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ON TWO-POINT NASH EQUILIBRIA INBIMATRIX GAMES WITH CONVEXITY PROPERTIES

Abstra
t. This paper 
onsiders bimatrix games with matri
es having 
on-
avity properties. The games des
ribed by su
h payo� matri
es well approx-imate two-person non-zero-sum games on the unit square, with payo� fun
-tions F1(x, y) 
on
ave in x for ea
h y, and/or F2(x, y) 
on
ave in y for ea
h x.For these games it is shown that there are Nash equilibria in players' strate-gies with supports 
onsisting of at most two points. Also a simple sear
hpro
edure for su
h Nash equilibria is given.1. Introdu
tion. The assumption of 
on
avity of payo� fun
tions isvery often used, both in theoreti
al 
onsiderations and pra
ti
al appli
ationsof non
ooperative games. A 
lassi
al result in this �eld belongs to Gli
ksberg[1℄ and 
on
erns n-person games on R
k with 
ontinuous quasi-
on
ave payo�s(see Theorem 1).Non-zero-sum n-person �nite games were �rst studied by Nash [3℄, whoproved that su
h games always have Nash equilibria. Shapley [8℄ gave some
onditions for existen
e of saddle points in zero-sum matrix games. Radzik[5, 7℄ extended Shapley's results to games with matri
es having some 
on-
avity-
onvexity properties. Next, a generalization of his result from [5℄ tobimatrix games was given in [4℄. In these two papers [4, 5℄, pure Nash equi-libria were 
onsidered. In [7℄, Radzik dis
ussed two-point optimal strategies,i.e. strategies having supports with at most two elements. In the presentpaper we use the same 
on
ept of solution, generalizing the results from [7℄to bimatrix games.The organization of the paper is as follows. In Se
tion 2 we present basi
de�nitions and some ba
kground results. Se
tion 3 
ontains our new resultsfor bimatrix games. Finally, Se
tions 4 and 5 are devoted to their proofs.2000 Mathemati
s Subje
t Classi�
ation: Primary 91A05.Key words and phrases: non-zero-sum game, 
on
ave/
onvex game, Nash equilibrium.[71℄



72 W. Poªow
zuk2. Preliminary results. In this se
tion we re
all four ba
kground the-orems, essential for our further 
onsiderations. First we need to �x somenotation. We will 
onsider n-person non-zero-sum games in normal formG = 〈N, {Xi}i∈N , {Fi}i∈N 〉, where1. N = {1, . . . , n} is a �nite set of players;2. for ea
h i ∈ N , Xi is a spa
e of pure strategies xi of Player i.3. for ea
h i ∈ N and x = (x1, . . . , xn) ∈
∏

i∈N Xi, Fi(x) is the pay-o� fun
tion of Player i in the situation when the players use purestrategies x1, . . . , xn, respe
tively.A mixed strategy for Player i is any probability measure µi on Xi, i =
1, . . . , n.The �rst ba
kground theorem belongs to Gli
ksberg [1℄. We re
all thatby de�nition, a real-valued fun
tion f on a 
onvex set X is quasi-
on
aveif for ea
h real c, the set {x : f(x) ≥ c} is 
onvex. Clearly, every 
on
avefun
tion is quasi-
on
ave.Theorem 1. Let Xi ⊂ R

k be non-empty , 
onvex and 
ompa
t for all
i ∈ N . If every fun
tion Fi is 
ontinuous on ∏

i∈N Xi and quasi-
on
avein xi, then the n-person non-zero-sum game G has a pure strategy Nashequilibrium.In the next two theorems, a two-person non-zero-sum game on the unitsquareG′ = 〈{1, 2}, {[0, 1], [0, 1]}, {F, G}〉 is 
onsidered. The payo� fun
tions
F (x, y) and G(x, y) for Players 1 and 2, respe
tively, are assumed to bebounded and bounded from above on [0, 1] × [0, 1], respe
tively. Both theseresults were proved by Radzik in [6℄. (Here and throughout the paper, δt isthe degenerate probability distribution 
on
entrated at the point t.)Theorem 2. Let F (x, y) be 
on
ave in x for ea
h y. Then for any ε > 0,the game G′ has an ε-Nash equilibrium of the form (αδa + (1 − α)δb, βδc +
(1 − β)δd) for some 0 ≤ α, β, a, b, c, d ≤ 1 with |a − b| < ε.Theorem 3. Let F (x, y) be 
onvex in x for ea
h y. Then for any ε > 0,the game G′ has an ε-Nash equilibrium of the form (αδ0 + (1 − α)δ1, βδc +
(1 − β)δd) for some 0 ≤ α, β, c, d ≤ 1, where α is independent of ε.In many situations, the players' strategy spa
es are �nite and the abovetheorems 
annot be applied. In this paper we try to answer the question ifthe theorems have any �dis
rete� 
ounterparts. We will study this problemfor the two-person non-zero-sum 
ase.For the rest of the paper we will 
onsider two-person non-zero-sum �nitegames with strategy spa
es of the form X1 = {1, . . . , m} and X2 = {1, . . . , n}for two natural numbers m and n, and with payo� fun
tions F1 and F2 forPlayers 1 and 2, respe
tively. Let A and B denote the (m×n)-matri
es su
h



