash equilibrium (s,r) in I.
CASE 2: There exists a (2 x 2)-subgame I'S1, .y of I" without pure Nash
equilibria.
In this case there is a Nash equilibrium in I'JV, . of the form p* = Ads +
(1= AN)ds41 and v* =40, + (1 —7)0p41 with A =b7" 1 and v = a4,
which s also a Nash equilibrium in I.
CASE 3: For some k > 3 there is a (k x 2)-subgame I'J\; | .4 of I
without pure Nash equilibrium, which satisfies

9) by =bypy1  for alll with s <l <s+k—1.

llr<

In this case for every | with s <1 < s+ k —1 and every v with v, N1 <

v < ’yl;_’;, there is a Nash equilibrium in ']V, Lrt1 of the form u* = &
and v* = v, + (1 — 7)dr41, which is also a Nash equilibrium in I.
CASE 4: For some k > 3 there is a (2 X k)-subgame Iy gy of I

without pure Nash equilibrium, for which

(10) as; = asy1y  for alll withr <l <r+Fk—1.
. . . -1
In this case for every | with r <l < r+ k — 1 and every \ with /\§+11 <

A< )‘lerlllv there is a Nash equilibrium in 70 .. 1 of the form p* =

As + (1 = XN)ds1 and v* = 6;, which is also a Nash equilibrium in I

REMARK 4. A zero-sum version of Theorem 6 was proved in |7, Theorem
4.3]. However, for zero-sum games it is enough to consider only (2 x 3)- and
(3 x 2)-subgames in Cases 3 and 4 above.
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Our second main theorem generalizes Theorem 6.1 of [7] to non-zero-sum
finite games. It can also be seen as a discrete counterpart of Theorem 2 given
in the previous section.

THEOREM 7. Let I’ = I'(A, B)mxn be a column-concave game. Then one
of the following three cases must occur:

CASE 1: There exists a pure Nash equilibrium (s,r) in I
CASE 2: For some 1 < s < m, there exists a (2 X n)-subgame Fss_le of
I without pure Nash equilibria.

In this case there is a Nash equilibrium in F;Jlrl,n of the form p* = A\és +

(1 = AN)ds41 and v* = 0, + (1 — 7)dy for some 0 < A < 1,0 <~ <1 and
1 <r <wu<n, which is also a Nash equilibrium in I .

CASE 3: For some 1 <l <m and 1 <r < u <n there exists a (3 X 2)-
subgame of I of the form

a1, A-1u bi—1r bi—1u
r'=r apr aw || b bru
Qy1r A4l bivir bigiu
satisfying
(11) by = by > by forall 1<j<n
and

aj— < a <a a;— > a > a
(12) (a) { I—1,r Ir I+1,r or (b) { —1,r Ir +1,r

Aj—1,u > Ay > Q41,0 Aj—1u < ap < A4+1,u-

In this case for every vy with ’yllu_l’r <~ < 'yllljl’r, the game I has a mized

Nash equilibrium (pu*,v*) of the form p* = 0; and v* = v, 4+ (1 —7)dy, which
18 also a Nash equilibrium in I .

Before formulating our next theorem, for any (m x n)-matrix C' = [¢;],
define the (2 x n)-matrix
ol _ | G G2 o Cn

m
Cml Cm2 ... Cmn

Then, for any I'(A, B)mxn, we put I't, = I'(AL, BL).

The theorem below generalizes Theorem 6.2 of Radzik [7] to the case of
finite non-zero-sum games. It can also be seen as a discrete counterpart of
Theorem 3.

THEOREM 8. Let I' = I'(A, B)mxn be a column-convexr game. Then one
of the following two cases must occur:

CASE 1: There exists a pure Nash equilibrium (s,r) in L\,.
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In this case (*,v*) = (Js,9y) is also a pure Nash equilibrium in I".
CASE 2: 'Y, does not have a pure Nash equilibrium.

In this case there is a Nash equilibrium in [}, of the form p* = A61+(1—\)om
and v* = vds+ (1 — )6, for some 0 <A< 1,0<y<1landl<s<r<mn,
which is also a Nash equilibrium in I.

Our last result is a modification of Theorem 6 with “concavity” replaced
by “convexity”.

