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CONVERGENCE OF OPTIMAL STRATEGIES INA DISCRETE TIME MARKET WITH FINITE HORIZON

Abstra
t. A dis
rete-time �nan
ial market model with �nite time hori-zon is 
onsidered, together with a sequen
e of investors whose preferen
esare des
ribed by a 
onvergent sequen
e of stri
tly in
reasing and stri
tly 
on-
ave utility fun
tions. Existen
e of unique optimal 
onsumption-investmentstrategies as well as their 
onvergen
e to the limit strategy is shown.Introdu
tion. Re
ently, in a number of papers the following questionwas 
onsidered: does 
onvergen
e of investors' preferen
es imply the 
onver-gen
e of their optimal strategies? In [2℄ a model with 
omplete Brownianmarket model was des
ribed, while in [1℄ a dis
rete time model with �nitehorizon and utility fun
tions de�ned on the whole real line was studied.Both papers gave a positive answer to the above problem under suitableassumptions.In the present paper we prove a similar result for a dis
rete time marketmodel with a �nite horizon. We assume weaker regularity 
onditions on util-ity fun
tions: stri
t 
on
avity and stri
t monotoni
ity. The utility fun
tions
onsidered are de�ned on the positive axis.In the �rst se
tion we des
ribe our model of �nan
ial market. Then we
onsider a one-step model and utilizing ideas from [4℄, we establish a fewuseful te
hni
al results. Finally, we prove the existen
e of optimal strategiesfor our model and their 
onvergen
e together with the 
onvergen
e of theinvestors' preferen
es.1. Market model. Let (Ω,F , (Ft)0≤t≤T , P) be a dis
rete-time �lteredprobability spa
e with �nite time horizon T ∈ N, with F0 = {∅, Ω}. Pri
es of2000 Mathemati
s Subje
t Classi�
ation: 49L20, 91B16, 91B28, 93E20.Key words and phrases: utility maximization, dynami
 programming, optimal strate-gies. [85℄
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d risky se
urities available on the market are represented by a d-dimensional,almost surely positive adapted pro
ess St = (St,1, . . . , St,d)

′, 0 ≤ t ≤ T . For
t = 0, . . . , T − 1 we de�ne

ζt,i =
St+1,i

St,i

, i = 1, . . . , d,and ζt = (ζt,1, . . . , ζt,d)
′. Let Dt(ω) be the smallest linear subspa
e 
ontainingthe support of the regular 
onditional distribution of ζt with respe
t to Ft(it exists, 
f. [6, Theorem 2.7.5℄). Throughout the paper we assume thatthere are no redundant assets on the market, thus we have the followingnon-degenera
y assumption:Assumption 1.1. Dt is almost surely equal to Rd for 0 ≤ t ≤ T − 1.Let ∆0 = {ν ∈Rd : νi ≥ 0,

∑d
i=1 νi ≤ 1}, and ∆ = {ν ∈∆0 :

∑d
i=1 νi = 1}.We denote by 〈·, ·〉 the usual s
alar produ
t in Rd. Denote by Xt the wealthpro
ess at time t before 
onsumption and possible transa
tions. Let πt,i and

πt,i be the portions of the wealth Xt invested in the ith asset at time tbefore and respe
tively after 
onsumption and possible transa
tions. We donot allow short selling or short borrowing, so πt = (πt,1, . . . , πt,d)
′ ∈ ∆ and

πt = (πt,1, . . . , πt,d)
′ ∈ ∆0.At time t = 0, . . . , T −1, the investor who owns initial wealth Xt investedin portfolio πt, 
onsumes a part αt ∈ [0, 1] of his wealth and 
hanges hisportfolio 
omposition to πt, a

ording to the equation

Xt = Xtαt + Xt

d∑

i=1

πt,i,whi
h implies that we are interested only in Ft-measurable strategies su
hthat (αt, πt) ∈ [0, 1] × ∆0 a.s. and
(1.1) αt +

d∑

i=1

πt,i = 1 a.s.Denote the set of su
h strategies by At.At time t + 1, due to pri
e 
hanges, the investor's wealth 
hanges to
(1.2) Xt+1 =

d∑

i=1

Xtπt,iζt,i = Xt〈πt, ζt〉.Equation (1.2) des
ribes the dynami
s of the 
ontrol system we are dealingwith: Xt is regarded as a state of the system, and (αt, πt) ∈ [0, 1]×∆0 are its
ontrol parameters, 
onstrained by (1.1) des
ribing the admissible strategies.The initial 
ondition is given by the endowment x := X0 > 0.