Nash equilibria in bimatrix games 73that aij = F1(i, j) and bij = F2(i, j) for all i and j. We will denote thisbimatrix game by Γ (A, B). It will also be 
alled an (m × n)-game Γ (A, B)or denoted by Γ (A, B)m×n, to emphasize the size of the payo� matri
es Aand B.Now we give the de�nitions of 
on
avity for �nite games, whi
h are basi
for our paper.Definition 1. A bimatrix game Γ (A, B)m×n is said to be 
olumn-
on
ave [row-
on
ave℄ if there exists a fun
tion F1(x, y) [F2(x, y)] on theunit square, 
on
ave in x for ea
h y [
on
ave in y for ea
h x℄ and if thereare two stri
tly in
reasing sequen
es {xi}
m
i=1 and {yj}

n
j=1 in [0, 1] su
h that

F1(xi, yj) = aij [F2(xi, yj) = bij ℄ for all i and j. A 
olumn-
onvex [row-
onvex ℄ game is de�ned analogously.Definition 2. A game Γ (A, B) is 
alled 
on
ave [
onvex ℄ when it is
olumn-
on
ave and row-
on
ave [
olumn-
onvex and row-
onvex℄. For azero-sum game (B = −A), the equality F2 = −F1 is also required.For a given game Γ (A, B) it is rather di�
ult to 
he
k dire
tly if itis 
on
ave or not. It turns out, however, that there exists an alternative(equivalent) 
hara
terization of 
on
avity of bimatrix games, whi
h allowsus to 
he
k this property without di�
ulty. The proof of the following resultis identi
al to the one for zero-sum two-person games, given in Radzik [7℄.Theorem 4. A game Γ (A, B)m×n is 
olumn-
on
ave [row-
on
ave℄ ifand only if there exist positive numbers θ1, . . . , θm−1 [τ1, . . . , τn−1] su
h that(1) θ1(a2j − a1j) ≥ θ2(a3j − a2j) ≥ · · · ≥ θm−1(amj − am−1,j) for all j(2) [τ1(bi2 − bi1) ≥ τ2(bi3 − bi2) ≥ · · · ≥ τn−1(bin − bi,n−1) for all i].When all the inequalities in (1) and/or in (2) are reverse, the game Γ (A, B)is 
olumn-
onvex and/or row-
onvex.Remark 1. Note that (1) and/or (2) hold with positive θ1, . . . , θm−1and τ1, . . . , τn−1 if and only if for any 1 ≤ k ≤ m−2 and 1 ≤ l ≤ n−2 thereare αk > 0 and βl > 0 su
h that(3) αk(ak+1,j − akj) ≥ ak+2,j − ak+1,j for all jand/or(4) βl(bi,l+1 − bil) ≥ bi,l+2 − bi,l+1 for all i.These two 
onditions are easily veri�able, allowing one to 
he
k whether agame is 
olumn-
on
ave and/or row-
on
ave. An analogous algorithm 
anbe used in the �
onvex� 
ase.To end this se
tion, we quote Theorem 4.3 from Radzik [7℄, essential forour paper. It des
ribes the stru
ture of players' optimal strategies in two-