THEOREM 9. Let I' = I'(A, B), with payoff (m x n)-matrices A = [a;;]
and B = [b;;], be a convex game, and let

F”zF([ a1 Ain ] [ bir  bin ])
aml Omn ’ b1 bmn

Then one of the following two cases must occur:
CASE 1: There exists a pure Nash equilibrium (s,r) in I'"".

In this case (u*,v*) = (ds,9,) is also a pure Nash equilibrium in I.
CASE 2: I does not have a pure Nash equilibrium.

In this case there is a Nash equilibrium in I of the form (u*,v*), where
= A1+ (1= A0y, and v* = 761 + (1 — )0p, with A =0bLL and v = all, |
which 1s also a Nash equilibrium in I

4. Auxiliary lemmata. The proofs of Theorems 6-9 will be given in
the next section. In view of their complexity, we precede them by seven
helpful lemmata.

Throughout this section, I" denotes any bimatrix game I'(A, B), where
A = [a;j] and B = [b;j] are (m x n)-matrices, m,n > 2.

LEMMA 1. Any subgame of a column-concave [row-concave| bimatriz game
I' is also a column-concave [row-concave| game.

Proof. This is an immediate consequence of Definition 1.

The result of the next lemma in the case of a zero-sum game was proved
in |7, Lemma 5.1]. Here we extend it to the non-zero-sum case.

LEMMA 2. Let I be a column-concave [row-concave| game. Then for each
J there exist natural numbers 1 < q <t < m [for each i there exist natural
numbers 1 < s <r < n| such that

(13) a1 < agj < - < Qgj = Qg1 = - =Qtj > Q41,5 > -+ > Amyj
(14) [bi1 < bjp <+ < bis=bjsp1 =" =Dbir > bjpr1 > > binl

When I' is a column-convez [row-convex| game, all the inequalities in (13)
and (14) are reverse.
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Proof. Assume that I' is column-concave. We easily conclude from (1)
that for each j there exist ¢ and ¢ such that the sequence of differences

G2j — Q1j, A35 — G25, -5 Gmj — Am—1,5

has the following property: the first ¢ — 1 elements are positive, the elements
from the gth to the (¢ — 1)th are 0, and the remaining ones are negative.
(13) is a simple consequence of this property. Inequalities (14) can be proved
analogously with the help of (2). The proof of the last part of the lemma is
similar. m

LEMMA 3. Let I' be a column-concave [row-concave| game. For nonneg-

ative numbers y1, ..., Yn [A, .-y Aml, let pp = Z?:l Yiaki [wr =Y Niag)
fork=1,....m [l =1,...,n]. Then there exist natural numbers 1 < s <
r < m [there exist natural numbers 1 < g <t < n| such that

(15) PL< - <Ds=Dst1="""=Dr>Prp1 > "> Pm

(16) (Wi < -+ < Wg = Wgg1 =+ =W > W1 > -+ > W)
When I is a column-convez [row-convex| game, all the inequalities in (15)

and (16) are reverse.

Proof. To get (15) [(16)], it is enough to multiply (1) [and (2)] by 7; [and
Ai] and sum the resulting inequalities over all j =1,...,nfalli=1,...,m
The rest of the proof is the same as for the previous lemma. m

LEMMA 4. Let I' be a concave game and let Flg, 1<i<k<m,1<
j <1< n, beits subgame. If (u*,v*) = (Ads + (1= A)dst1, 70 + (1 =7)dr41),
0<A\y<l,i<s<k,j<r<l is a Nash equilibrium in F]g, then it 1s
also a Nash equilibrium in I.

Proof. Since 0 < A,y < 1 and (p*,v*) = (Ads + (1 — N)dsy1,70r +
(1—7)dr+1) is a Nash equilibrium in I'}7, by the standard optimality property
we have
(17) Abg + (1 - )\)bs+1,r = )\bs,rJrl + (1 - )\)bs+1,r+1

> Aot + (1 = A)bg 1 for j <t <1
and

(18) Yasr + (1 - 7)@9,7‘-{-1 = YAs+1,r + (1 - 7)as+1 r+1
> yagr + (1 —7)agr41  fori<gq<k.
But inequalities (15) and (16) imply that (17) and (18) remain true for