Convergen
e of optimal strategies 87We 
onsider a sequen
e of investors with preferen
es des
ribed by utilityfun
tions Un
t : (0,∞) → R, 0 ≤ t ≤ T , n ∈ N := N ∪ {∞}.Assumption 1.2. The fun
tions Un

t are stri
tly in
reasing and stri
tly
on
ave for t ∈ {0, . . . , T} and n ∈ N. Moreover , for all t ∈ {0, . . . , T} and
x ∈ (0,∞),

Un
t (x) → U∞

t (x) as n → ∞.We are interested in maximization of the expe
ted utility from 
onsump-tion and terminal wealth, that is, we want to maximize the following rewardfun
tional:(1.3) Jn
T (x, (α, π)) = E

( T−1∑

t=0

Un
t (Xtαt) + Un

T (XT )
)
.

For our dynami
 programming problem to be well posed and �nite, weassume that the following 
onditions are satis�ed:Assumption 1.3. For all n ∈ N, k ∈ {1, . . . , T} and x > 0,
E(Un

k )+
(
x

k−1∏

t=0

max{ζt,i : i = 1, . . . , d}
)

< ∞,

E(Un
k )−

(
x

k−1∏

t=0

min{ζt,i : i = 1, . . . , d}
)

< ∞.

Remark 1.4. One 
an 
onsume all or nothing of the wealth, so we needvalues of utility fun
tions at 0. We deal with that problem by putting U(0) :=
limx→0+ U(x); if this limit is �nite, the 
ontinuity and 
on
avity propertiesare kept, and if not (e.g. for a logarithmi
 fun
tion), the agent will not 
hoosesu
h a strategy to maximize utility.2. One-step 
ase. We start with the 
ase T = 1. Let u, v : (0,∞) → Rbe stri
tly in
reasing fun
tions, u stri
tly 
on
ave and v 
on
ave. Let H bea sub-σ-�eld of F , let ζ = (ζ1, . . . , ζd)

′ be an Rd-valued random variablewith non-degenerate (in the sense of Assumption 1.1) 
onditional distribu-tion with respe
t to H, and let E( · |H) denote 
onditional expe
tation withrespe
t to H. Denote by A the set of admissible strategies: H-measurablerandom variables su
h that (α, π) ∈ [0, 1] × ∆0 a.s. and α +
∑d

j=1 πj = 1.De�ne the value fun
tion by
w(x) := ess sup

(α,π)∈A
{u(xα) + E(v(x〈π, ζ〉) |H)}, x > 0.Analogously to Assumption 1.3, we introdu
e
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harskiAssumption 2.1. For all x > 0,
Ev+(x max

i∈{1,...,d}
ζi) < ∞ and Ev−(x min

i∈{1,...,d}
ζi) < ∞.The following te
hni
al lemmas are 
ru
ial:Lemma 2.2. There exists an almost surely 
ontinuous, stri
tly 
on
aveand stri
tly in
reasing (with respe
t to every 
oordinate) version of

[0,∞)d \ {0} ∋ π 7→ E(v(〈π, ζ〉) |H).Proof. Let κ denote the regular 
onditional distribution of ζ given H.Then
E(v(〈π, ζ〉) |H) =

\
Rd

v(〈π, x〉) κ(dx) a.s.,and we take the right side as a de�nition of our version. By a routine 
al
u-lation one 
he
ks it has the desired properties. We will show 
on
avity. Fix
π1, π2 ∈ [0,∞)d \ {0}, π1 6= π2 and t ∈ (0, 1). Then

tE(v(〈π1, ζ〉) |H) + (1 − t)E(v(〈π2, ζ〉) |H)