74 W. Poªow
zukperson zero-sum 
on
ave matrix games. This result 
an be seen as a �dis
rete�
ounterpart of Theorem 1 for zero-sum games, with quasi-
on
avity repla
edby 
on
avity.Theorem 5. Let Γ (A,−A)m×n be a 
on
ave zero-sum matrix game.Then there exist 0 ≤ λ, γ ≤ 1 and 1 ≤ s < m and 1 ≤ r < n su
h that
(µ∗, ν∗) = (λδs +(1−λ)δs+1, γδr +(1−γ)δr+1) is a pair of optimal strategiesin Γ (A,−A).It is worth adding here that a simple pro
edure of sear
hing for optimalstrategies des
ribed in the above theorem is also given in [7℄.Remark 2. In view of Theorem 1, one 
ould ask if Theorem 5 remainstrue when �
on
avity� of Γ (A,−A) is repla
ed by �quasi-
on
avity� (de�nedanalogously to 
on
avity). Unfortunately, as shown in [7℄, the result of The-orem 5 does not hold under this new weaker assumption.In the next se
tions, we study two problems. The �rst is to generalizeTheorem 5 to 
on
ave bimatrix games. The se
ond problem is to get dis
rete
ounterparts of Theorems 2 and 3.3. Main theorems. In this se
tion we formulate our four main results.The �rst of them (Theorem 6) generalizes Theorem 5 to non-zero-sum games.It may also be seen as a dis
rete 
ounterpart of Theorem 1 for the two-person
ase. To formulate it, we need to introdu
e some notation.Let A = [aij ] and B = [bij] be �xed matri
es of the same size m × n,
m, n ≥ 2.The game Γ1(A1, B1) is said to be a subgame of Γ (A, B) if the matri
es
A1 and B1 
an be obtained by removing some rows and (or) 
olumns from
A and B (the same for A and B).Now let Γ

ij
kl = Γ (Aij

kl, B
ij
kl), 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n, where for any

(m × n)-matrix W = [wsr] we put
W

ij
kl =













wij wi,j+1 . . . wil

wi+1,j wi+1,j+1 . . . wi+1,l... ... ...
wkj wk,j+1 . . . wkl













.

Obviously, ea
h game Γ
ij
kl is a subgame of Γ (A, B).Further, de�ne(5) λ

ij
kl = min(bij

kl, b
i,j+1

k,l+1
), λ

ij
kl = max(bij

kl, b
i,j+1

k,l+1
),(6) γ

ij
kl = min(aij

kl, a
i+1,j
k+1,l), γ

ij
kl = max(aij

kl, a
i+1,j
k+1,l),



Nash equilibria in bimatrix games 75where
b
ij
kl =

bkl − bkj

bkl − bkj + bij − bil

,(7)
a

ij
kl =

ail − akl

ail − akl + akj − aij

.(8) Remark 3. One 
an easily 
he
k that if a game of the form
Γ = Γ

([

aij ail

akj akl

]

,

[

bij bil

bkj bkl

])

does not have a pure Nash equilibrium, then the pair (µ∗, ν∗) with µ∗ =

b
ij
klδi + (1 − b

ij
kl)δk and ν∗ = a

ij
klδj + (1 − a

ij
kl)δl is a Nash equilibrium in Γ .Now we are ready to formulate our �rst main theorem.Theorem 6. Let Γ = Γ (A, B)m×n be a 
on
ave game. Then one of thefollowing four 
ases must o

ur :

Case 1: There exists a pure Nash equilibrium (s, r) in Γ .
Case 2: There exists a (2×2)-subgame Γ sr

s+1,r+1 of Γ without pure Nashequilibria.In this 
ase there is a Nash equilibrium in Γ sr
s+1,r+1 of the form µ∗ = λδs +

(1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δr+1 with λ = bsr
s+1,r+1 and γ = asr

s+1,r+1,whi
h is also a Nash equilibrium in Γ .
Case 3: For some k ≥ 3 there is a (k × 2)-subgame Γ sr

s+k−1,r+1
of Γwithout pure Nash equilibrium, whi
h satis�es(9) blr = bl,r+1 for all l with s < l < s + k − 1.In this 
ase for every l with s < l < s + k − 1 and every γ with γ

l−1,r
l,r+1

≤

γ ≤ γ
l−1,r
l,r+1

, there is a Nash equilibrium in Γ sr
s+k−1,r+1

of the form µ∗ = δland ν∗ = γδr + (1 − γ)δr+1, whi
h is also a Nash equilibrium in Γ .
Case 4: For some k ≥ 3 there is a (2 × k)-subgame Γ sr

s+1,r+k−1
of Γwithout pure Nash equilibrium, for whi
h(10) asl = as+1,l for all l with r < l < r + k − 1.In this 
ase for every l with r < l < r + k − 1 and every λ with λ

s,l−1

s+1,l ≤

λ ≤ λ
s,l−1

s+1,l, there is a Nash equilibrium in Γ sr
s+1,r+k−1

of the form µ∗ =

λδs + (1 − λ)δs+1 and ν∗ = δl, whi
h is also a Nash equilibrium in Γ .Remark 4. A zero-sum version of Theorem 6 was proved in [7, Theorem4.3℄. However, for zero-sum games it is enough to 
onsider only (2× 3)- and
(3 × 2)-subgames in Cases 3 and 4 above.