1 <t<nandl<gqg<m. Therefore (11*,v*) is a Nash equilibrium in the
entire game ['. m

LEMMA 5. Let I' be a concave game and let Flgv < i<k
Or

<
1 < j <1l < n, be its subgame. If a pair (u*,v*) = (ds,0r), 1 < 8 <

m7
k
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j <r <l, is a Nash equilibrium in F]g, then it is also a Nash equilibrium
m I

Proof. The proof is the same as for Lemma 4, with (15) and (16) replaced
by (13) and (14). =

LEMMA 6. Let I' be a concave game. Assume that Fll;ll’:H 18 1ts subgame
satisfying the following:
(19) blr = bl,rJrl

and

-1 < Qi < Qi41,r,
a
a—1r+1 > ALr+41 > Q41,0415

(20) or
(b) a—1,7 > Ay > Q41,7
al—1r4+1 < Q41 < A1 r4+1-

Then for every v with %li.lﬁ <~v< 'yll;_l‘_’f , there exists a Nash equilibrium

(u*,v*) in Fll;ll”:H of the form p* = 6;, v* = 40, + (1 — ¥)0py1, which is

also a Nash equilibrium in the entire game I'.

Proof. First assume that case (a) of (20) holds. Then, by (1), for some
01,0, > 0,

(21) Or—1(ar, —ar—1,) > O(ar41, —ay) >0
and

0> 0—1(arrr1 — ar—1r41) = O(A141,041 — G pg1)-
The last inequality can be rewritten as
(22) Or(arrt1 — ar1041) 2 O-1(ai-1,041 — arr41) > 0.
But (21) and (22) lead to

O—1(a — a—1,) S O(ar1, — ary)
Or—1(ar—1r41 — arp41) — Oi(arrp1 — Arg1,041)

> 0,

or equivalently

Al —1p4+1 — Al r41 + arr — a1, Alr4+1 — Q41,741 + Q41,0 — QL

> > 1.
al—1,r04+1 — Al r+1 Al r4+1 — Al41,r41
Hence, by (8), we easily get
I=1,r Ir
0<ap,1 < @i <1

Now, fix any ~ in the interval

I—1,r 1
(23) iy <V < g
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Clearly, 0 < v < 1. By (8) we can rewrite the second inequality in (23) in
the form

V(@141 — Q1041+ Qgie — Q) < Arpgp1 — Qg 41,

which is equivalent to

(24) yay + (1= y)agrs1 > varer, + (1= 7)aii1,011-
Similarly, the first inequality of (23) implies

(25) Yai—1,r + (1 - 7)011—1,7“—1—1 < yay + (1 - V)al,r-i—l-
From inequalities (24) and (25) we know that p* = §; is the best strategy for

Player I against the strategy v* = 0, + (1 —7)d,41 of Player II in nl;f,f+1v

and because of (19), v* is also the best strategy for Player IT against Player I’s

strategy p* in Fll_:ll ’: 41+ Therefore (u*,v*) is a Nash equilibrium in Fll_;ll ’: 1
whence, by Lemmata 2 and 3, it is also a Nash equilibrium in I". To end case

(a) notice that (23) is equivalent to

-1, =1,
(26) gl ST S Vs

Case (b) of (20) is symmetric to case (a), in the sense that one of them
becomes the other after interchanging [ — 1 with [ + 1. Consequently, we
can repeat the considerations of case (a), getting inequality (23) in the form
aﬁi’g < g < aﬁl,r-&l' But this is also equivalent to (26), since, by (8),

I+1r Iy Ir -1
Apri1 = Qp1r41 and A 141 = Cpyq- @

LEMMA 7. Assume that I' is a concave bimatriz game which does not
satisfy the assumptions of Cases 1 and 2 of Theorem 6. Then this game has
a (k x 2)-subgame of type Iy 1 0ra (2 x k)-subgame of type I ik
without pure Nash equilibria.

Proof. This is an immediate consequence of [4, Theorem 6] and Lem-
ma 2 m

LEMMA 8. Let I' = I'(A, B)mxn be any bimatriz game. Then there is a
Nash equilibrium (p*,v*) in I' with supports of u* and v* consisting of at
most min(m,n) elements.