=
\

Rd

[tv(〈π1, x〉) + (1 − t)v(〈π2, x〉)] κ(dx)

<
\

Rd

v(〈tπ1 + (1 − t)π2, x〉) κ(dx)

= E(v(〈tπ1 + (1 − t)π2, ζ〉) |H) a.s.The stri
t inequality is justi�ed by Assumption 1.1.Proposition 2.3. For every x ∈ (0,∞) there exists a unique optimalpair (α̂, π̂) ∈ A su
h that(2.1) w(x) = u(xα̂) + E(v(x〈π̂, ζ〉) |H) a.s.Proof. We take the version of 
onditional expe
tation with the propertiesstated in Lemma 2.2, and 
onsider the mapping
Φ : [0, 1] × ∆0 × Ω ∋ (α, π, ω) 7→ u(xα) + E(v(x〈π, ζ〉) |H)(ω) ∈ Rwhi
h is 
ontinuous ex
ept on a P-zero set N . Sin
e the set(2.2) {

(α, π) ∈ [0, 1] × ∆0 : α +

d∑

j=1

πj = 1
}

is 
ompa
t, for any ω ∈ Ω \ N there is a pair (α̂(ω), π̂(ω)) attaining thesupremum of Φ.Suppose that there are two su
h pairs, say (α1, π1), (α2, π2) ∈ A. Takeany t ∈ (0, 1). Putting α = tα1 + (1 − t)α2, π = tπ1 + (1 − t)π2 we have
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α ∈ (0, 1), π ∈ ∆0 a.s. Sin
e ∑m

i=1 πi = 1−α, it follows that (α, π) ∈ A and
w(x) = tw(x) + (1 − t)w(x)

= t[u(xα1) + E(v(x〈π1, ζ〉) |H)]

+ (1 − t)[u(xα2) + E(v(x〈π2, ζ〉) |H)]

≤ u(xα) + E(v(tx〈π1, ζ〉 + (1 − t)x〈π2, ζ〉) |H)

= u(xα) + E(v(x〈π, ζ〉) |H) ≤ w(x) a.s.Both u and v are stri
tly 
on
ave, thus the above inequality turns into anequality i� α1 = α2 and 〈π1, ζ〉 = 〈π2, ζ〉 a.s. From the assumption we madeon the support of the distribution of ζ, that implies π1
i = π2

i a.s., i = 1, . . . , d,hen
e the proof of uniqueness is �nished.The optimal pair (α̂, π̂) is an H-measurable random variable, sin
e forany open ball B ⊂ Rd+1,
(α̂, π̂)(ω) ∈ B ⇔

∨

(α∗,π∗)∈C∩B

∧

(α,π)∈C\B

Φ(α∗, π∗)(ω) > Φ(α, π)(ω)

where C denotes a 
ountable dense subset of (2.2), and therefore
{(α̂, π̂) ∈ B} =

⋃

(α∗,π∗)∈C∩B

⋂

(α,π)∈C\B

{Φ(α∗, π∗) > Φ(α, π)} ∈ H.

Lemma 2.4. There is a version of the value fun
tion w whi
h is almostsurely stri
tly in
reasing and stri
tly 
on
ave.Proof. For every q ∈ (0,∞)∩Q �x a version of w(q), whi
h by Assump-tion 2.1 is almost surely �nite. Fix x, y ∈ (0,∞) ∩ Q. It is obvious that if
y < x then w(y) < w(x) a.s. To show stri
t 
on
avity, �x t ∈ (0, 1) ∩ Qand let (αx, πx), (αy, πy) ∈ A be optimal pairs for x and y respe
tively. Put
z = tx + (1 − t)y, β = tx/z, α = βαx + (1 − β)αy, π = βπx + (1 − β)πy.Obviously α ∈ [0, 1], β ∈ (0, 1) a.s. Sin
e ∑d

i=1 πi = 1 − α, we obtain
txπx + (1 − t)yπy = z(βπx + (1 − β)πy) = zπ,and sin
e u and v are stri
tly 
on
ave and ζ is almost surely positive, wehave

tw(x) + (1 − t)w(y) = t[u(xαx) + E(v(x〈πx, ζ〉) |H)]