76 W. Poªow
zukOur se
ond main theorem generalizes Theorem 6.1 of [7℄ to non-zero-sum�nite games. It 
an also be seen as a dis
rete 
ounterpart of Theorem 2 givenin the previous se
tion.Theorem 7. Let Γ = Γ (A, B)m×n be a 
olumn-
on
ave game. Then oneof the following three 
ases must o

ur :
Case 1: There exists a pure Nash equilibrium (s, r) in Γ .
Case 2: For some 1 ≤ s < m, there exists a (2 × n)-subgame Γ s1

s+1,n of
Γ without pure Nash equilibria.In this 
ase there is a Nash equilibrium in Γ s1

s+1,n of the form µ∗ = λδs +
(1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δu for some 0 < λ < 1, 0 ≤ γ ≤ 1 and
1 ≤ r < u ≤ n, whi
h is also a Nash equilibrium in Γ .
Case 3: For some 1 < l < m and 1 ≤ r < u ≤ n there exists a (3 × 2)-subgame of Γ of the form

Γ ′ = Γ













al−1,r al−1,u

alr alu

al+1,r al+1,u






,







bl−1,r bl−1,u

blr blu

bl+1,r bl+1,u













satisfying(11) blr = blu ≥ blj for all 1 ≤ j ≤ nand
(12) (a)

{

al−1,r < alr < al+1,r

al−1,u > alu > al+1,u

or (b)

{

al−1,r > alr > al+1,r

al−1,u < alu < al+1,u.In this 
ase for every γ with γ
l−1,r
lu ≤ γ ≤ γ

l−1,r
lu , the game Γ ′ has a mixedNash equilibrium (µ∗, ν∗) of the form µ∗ = δl and ν∗ = γδr +(1−γ)δu, whi
his also a Nash equilibrium in Γ .Before formulating our next theorem, for any (m × n)-matrix C = [cij],de�ne the (2 × n)-matrix

C1
m =

[

c11 c12 . . . c1n

cm1 cm2 . . . cmn

]

.Then, for any Γ (A, B)m×n, we put Γ 1
m = Γ (A1

m, B1
m).The theorem below generalizes Theorem 6.2 of Radzik [7℄ to the 
ase of�nite non-zero-sum games. It 
an also be seen as a dis
rete 
ounterpart ofTheorem 3.Theorem 8. Let Γ = Γ (A, B)m×n be a 
olumn-
onvex game. Then oneof the following two 
ases must o

ur :

Case 1: There exists a pure Nash equilibrium (s, r) in Γ 1
m.



Nash equilibria in bimatrix games 77In this 
ase (µ∗, ν∗) = (δs, δr) is also a pure Nash equilibrium in Γ .
Case 2: Γ 1

m does not have a pure Nash equilibrium.In this 
ase there is a Nash equilibrium in Γ 1
m of the form µ∗ = λδ1+(1−λ)δmand ν∗ = γδs + (1− γ)δr for some 0 < λ < 1, 0 ≤ γ ≤ 1 and 1 ≤ s < r ≤ n,whi
h is also a Nash equilibrium in Γ .Our last result is a modi�
ation of Theorem 6 with �
on
avity� repla
edby �
onvexity�.Theorem 9. Let Γ = Γ (A, B), with payo� (m × n)-matri
es A = [aij]and B = [bij ], be a 
onvex game, and let

Γ ′′ = Γ

([

a11 a1n

am1 amn

]

,

[

b11 b1n

bm1 bmn

])

.Then one of the following two 
ases must o

ur :
Case 1: There exists a pure Nash equilibrium (s, r) in Γ ′′.In this 
ase (µ∗, ν∗) = (δs, δr) is also a pure Nash equilibrium in Γ .
Case 2: Γ ′′ does not have a pure Nash equilibrium.In this 
ase there is a Nash equilibrium in Γ ′′ of the form (µ∗, ν∗), where