Proof. This follows from the well known theorem of Vorob’ev—Kuhn for
bimatrix games (see [2, Lemmata 1 and 2| or [9]). =

5. Proof of the theorems

Proof of Theorem 6. Assume that there is no pure Nash equilibrium in I".
We will show the validity of the statements in the remaining three Cases 2—4.

Proof of the statement in Case 2. Tt follows directly from Lemma 4 and
Remark 3.
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Proof of the statement in Case 3. Assume that a (k x 2)-subgame
I B of I' satisfies (9) and does not have any pure Nash equilibrium.
Suppose that a; = ag41, for some ¢t with s <t < s+ k — 1. Then by (13),
we easily conclude that

Osr < Qgp1p < -0 < G = Qt41,r > Apop 2 00 2 Qstk—1,r-

But this together with (9) implies that (¢,7) and (¢ 4+ 1,r) are pure Nash

equilibria of I';7, ; ., which contradicts the assumption. Therefore,

(27) atr # ey, forall t with s <t <s+k—1.

Now assume that ag < asy1,. Then, in view of (13) and (27), only two
subcases can happen:

(28) Asr < As410 < -0 < Qoyk—1r
or, for some ¢ with s <71 <s+k—1,
(29) Asr < Qg1 < o0 < Qijr > Qi1 > 00 > Qgpk—1,r-

But (29) is not possible, because then (i, 7) would be a pure Nash equilibrium
in I'77) .41 Therefore (28) must hold if ag < asy1,-
In the second subcase ag > @511, We see directly from (13) that

(30) Asr > As410 > " ° 0 > Qotk—1r

Exactly in the same way we can show that there are only two other possi-
bilities, described by (28) or (30) with r replaced by r + 1.
Summarizing, we easily conclude that one of the following two conditions
must be satisfied:
{asr < Ost1p <00 < Ostk—1,r5

Asr+1 > Gs41r+1 > * 0 > Osyk—1r+1
(31) or
Qg > Qg1 >~ > Qsik—1,r,
Asr+1 < Qs+l 741 <+ < Gspk—1,7+1-
Otherwise all the inequalities in one of them would be of the same type,
“<” or “>") easily implying the existence of a pure Nash equilibrium in
;j—kz—l,r—&-l'
Now, take any [ with s < [ < s+ k — 1. Then (9), (31) and Lemma 6
immediately imply the validity of the statement in Case 3.

Proof of the statement in Case 4. This case is symmetric to Case 3 and
is omitted.

To complete the proof of Theorem 6, it should be shown that only Cases
1-4 are possible. Assume then that Cases 1 and 2 do not hold.
By Lemma 7, we can assume that I" has a minimal (k x 2)-subgame

of the form I’ ;ik—l,r 41 without pure Nash equilibria (the other possibility
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with a (2 X k)-subgame ['*7 NETITAREC symmetric). Therefore, all the proper
subgames of 'V, | .. of size k' x 2 have pure Nash equilibria.

For any [ with s < [ < s + k — 1, consider two proper subgames of
I 1,410 namely Iy and I" s+k Lol Both should have pure Nash equi-
libria. If the first of them has one outside its last row, then, by (13), it is also
a pure Nash equilibrium in I777, ey contradicting the assumption. The

same arguments imply that I'" , cannot have a pure Nash equilibrium

s+k—1,r+
outside its first row. Hence, Fl,r 41 and r sk—1r41 have pure Nash equilibria

in the Ith row of I'. Tt is easy to conclude now that they have different pure
equilibria, (I,7) and (I, r+1) (otherwise, I';7; , .., would have a pure Nash
equilibrium). However, this implies b, = by ;41 for s<l<s+k— 1, which
ends the proof of Theorem 6. m

Proof of Theorem 7. We begin by showing that one of Cases 1-3 must
occur. Assume that Cases 1 and 2 do not hold. Since I' is a column-concave
game, the part of Lemma 2 with (13) holds.