+ (1 − t)[u(yαy) + E(v(y〈πy, ζ〉) |H)]

≤ u(zα) + E(v(z〈π, ζ〉 |H)) ≤ w(z) a.s.and moreover this inequality turns into an equality i�
xαx = yαy and x〈πx, ζ〉 = y〈πy, ζ〉 a.s.On
e again using our assumption on the distribution of ζ, this implies

xπx
i = yπy

i , i = 1, . . . , d,
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harskiand summing those equalities up for i = 1, . . . , d we obtain
x[1 − αx] = y[1 − αy],hen
e also x = y. This shows in parti
ular that for all x, y ∈ (0,∞) ∩ Q,

x 6= y, we have
w

(
x + y

2

)
>

w(x) + w(y)

2
a.s.We 
an now extend this version of w to a fun
tion whi
h is almost surelystri
tly in
reasing and stri
tly 
ontinuous for all x ∈ (0,∞). Finally, frommonotone 
onvergen
e, for �xed x ∈ (0,∞) and a sequen
e of rationals qn ↑ xwe have

w(x) = lim
n

w(qn) = lim
n

ess sup
(π,α)∈A

{u(qnα) + E(v(qn〈π, ζ〉) |H)}

= ess sup
(π,α)∈A

{u(xα) + E(v(x〈π, ζ〉) |H)}.Proposition 2.5. There exists a sele
tor of optimal strategies
(0,∞) ∈ x 7→ (α̂, π̂)(x) ∈ Awhi
h is 
ontinuous for almost all ω.Proof. We �x a version of 
onditional expe
tation with the propertiesstated in Lemma 2.2. The random fun
tion

w(x, (α, π)) := u(xα) + E(v(x〈π, ζ〉) |H)is then almost surely 
ontinuous, jointly for all arguments. Suppose thereexists x ∈ (0,∞) and a sequen
e xn ∈ (0,∞), n ∈ N, su
h that xn → x and
(α̂, π̂)(xn) 6→ (α̂, π̂)(x). Sin
e all (α̂, π̂)(xn) belong to the 
ompa
t set (2.2),we may 
hoose, using Lemma 2 from [3℄, a random subsequen
e (α̂, π̂)(xnk

)
onverging to some (α̃, π̃). Condition (1.1) holds for all k ∈ N, so letting
k → ∞, we get (α̃, π̃) ∈ A. By 
ontinuity,

lim
k→∞

w(xnk
, (α̂, π̂)(xnk

)) = w(x, (α̃, π̃)) =: w̃,(2.3)
lim

n→∞
w(xn, (α̂, π̂)(x)) = w(x, (α̂, π̂)(x)) =: w,(2.4)and if (α̃, π̃) 6= (α̂, π̂)(x), then w̃ < w. If we �x ε ∈ (0, (w − w̃)/2), then for

k large enough(2.5) w(xnk
, (α̂, π̂)(x)) > w − ε > w̃ + ε,while from (2.3),(2.6) w(xnk

, (α̂, π̂)(xnk
)) < w̃ + ε.Inequalities (2.5) and (2.6) lead to

w(xnk
, (α̂, π̂)(x)) > w(xnk

, (α̂, π̂)(xnk
))
ontradi
ting the optimality of (α̂, π̂)(xnk

).
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e of optimal strategies. We are now going to use theresults of the previous se
tion in the general 
ase. We de�ne the Bellmanfun
tions:
V n

