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CONVERGENCE OF OPTIMAL STRATEGIES IN
A DISCRETE TIME MARKET WITH FINITE HORIZON

Abstract. A discrete-time financial market model with finite time hori-
zon is considered, together with a sequence of investors whose preferences
are described by a convergent sequence of strictly increasing and strictly con-
cave utility functions. Existence of unique optimal consumption-investment
strategies as well as their convergence to the limit strategy is shown.

Introduction. Recently, in a number of papers the following question
was considered: does convergence of investors’ preferences imply the conver-
gence of their optimal strategies? In [2] a model with complete Brownian
market model was described, while in [1] a discrete time model with finite
horizon and utility functions defined on the whole real line was studied.
Both papers gave a positive answer to the above problem under suitable
assumptions.

In the present paper we prove a similar result for a discrete time market
model with a finite horizon. We assume weaker regularity conditions on util-
ity functions: strict concavity and strict monotonicity. The utility functions
considered are defined on the positive axis.

In the first section we describe our model of financial market. Then we
consider a one-step model and utilizing ideas from [4|, we establish a few
useful technical results. Finally, we prove the existence of optimal strategies
for our model and their convergence together with the convergence of the
investors’ preferences.

1. Market model. Let (2, F, (F:)o<i<T,P) be a discrete-time filtered
probability space with finite time horizon T € N, with Fy = {0, 2}. Prices of
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d risky securities available on the market are represented by a d-dimensional,
almost surely positive adapted process S; = (Sy1,...,5:4), 0 <t < T. For
t=0,...,T7 —1 we define
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and ¢; = ((15- - -5 G.d)'- Let Dy(w) be the smallest linear subspace containing
the support of the regular conditional distribution of (; with respect to F;
(it exists, cf. [6, Theorem 2.7.5]). Throughout the paper we assume that
there are no redundant assets on the market, thus we have the following
non-degeneracy assumption:

ASSUMPTION 1.1. Dy is almost surely equal to R* for 0 <t <T — 1.

Let Ag={veR?:y;>0, Zleuigl}, and A={veAy: Z?le/izl}.
We denote by (-,-) the usual scalar product in R%. Denote by X; the wealth
process at time ¢ before consumption and possible transactions. Let m;; and
Tt; be the portions of the wealth X; invested in the ith asset at time ¢
before and respectively after consumption and possible transactions. We do

not allow short selling or short borrowing, so m; = (m1,...,m4) € A and
T = (ﬁt,la .. 7ﬁt,d)/ € A().
At time t =0,...,T—1, the investor who owns initial wealth X; invested

in portfolio m;, consumes a part oy € [0, 1] of his wealth and changes his
portfolio composition to 7, according to the equation

d
Xi = Xpop + Xy th,u
=1
which implies that we are interested only in F;-measurable strategies such
that (aq,7) € [0,1] x Ap a.s. and

d
(11) oy + Zﬁt’i =1 a.s.
=1

Denote the set of such strategies by Ajy.
At time t 4 1, due to price changes, the investor’s wealth changes to

d
(1.2) Xip1 = ZXﬁt,z‘Ct,i = Xo(7t, i)
=1
Equation (1.2) describes the dynamics of the control system we are dealing
with: X; is regarded as a state of the system, and (ay,7T;) € [0, 1] X Ag are its
control parameters, constrained by (1.1) describing the admissible strategies.
The initial condition is given by the endowment x := Xy > 0.
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We consider a sequence of investors with preferences described by utility
functions U/*: (0,00) = R, 0 <t <T,n e N:=NU{oco}.

ASSUMPTION 1.2. The functions U* are strictly increasing and strictly
concave for t € {0,...,T} and n € N. Moreover, for all t € {0,...,T} and
€ (0, 00),
Ul'(z) = UX(x) asn— .