µ∗ = λδ1 + (1− λ)δm and ν∗ = γδ1 + (1− γ)δn, with λ = b11
mn and γ = a11

mn,whi
h is also a Nash equilibrium in Γ .4. Auxiliary lemmata. The proofs of Theorems 6�9 will be given inthe next se
tion. In view of their 
omplexity, we pre
ede them by sevenhelpful lemmata.Throughout this se
tion, Γ denotes any bimatrix game Γ (A, B), where
A = [aij ] and B = [bij ] are (m × n)-matri
es, m, n ≥ 2.Lemma 1.Any subgame of a 
olumn-
on
ave [row-
on
ave℄ bimatrix game
Γ is also a 
olumn-
on
ave [row-
on
ave℄ game.Proof. This is an immediate 
onsequen
e of De�nition 1.The result of the next lemma in the 
ase of a zero-sum game was provedin [7, Lemma 5.1℄. Here we extend it to the non-zero-sum 
ase.Lemma 2. Let Γ be a 
olumn-
on
ave [row-
on
ave℄ game. Then for ea
h
j there exist natural numbers 1 ≤ q ≤ t ≤ m [for ea
h i there exist naturalnumbers 1 ≤ s ≤ r ≤ n] su
h that(13) a1j < a2j < · · · < aqj = aq+1,j = · · · = atj > at+1,j > · · · > amj(14) [bi1 < bi2 < · · · < bis = bi,s+1 = · · · = bir > bi,r+1 > · · · > bin].When Γ is a 
olumn-
onvex [row-
onvex℄ game, all the inequalities in (13)and (14) are reverse.



78 W. Poªow
zukProof. Assume that Γ is 
olumn-
on
ave. We easily 
on
lude from (1)that for ea
h j there exist q and t su
h that the sequen
e of di�eren
es
a2j − a1j, a3j − a2j , . . . , amj − am−1,jhas the following property: the �rst q−1 elements are positive, the elementsfrom the qth to the (t − 1)th are 0, and the remaining ones are negative.(13) is a simple 
onsequen
e of this property. Inequalities (14) 
an be provedanalogously with the help of (2). The proof of the last part of the lemma issimilar.Lemma 3. Let Γ be a 
olumn-
on
ave [row-
on
ave℄ game. For nonneg-ative numbers γ1, . . . , γn [λ1, . . . , λm], let pk =

∑n
j=1

γjakj [wl =
∑m

i=1
λiail]for k = 1, . . . , m [l = 1, . . . , n]. Then there exist natural numbers 1 ≤ s ≤

r ≤ m [there exist natural numbers 1 ≤ q ≤ t ≤ n] su
h that(15) p1 < · · · < ps = ps+1 = · · · = pr > pr+1 > · · · > pm(16) [w1 < · · · < wq = wq+1 = · · · = wt > wt+1 > · · · > wn].When Γ is a 
olumn-
onvex [row-
onvex℄ game, all the inequalities in (15)and (16) are reverse.Proof. To get (15) [(16)℄, it is enough to multiply (1) [and (2)℄ by γj [and
λi℄ and sum the resulting inequalities over all j = 1, . . . , n [all i = 1, . . . , m℄.The rest of the proof is the same as for the previous lemma.Lemma 4. Let Γ be a 
on
ave game and let Γ

ij
kl , 1 ≤ i < k ≤ m, 1 ≤

j < l ≤ n, be its subgame. If (µ∗, ν∗) = (λδs +(1−λ)δs+1, γδr +(1−γ)δr+1),
0 < λ, γ < 1, i ≤ s < k, j ≤ r < l, is a Nash equilibrium in Γ

ij
kl , then it isalso a Nash equilibrium in Γ .Proof. Sin
e 0 < λ, γ < 1 and (µ∗, ν∗) = (λδs + (1 − λ)δs+1, γδr +

(1−γ)δr+1) is a Nash equilibrium in Γ
ij
kl , by the standard optimality propertywe have

λbsr + (1 − λ)bs+1,r = λbs,r+1 + (1 − λ)bs+1,r+1(17)
≥ λbst + (1 − λ)bs,t+1 for j ≤ t ≤ land

γasr + (1 − γ)as,r+1 = γas+1,r + (1 − γ)as+1,r+1(18)
≥ γaqr + (1 − γ)aq,r+1 for i ≤ q ≤ k.But inequalities (15) and (16) imply that (17) and (18) remain true for

1 ≤ t ≤ n and 1 ≤ q ≤ m. Therefore (µ∗, ν∗) is a Nash equilibrium in theentire game Γ .Lemma 5. Let Γ be a 
on
ave game and let Γ
ij
kl , 1 ≤ i < k ≤ m,

1 ≤ j < l ≤ n, be its subgame. If a pair (µ∗, ν∗) = (δs, δr), i < s < k,
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j < r < l, is a Nash equilibrium in Γ

ij
kl , then it is also a Nash equilibriumin Γ .Proof. The proof is the same as for Lemma 4, with (15) and (16) repla
edby (13) and (14).Lemma 6. Let Γ be a 
on
ave game. Assume that Γ

l−1,r
l+1,r+1

is its subgamesatisfying the following :(19) blr = bl,r+1and
(20) (a)

{

al−1,r < alr < al+1,r,

al−1,r+1 > al,r+1 > al+1,r+1,or
(b)