Therefore each subgame Fll+1 s 1 < 1 < m, has a pure Nash equilib-
rium, say (z(1),y(1)). If (1) = 1 or a(m — 1) = m, then (z(1),y(1)) or
(x(m —1),y(m — 1)), respectively, would be a pure Nash equilibrium in the
entire game I', because of (13). Therefore z(1) = 2 and xz(m — 1) = m — 1.
Consequently, there exists 1 < [ < m such that (Il — 1) = z(I) = [. Set
y(l—1) = r and y(I) = u. Then, because (I, r) is a pure Nash equilibrium in

F;;Ll and (I, u) is a pure Nash equilibrium in Fl we have

+1,n
32 b =bp, >b; foralll<j<n
( ) Ir lu 1j J 5

and
r 2 -1y and ayp, > Al+1,u-

But, because Case 1 does not hold, neither (I,r) nor (I,u) can be a pure
Nash equilibrium in the entire game I". Hence, using (32) and (13), we easily
deduce

(33) al—1,r < Qi < Ai41r and Al—1,u > Ay > Q410

If » < u then (33) is equivalent to (12)(a), while if v < r then (33) is
equivalent to (12)(b). Therefore only Cases 1, 2 or 3 can hold.

Now we will show the validity of the statements in Cases 2 and 3 of the
theorem.

Proof of the statement in Case 2. Let the assumptions of this case be
satisfied and consider the subgame I'¢! 11, From Lemma 8 it follows that
in this subgame there exists a Nash equlhbrium (u*,v*) of the form p* =
As + (1 — N)dsq1 and v* = 46, + (1 — v)d, for some 0 < A,y < 1 and
1 <r <wu < n. Suppose that A =0 or A = 1. Then, using the properties of
Nash equilibrium, we easily deduce that I} s+1,n, has a pure Nash equilibrium,
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contradicting the assumption. Therefore 0 < A\ < 1. Hence, by the optimality
of Nash equilibrium we have

Yasr + (1 - 'Y)asu = YAs41,r + (1 - 7)as+1,U7
which together with (15) implies that u* is the best strategy for Player I
against v* of Player II in the entire game I'. The Nash optimality of v*
against p* in I" follows directly from its optimality in I ss_le. Thus (u*,v*)
is a Nash equilibrium in I'.

Proof of the statement in Case 3. The game I is column-concave and
has only two columns, hence it is concave. Since (11) holds, Lemma 6 can
be applied to conclude that the pair (u*,v*) described in Case 3 of the
theorem is a Nash equilibrium in I"'. The fact that (u*, ) is an equlibrium
in the entire game I'(A, B) follows easily from (11) and (15) taken for py =
Yakr + (1 — ¥)agy, K =1,...,m. The simple details are omitted. m

Proof of Theorem 8. We apply Lemma 8 to get the existence of a Nash
equilibrium (p*,v*) in I}, of the form p* = Ao + (1 — A\)é, and v* =
v9s + (1 — )9, for some \,y,s and r with 0 < A\, y<land1<s<r<n.

By optimality of (u*,v*), we easily get

(34) Abis 4 (1 = N)bims = Abiy + (1 — N by
> Ao+ (1= N)bp;  foralll <j<n.

Now, if we put p; = va;s + (1 — y)as, i = 1,...,m, then, by the “convex”
part of Lemma 3, for some ¢t and u we have

But the last inequalities, (34) and the definition of (p*, v*) immediately im-
ply that (u*, v*) is a Nash equilibrium in I". If it is a pure Nash equilibrium,
then we have Case 1 of the theorem, otherwise we have Case 2, completing
the proof. m

Proof of Theorem 9. In the game I" there is a Nash equilibrium (p*, %)
with p* = Xo1 + (1 = \)6y, and v* = 791 + (1 —7)dp, where 0 < A,y < 1. Let
pi = Yai1 +(1=7)ain, i =1,...,m,and w; = Abyj+(1=A)by,j, i =1,...,n.
Then, by the “convex” part of Lemma 3, for some r, s, t and u we have

(35)  pi>pe> > pr=pear = =ps < Pert <0 < D,

(36) W >We > > W = W] =+ = Wy < Wyt <+ < Wy

But (35) implies that p* is the best strategy for Player I against the strategy
v* of Player IT in the entire game I'. Similarly (36) implies that v* is the best
strategy for Player II against u* of Player I in I'. Hence, (u*,v*) is also a
Nash equilibrium in I'. If it is a pure Nash equilibrium, then we have Case 1
of the theorem, otherwise Case 2 holds. =
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