T (x) := UT (x),

V n
t (x) := ess sup

(α,π)∈A
{Un

t (αx) + E(V n
t+1(x〈π, ζt〉) | Ft)},(3.1)

for x ∈ (0,∞) and t = 0, . . . , T − 1.Theorem 3.1. For all n ∈ N and t = 0, . . . , T :(i) the fun
tion V n
t has a version whi
h is stri
tly in
reasing and stri
tly
on
ave almost surely ,(ii) there exists a unique B(0,∞)⊗Ft-measurable fun
tion (α̂n

t , π̂n
t ) ∈ Atsu
h that for all x ∈ (0,∞),

V n
t (x) = Un

t (xα̂n
t (x)) + E(V n

t+1(x〈π̂
n
t (x), ζt〉) | Ft).Proof. Fix n ∈ N and use ba
kward indu
tion. It is 
lear that V n

T isstri
tly 
on
ave and stri
tly in
reasing sin
e Un
T is. Then de
reasing t from

T − 1 to 0 and applying Lemma 2.4 and Proposition 2.3 with w := V n
t ,

u := Un
t , v := V n

t+1, A := At, H := Ft and ζ := ζt, we �nd that V n
thas a stri
tly in
reasing and stri
tly 
on
ave version, and there is a uniqueoptimal strategy (α̂n

t , π̂n
t ) := (α̂, π̂) whi
h is Ft-measurable for all x ∈ (0,∞)and almost surely 
ontinuous, hen
e B(0,∞) ⊗ Ft-measurable. This provesthe theorem.In this se
tion we will make repeated use of the following elementary fa
t.It may be derived e.g. from pages 90 and 248 of [5℄, but we in
lude an easyproof for 
ompleteness.Lemma 3.2. Let U ⊂ R be an open set and fn : U → R be a sequen
e ofin
reasing fun
tions su
h that fn 
onverges pointwise on U to a 
ontinuousfun
tion f . Then fn 
onverges to f uniformly on ea
h 
ompa
t subset of U .Proof. First noti
e that f is in
reasing, being the limit of a sequen
eof in
reasing fun
tions. Fix a 
ompa
t set C ⊂ U and an arbitrary ε > 0.Without loss of generality, we may assume that C =[a, b] is an interval. On C,the fun
tion f is uniformly 
ontinuous, hen
e we 
an �nd x0, . . . , xk ∈ C with

a := x0 < x1 < · · · < xk−1 < xk =: b su
h that |f(xi) − f(xi−1)| < ε/2 for
i ∈ {1, . . . , k}. Let Ni ∈ N be su
h that |fn(xi) − f(xi)| < ε/2 for n ≥ Ni,and de�ne N := max{Ni : i ∈ {0, . . . , k}}. Then for any x ∈ A there is
i ∈ {0, . . . , k − 1} su
h that x ∈ [xi, xi+1], and for n ≥ N we have

f(x) − ε ≤ f(xi+1) − ε ≤ fn(xi+1) − ε/2 ≤ fn(x) ≤ fn(xi) + ε/2

≤ f(xi) + ε ≤ f(x) + ε.Sin
e x ∈ C was arbitrary, the assertion follows.
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harskiNow we are ready to prove the 
onvergen
e of optimal strategies. Againwe will start with the one-step 
ase.Proposition 3.3. Assume that for every n ∈ N fun
tions un, vn arestri
tly in
reasing and stri
tly 
on
ave, and moreover limn→∞ un(x)=u∞(x)and limn→∞ vn(x) = v∞(x) for all x ∈ (0,∞). Let (α̂n, π̂n) denote theoptimal strategy ful�lling (2.1) with u and v repla
ed by un and vn. Then,for every x ∈ (0,∞),
lim

n→∞
(α̂n, π̂n)(x) = (α̂∞, π̂∞)(x) a.s.Proof. Suppose that, on the 
ontrary, the 
onvergen
e fails for some x ∈