{

al−1,r > alr > al+1,r,

al−1,r+1 < al,r+1 < al+1,r+1.Then for every γ with γ
l−1,r
l,r+1

≤ γ ≤ γ
l−1,r
l,r+1

, there exists a Nash equilibrium
(µ∗, ν∗) in Γ

l−1,r
l+1,r+1

of the form µ∗ = δl, ν∗ = γδr + (1 − γ)δr+1, whi
h isalso a Nash equilibrium in the entire game Γ .Proof. First assume that 
ase (a) of (20) holds. Then, by (1), for some
θl−1, θl > 0,(21) θl−1(al,r − al−1,r) ≥ θl(al+1,r − alr) > 0and

0 > θl−1(al,r+1 − al−1,r+1) ≥ θl(al+1,r+1 − al,r+1).The last inequality 
an be rewritten as(22) θl(al,r+1 − al+1,r+1) ≥ θl−1(al−1,r+1 − al,r+1) > 0.But (21) and (22) lead to
θl−1(alr − al−1,r)

θl−1(al−1,r+1 − al,r+1)
≥

θl(al+1,r − al,r)

θl(al,r+1 − al+1,r+1)
> 0,or equivalently

al−1,r+1 − al,r+1 + al,r − al−1,r

al−1,r+1 − al,r+1

≥
al,r+1 − al+1,r+1 + al+1,r − al,r

al,r+1 − al+1,r+1

> 1.Hen
e, by (8), we easily get
0 < a

l−1,r
l,r+1

≤ alr
l+1,r+1 < 1.Now, �x any γ in the interval(23) a

l−1,r
l,r+1

≤ γ ≤ alr
l+1,r+1.
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zukClearly, 0 < γ < 1. By (8) we 
an rewrite the se
ond inequality in (23) inthe form
γ(al,r+1 − al+1,r+1 + al+1,r − alr) ≤ al,r+1 − al+1,r+1,whi
h is equivalent to(24) γalr + (1 − γ)al,r+1 ≥ γal+1,r + (1 − γ)al+1,r+1.Similarly, the �rst inequality of (23) implies(25) γal−1,r + (1 − γ)al−1,r+1 ≤ γalr + (1 − γ)al,r+1.From inequalities (24) and (25) we know that µ∗ = δl is the best strategy forPlayer I against the strategy ν∗ = γδr + (1− γ)δr+1 of Player II in Γ

l−1,r
l+1,r+1

,and be
ause of (19), ν∗ is also the best strategy for Player II against Player I'sstrategy µ∗ in Γ
l−1,r
l+1,r+1

. Therefore (µ∗, ν∗) is a Nash equilibrium in Γ
l−1,r
l+1,r+1

,when
e, by Lemmata 2 and 3, it is also a Nash equilibrium in Γ . To end 
ase(a) noti
e that (23) is equivalent to(26) γ
l−1,r
l,r+1

≤ γ ≤ γ
l−1,r
l,r+1

.Case (b) of (20) is symmetri
 to 
ase (a), in the sense that one of thembe
omes the other after inter
hanging l − 1 with l + 1. Consequently, we
an repeat the 
onsiderations of 
ase (a), getting inequality (23) in the form
a

l+1,r
l,r+1

≤ γ ≤ alr
l−1,r+1

. But this is also equivalent to (26), sin
e, by (8),
a

l+1,r
l,r+1

= alr
l+1,r+1

and alr
l−1,r+1

= a
l−1,r
l,r+1

.Lemma 7. Assume that Γ is a 
on
ave bimatrix game whi
h does notsatisfy the assumptions of Cases 1 and 2 of Theorem 6. Then this game hasa (k×2)-subgame of type Γ sr
s+k−1,r+1

or a (2×k)-subgame of type Γ sr
s+1,r+k−1without pure Nash equilibria.Proof. This is an immediate 
onsequen
e of [4, Theorem 6℄ and Lem-ma 2.Lemma 8. Let Γ = Γ (A, B)m×n be any bimatrix game. Then there is aNash equilibrium (µ∗, ν∗) in Γ with supports of µ∗ and ν∗ 
onsisting of atmost min(m, n) elements.Proof. This follows from the well known theorem of Vorob'ev�Kuhn forbimatrix games (see [2, Lemmata 1 and 2℄ or [9℄).5. Proof of the theoremsProof of Theorem 6. Assume that there is no pure Nash equilibrium in Γ .We will show the validity of the statements in the remaining three Cases 2�4.Proof of the statement in Case 2. It follows dire
tly from Lemma 4 andRemark 3.
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Γ sr

s+k−1,r+1
of Γ satis�es (9) and does not have any pure Nash equilibrium.Suppose that atr = at+1,r for some t with s ≤ t < s + k − 1. Then by (13),we easily 
on
lude that

asr ≤ as+1,r ≤ · · · ≤ atr = at+1,r ≥ at+2,r ≥ · · · ≥ as+k−1,r.But this together with (9) implies that (t, r) and (t + 1, r) are pure Nashequilibria of Γ sr
s+k−1,r+1