We are interested in maximization of the expected utility from consump-
tion and terminal wealth, that is, we want to maximize the following reward
functional:

T—-1
(1.3) Th(@, (0,7) = B( 3 UF (Xiaw) + UR(Xr) ).
t=0

For our dynamic programming problem to be well posed and finite, we
assume that the following conditions are satisfied:

ASSUMPTION 1.3. Forallne N, ke {1,...,T} and x > 0,

k—1

v +<CCHHI8,X{Q72' 1= 1,,d}) < 0
-

,?)_(:chin{Ct’i Dh = 1,...,d}) < 00
t=0

REMARK 1.4. One can consume all or nothing of the wealth, so we need
values of utility functions at 0. We deal with that problem by putting U (0) :=
lim, .o+ U(x); if this limit is finite, the continuity and concavity properties
are kept, and if not (e.g. for a logarithmic function), the agent will not choose
such a strategy to maximize utility.

2. One-step case. We start with the case T'= 1. Let u,v: (0,00) — R
be strictly increasing functions, u strictly concave and v concave. Let ‘H be
a sub-o-field of F, let ¢ = ((1,...,¢) be an Re%valued random variable
with non-degenerate (in the sense of Assumption 1.1) conditional distribu-
tion with respect to H, and let E( - | H) denote conditional expectation with
respect to H. Denote by A the set of admissible strategies: H-measurable
random variables such that (a,7) € [0,1] x A a.s. and o + Z;-lzl T = 1.
Define the value function by

w(z) := esssup{u(za) + E(v(z(T,()) [H)}, x>0.
(a,m)EA

Analogously to Assumption 1.3, we introduce
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ASSUMPTION 2.1. For all x > 0,

Ev™ i) < d FEv~ i i) < 00.
v (xz‘e?ll?.}fd}g) oo an v (xie?ll,l..l.l,d}g) 00

The following technical lemmas are crucial:

LEMMA 2.2. There exists an almost surely continuous, strictly concave
and strictly increasing (with respect to every coordinate) version of

[0,00)\ {0} > 7 = E(v((m, ) | H).

Proof. Let k denote the regular conditional distribution of ¢ given H.
Then

E(((r.0) |H) = | v((m,2)) s(dz) as.
Rd
and we take the right side as a definition of our version. By a routine calcu-
lation one checks it has the desired properties. We will show concavity. Fix

7l 12 € [0,00)4\ {0}, 7! # 72 and t € (0,1). Then
tE(o((7",¢)) |H) + (1 = )E(v((x*, () | H)
= { (' @) + (1 = )o((x*, 2))] w(dz)
R4
< Vo(tr! + (1 = t)n*, 2)) K(da)
Rd
=Ew({trt 4+ (1 —t)7%, ) |H)  as.
The strict inequality is justified by Assumption 1.1. =

PROPOSITION 2.3. For every x € (0,00) there exists a unique optimal
pair (@, 7) € A such that

(2.1) w(z) = u(za) + E(v(z(T, () | H) a.s.

Proof. We take the version of conditional expectation with the properties
stated in Lemma 2.2, and consider the mapping

@:10,1] x Ag X 23 (o, T,w) — u(za) + E(v(z(T, () | H)(w) €R

which is continuous except on a P-zero set N. Since the set

(2.2) {(a,ﬁ)e [0, 1] xAO;a+§d:fj—1}

is compact, for any w € 2\ N there is a pair (@(w),7(w)) attaining the
supremum of @.

Suppose that there are two such pairs, say (a!, ﬁl) (a?,72) € A. Take
any t € (0,1). Putting a = ta! + (1 — t)a?, 7 = t7 + (1 — t)7* we have
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a€(0,1), 7 € Ag as. Since Y ;" T; = 1 — a, it follows that (a,7) € A and
w(z) = tw(z) + (1 — t)w(x)
= tlu(zal) + E(v(z(T,¢)) | H)]
+ (1= t)[u(za®) + E(v(z(,¢)) | H)]

< u(za) + E(u(ta(T", ¢) + (1 - )z(7%,()) | H)

=u(za) + E(v(z(T, () |H) <w(z) as.
Both u and v are strictly concave, thus the above inequality turns into an
equality iff a! = o? and (7', () = (72,() a.s. From the assumption we made
on the support of the distribution of {, that implies ﬁil = ﬁ? as.,i=1,...,d,
hence the proof of uniqueness is finished.