(0,∞). Sin
e [0, 1]×∆0 is 
ompa
t, by the use of Lemma 2 from [3℄ we 
hoosea random subsequen
e (nk ∈ N : k ∈ N) su
h that limk→∞(α̂nk , π̂nk)(x) =
(α̃, π̃) ∈ A, (α̃, π̃) 6= (α̂∞, π̂∞). De�ne

wn(α, π) := un(xα) + Evn(x〈π, ζ〉 |H), (α, π) ∈ A, n ∈ N,with a 
ontinuous version of the 
onditional expe
tation. Then the fun
tions
wn depend 
ontinuously on π and α, the uniform 
onvergen
e of un and vnon 
ompa
t sets gives(3.2) lim

k→∞
wnk(α̂nk , π̂nk) = w∞(α̃, π̃) a.s.,and by our hypothesis

w̃ := w∞(α̃, π̃) < w∞(α̂∞, π̂∞) =: w.Fix ε ∈ (0, (w − w̃)/2). Sin
e pointwise 
onvergen
e ensures
lim

n→∞
wn(α̂∞, π̂∞) = w,for k large enough we have(3.3) wk(α̂∞, π̂∞) > w − ε > w̃ + ε,while from (3.2) we get(3.4) wnk(α̂nk , π̂nk) < w̃ + ε.Combining (3.3) and (3.4) we obtain wnk(α̂∞, π̂∞) > wnk(α̂nk , π̂nk), 
ontra-di
ting the optimality of (α̂nk , π̂nk).Now we 
an prove the main theorem.Theorem 3.4. Let ((α̂n

t , π̂n
t ) : t = 0, . . . , T − 1) be optimal strategiesmaximizing (1.3) with the 
orresponding fun
tions (Un

0 , . . . , Un
T ), n ∈ N.Then for every x ∈ (0,∞),

lim
n→∞

(α̂n
t , π̂n

t )(x) = (α̂∞
t , π̂∞

t )(x) a.s., t = 0, . . . , T − 1.Proof. The assertion follows from the foregoing proposition applied 
on-se
utively to the Bellman fun
tions (3.1) with un := Un
t and vn := V n

t+1for t = T − 1, . . . , 0. We only need to 
he
k that limn→∞ V n
t (x) = V ∞

t (x)
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e of optimal strategies 93for x ∈ (0,∞) and t = T, . . . , 1. For t = T this is obvious sin
e V n
T = Un

T ,
n ∈ N. If we have proved that (α̂n

t , π̂n
t ) → (α̂∞

t , π̂∞
t ) for some t ≤ T , thenfrom uniform 
onvergen
e on 
ompa
t sets and the Lebesgue Theorem, forall x ∈ (0,∞),

lim
n→∞

V n
t (x) = lim

n→∞
(Un

t (xα̂n
t (x)) + E(V n

t+1(x〈π̂
n
t (x), ζt〉) | Ft))

= U∞
t (xα̂∞

t (x)) + E(V ∞
t+1(x〈π̂

∞
t (x), ζt〉) | Ft)

= V ∞
t (x).

Referen
es[1℄ L. Carassus and M. Ràsonyi,Optimal strategies and utility-based pri
es 
onverge whenagents' preferen
es do, preprint.[2℄ E. Jouini and C. Napp, Convergen
e of utility fun
tions and 
onvergen
e of optimalstrategies, Finan
e Sto
h. 8 (2004), 133�144.[3℄ Yu. M. Kabanov and Ch. Stri
ker, A tea
hers' note on no-arbitrage 
riteria, in:Séminaire de Probabilités, XXXV, Le
ture Notes in Math. 1755, Springer, Berlin,2001, 149�152.[4℄ M. Ràsonyi and �. Stettner, On utility maximization in dis
rete-time �nan
ial marketmodels, Ann. Appl. Probab. 15 (2005), 1367�1395.[5℄ R. T. Ro
kafellar, Convex Analysis, Prin
eton Math. Ser. 28, Prin
eton Univ. Press,Prin
eton, NJ, 1970.[6℄ A. N. Shiryaev, Probability , Grad. Texts in Math. 95, Springer, New York, 1996.Institute of Mathemati
sPolish A
ademy of S
ien
es�niade
ki
h 800-956 Warszawa, PolandE-mail: R.Ku
harski�impan.gov.plRe
eived on 24.1.2006;revised version on 10.3.2006 (1804)