, whi
h 
ontradi
ts the assumption. Therefore,(27) atr 6= at+1,r for all t with s ≤ t < s + k − 1.Now assume that asr < as+1,r. Then, in view of (13) and (27), only twosub
ases 
an happen:(28) asr < as+1,r < · · · < as+k−1,ror, for some i with s < i < s + k − 1,(29) asr < as+1,r < · · · < air > ai+1,r > · · · > as+k−1,r.But (29) is not possible, be
ause then (i, r) would be a pure Nash equilibriumin Γ sr
s+k−1,r+1

. Therefore (28) must hold if asr < as+1,r.In the se
ond sub
ase asr > as+1,r, we see dire
tly from (13) that(30) asr > as+1,r > · · · > as+k−1,rExa
tly in the same way we 
an show that there are only two other possi-bilities, des
ribed by (28) or (30) with r repla
ed by r + 1.Summarizing, we easily 
on
lude that one of the following two 
onditionsmust be satis�ed:
(31)

{

asr < as+1,r < · · · < as+k−1,r,

as,r+1 > as+1,r+1 > · · · > as+k−1,r+1or
{

asr > as+1,r > · · · > as+k−1,r,

as,r+1 < as+1,r+1 < · · · < as+k−1,r+1.Otherwise all the inequalities in one of them would be of the same type,�<� or �>�, easily implying the existen
e of a pure Nash equilibrium in
Γ sr

s+k−1,r+1
.Now, take any l with s < l < s + k − 1. Then (9), (31) and Lemma 6immediately imply the validity of the statement in Case 3.Proof of the statement in Case 4. This 
ase is symmetri
 to Case 3 andis omitted.To 
omplete the proof of Theorem 6, it should be shown that only Cases1�4 are possible. Assume then that Cases 1 and 2 do not hold.By Lemma 7, we 
an assume that Γ has a minimal (k × 2)-subgameof the form Γ sr

s+k−1,r+1
without pure Nash equilibria (the other possibility
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zukwith a (2 × k)-subgame Γ sr
s+1,r+k−1

is symmetri
). Therefore, all the propersubgames of Γ sr
s+k−1,r+1

of size k′ × 2 have pure Nash equilibria.For any l with s < l < s + k − 1, 
onsider two proper subgames of
Γ sr

s+k−1,r+1
, namely Γ sr

l,r+1
and Γ lr

s+k−1,r+1
. Both should have pure Nash equi-libria. If the �rst of them has one outside its last row, then, by (13), it is alsoa pure Nash equilibrium in Γ sr

s+k−1,r+1
, 
ontradi
ting the assumption. Thesame arguments imply that Γ lr

s+k−1,r+1

annot have a pure Nash equilibriumoutside its �rst row. Hen
e, Γ sr

l,r+1
and Γ lr

s+k−1,r+1
have pure Nash equilibriain the lth row of Γ . It is easy to 
on
lude now that they have di�erent pureequilibria, (l, r) and (l, r+1) (otherwise, Γ sr

s+k−1,r+1
would have a pure Nashequilibrium). However, this implies blr = bl,r+1 for s < l < s + k − 1, whi
hends the proof of Theorem 6.Proof of Theorem 7. We begin by showing that one of Cases 1�3 musto

ur. Assume that Cases 1 and 2 do not hold. Sin
e Γ is a 
olumn-
on
avegame, the part of Lemma 2 with (13) holds.Therefore ea
h subgame Γ l1

l+1,n, 1 ≤ l < m, has a pure Nash equilib-rium, say (x(l), y(l)). If x(1) = 1 or x(m − 1) = m, then (x(1), y(1)) or
(x(m− 1), y(m− 1)), respe
tively, would be a pure Nash equilibrium in theentire game Γ , be
ause of (13). Therefore x(1) = 2 and x(m − 1) = m − 1.Consequently, there exists 1 ≤ l < m su
h that x(l − 1) = x(l) = l. Set
y(l− 1) = r and y(l) = u. Then, be
ause (l, r) is a pure Nash equilibrium in
Γ