The optimal pair (@, 7) is an H-measurable random variable, since for
any open ball B C R4+1,

@HweB s \ N 8@,m)w) > dam)Ww)
(a*,m*)eCNB (a,m)eC\B
where C' denotes a countable dense subset of (2.2), and therefore
{@m)eBt=J N {@(e"7) > d(a,m)} €H. »
(a*,m*)eCNB (a,m)eC\B

LEMMA 2.4. There is a version of the value function w which is almost
surely strictly increasing and strictly concave.

Proof. For every q € (0,00) NQ fix a version of w(q), which by Assump-
tion 2.1 is almost surely finite. Fix z,y € (0,00) N Q. It is obvious that if
y < x then w(y) < w(x) a.s. To show strict concavity, fix t € (0,1) N Q
and let (a®,7), (a¥,7Y) € A be optimal pairs for x and y respectively. Put
z=te+ (1—-ty, B =tx/z, a = pa” + (1 - B)a¥, T = [7° + (1 — B)7Y.
Obviously a € [0,1], 8 € (0,1) a.s. Since 3.7, 7 = 1 — @, we obtain

tam + (1 — t)yw? = 2(67° + (1 — B)7) = =,
and since u and v are strictly concave and ( is almost surely positive, we
have

tw(z) + (1 = tw(y) = t{u(za®) + E(v(z(T, () | H)]
+ (1= B)[ulya?) + E(o(y(@, () | H)]
<wu(za)+E(v(z(m ()| H)) <w(z) as.
and moreover this inequality turns into an equality iff
za® =yay and x(7Y, () =y(@,() as.
Once again using our assumption on the distribution of {, this implies

—r _ =Y . _
T, =ym,, t=1,...,d,
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and summing those equalities up for ¢ = 1,...,d we obtain
z[l —a’] =y[l —a?],
hence also z = y. This shows in particular that for all z,y € (0,00) N Q,

x # y, we have
NED IR

We can now extend this version of w to a function which is almost surely
strictly increasing and strictly continuous for all x € (0,00). Finally, from
monotone convergence, for fixed z € (0, 00) and a sequence of rationals ¢, T x
we have

a.s.

() = lim w(gn) = lim esssup{u(ga) + E(v(ga (7, ) | H)}
(m,a)€A

= esssup{u(za) + E(v(z(7,()) | H)}. =
(m,a)eA

PROPOSITION 2.5. There exists a selector of optimal strategies
(0,00) € x — (a,m)(z) € A
which is continuous for almost all w.

Proof. We fix a version of conditional expectation with the properties
stated in Lemma 2.2. The random function

w(z, (a, 7)) == u(za) + E(v(z(T, () | H)
is then almost surely continuous, jointly for all arguments. Suppose there
exists x € (0,00) and a sequence x,, € (0,00), n € N, such that x,, — x and
(@, 7)(xn) # (a,7)(z). Since all (@, T)(z,) belong to the compact set (2.2),
we may choose, using Lemma 2 from (3], a random subsequence (@, 7)(xy,)

converging to some (&, 7). Condition (1.1) holds for all £ € N, so letting
k — oo, we get (a,7) € A. By continuity,

(23) T w (@, (@ 7)(n,) = w(z, @7) = 6
(24) Jim w(an, (@7)(x)) = wiz, (@ 7)) =

and if (a,7) # (a,7)(z), then w < w. If we fix € € (0, (w — w)/2) then for
k large enough

(2.5) w(zy,, (@, 7)(z)) >w—c>w+e,
while from (2.3),
(2.6) W(xn,, (O, T)(xn,)) < W+e.