l−1,1
ln and (l, u) is a pure Nash equilibrium in Γ l1

l+1,n, we have(32) blr = blu ≥ blj for all 1 ≤ j ≤ n,and
alr ≥ al−1,r and alu ≥ al+1,u.But, be
ause Case 1 does not hold, neither (l, r) nor (l, u) 
an be a pureNash equilibrium in the entire game Γ . Hen
e, using (32) and (13), we easilydedu
e(33) al−1,r < alr < al+1,r and al−1,u > alu > al+1,u.If r < u then (33) is equivalent to (12)(a), while if u < r then (33) isequivalent to (12)(b). Therefore only Cases 1, 2 or 3 
an hold.Now we will show the validity of the statements in Cases 2 and 3 of thetheorem.Proof of the statement in Case 2. Let the assumptions of this 
ase besatis�ed and 
onsider the subgame Γ s1

s+1,n. From Lemma 8 it follows thatin this subgame there exists a Nash equilibrium (µ∗, ν∗) of the form µ∗ =
λδs + (1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δu for some 0 ≤ λ, γ ≤ 1 and
1 ≤ r < u ≤ n. Suppose that λ = 0 or λ = 1. Then, using the properties ofNash equilibrium, we easily dedu
e that Γ s1

s+1,n has a pure Nash equilibrium,
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ontradi
ting the assumption. Therefore 0 < λ < 1. Hen
e, by the optimalityof Nash equilibrium we have
γasr + (1 − γ)asu = γas+1,r + (1 − γ)as+1,u,whi
h together with (15) implies that µ∗ is the best strategy for Player Iagainst ν∗ of Player II in the entire game Γ . The Nash optimality of ν∗against µ∗ in Γ follows dire
tly from its optimality in Γ s1

s+1,n. Thus (µ∗, ν∗)is a Nash equilibrium in Γ .Proof of the statement in Case 3. The game Γ ′ is 
olumn-
on
ave andhas only two 
olumns, hen
e it is 
on
ave. Sin
e (11) holds, Lemma 6 
anbe applied to 
on
lude that the pair (µ∗, ν∗) des
ribed in Case 3 of thetheorem is a Nash equilibrium in Γ ′. The fa
t that (µ∗, ν∗) is an equlibriumin the entire game Γ (A, B) follows easily from (11) and (15) taken for pk =
γakr + (1 − γ)aku, k = 1, . . . , m. The simple details are omitted.Proof of Theorem 8. We apply Lemma 8 to get the existen
e of a Nashequilibrium (µ∗, ν∗) in Γ 1

m of the form µ∗ = λδ1 + (1 − λ)δm and ν∗ =
γδs + (1 − γ)δr for some λ, γ, s and r with 0 ≤ λ, γ ≤ 1 and 1 ≤ s ≤ r ≤ n.By optimality of (µ∗, ν∗), we easily get

λb1s + (1 − λ)bms = λb1r + (1 − λ)bmr(34)
≥ λb1j + (1 − λ)bmj for all 1 ≤ j ≤ n.Now, if we put pi = γais + (1 − γ)air, i = 1, . . . , m, then, by the �
onvex�part of Lemma 3, for some t and u we have

p1 > · · · > pt = pt+1 = · · · = pu < pu+1 < · · · < pm.But the last inequalities, (34) and the de�nition of (µ∗, ν∗) immediately im-ply that (µ∗, ν∗) is a Nash equilibrium in Γ . If it is a pure Nash equilibrium,then we have Case 1 of the theorem, otherwise we have Case 2, 
ompletingthe proof.Proof of Theorem 9. In the game Γ ′ there is a Nash equilibrium (µ∗, ν∗)with µ∗ = λδ1 +(1−λ)δm and ν∗ = γδ1 +(1−γ)δn, where 0 ≤ λ, γ ≤ 1. Let
pi = γai1 +(1−γ)ain, i = 1, . . . , m, and wj = λb1j +(1−λ)bmj , j = 1, . . . , n.Then, by the �
onvex� part of Lemma 3, for some r, s, t and u we have(35) p1 > p2 > · · · > pr = pr+1 = · · · = ps < ps+1 < · · · < pm,(36) w1 > w2 > · · · > wt = wt+1 = · · · = wu < wu+1 < · · · < wn.But (35) implies that µ∗ is the best strategy for Player I against the strategy
ν∗ of Player II in the entire game Γ . Similarly (36) implies that ν∗ is the beststrategy for Player II against µ∗ of Player I in Γ . Hen
e, (µ∗, ν∗) is also aNash equilibrium in Γ . If it is a pure Nash equilibrium, then we have Case 1of the theorem, otherwise Case 2 holds.
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