Inequalities (2.5) and (2.6) lead to

w(n,, (@ 7) () > w(Tn,, (&, 7)(2n,))
contradicting the optimality of (&, 7)(xy,). =
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3. Convergence of optimal strategies. We are now going to use the
results of the previous section in the general case. We define the Bellman
functions:

Vi(x) = Up(x),
(3.1) V(@) 1= esssup{U7 (o) + E(Vi} (a(m. C) | 7).
o,T)E
for z € (0,00) and t =0,...,T — 1.
THEOREM 3.1. Foralln € Nand t=0,...,T:

(i) the function Vi* has a version which is strictly increasing and strictly
concave almost surely,

(i) there exists a unique B(0, 00) ® Fi-measurable function (af, 7)) € As
such that for all z € (0, 00),

Vit (z) = Ui (zai (z)) + E(Vi (2 (7 (2), Co) | Fo)-

Proof. Fix n € N and use backward induction. It is clear that Vi is
strictly concave and strictly increasing since U7 is. Then decreasing ¢ from
T — 1 to 0 and applying Lemma 2.4 and Proposition 2.3 with w = V",
w:= U v =V, A=A, H:=F and ¢ := (, we find that V"
has a strictly increasing and strictly concave version, and there is a unique
optimal strategy (a}',7') := (@, 7) which is F;-measurable for all z € (0, 00)
and almost surely continuous, hence B(0,00) ® Fi-measurable. This proves
the theorem. m

In this section we will make repeated use of the following elementary fact.
It may be derived e.g. from pages 90 and 248 of [5], but we include an easy
proof for completeness.

LEMMA 3.2. Let U C R be an open set and f,: U — R be a sequence of
increasing functions such that f, converges pointwise on U to a continuous
function f. Then f, converges to f uniformly on each compact subset of U.

Proof. First notice that f is increasing, being the limit of a sequence
of increasing functions. Fix a compact set C' C U and an arbitrary € > 0.
Without loss of generality, we may assume that C'=[a, b] is an interval. On C,
the function f is uniformly continuous, hence we can find zg, ...,z € C with
a:=x9 <z << w1 <z =: bsuch that |f(z;) — f(xi—1)| < &/2 for
i €{l,...,k}. Let N; € N be such that |f,(z;) — f(z;)| < /2 for n > N,
and define N := max{N; : ¢ € {0,...,k}}. Then for any € A there is
i €{0,...,k—1} such that x € [z, z;11], and for n > N we have

f(x) —e< f(xi-i-l) —e< fn(xi-‘rl) - 8/2 < fn(x) < fn(xl) +5/2
< flwi) +e< fla) +e

Since x € C was arbitrary, the assertion follows. =



92 R. Kucharski

Now we are ready to prove the convergence of optimal strategies. Again
we will start with the one-step case.

PROPOSITION 3.3. Assume that for every n € N functions u™, v" are
strictly increasing and strictly concave, and moreover limy,_,o u"(x) =u>(z)
and limy,_.v"(x) = v>®(z) for all x € (0,00). Let (a™,7") denote the
optimal strategy fulfilling (2.1) with u and v replaced by u™ and v™. Then,
for every x € (0,00),

lim (@™, 7")(z) = (@, 7°)(x) a.s.
n—oo

Proof. Suppose that, on the contrary, the convergence fails for some x €
(0, 00). Since [0, 1] x Ag is compact, by the use of Lemma 2 from [3]| we choose
a random subsequence (ng € N : k € N) such that limg_,o(Q"*, 7" )(z) =
(a,m) € A, (a,7) # (@, 7). Define

w"(a, 7) = u"(za) + Ev"(z(7, () | H), (7)€ A neEN,
with a continuous version of the conditional expectation. Then the functions
w"™ depend continuously on 7 and «, the uniform convergence of u™ and v"
on compact sets gives
(3.2) klim w (@™, T ) = w™(a, T)  a.s.,
—00
and by our hypothesis

@ = we (@, 7) < wO(E°,7°) = w.

Fix € € (0, (w — w)/2). Since pointwise convergence ensures

lim w" (%, 7%°) = w,
n—oo

for k large enough we have

(3.3) wh (@, 7°) > w —e > W + e,

while from (3.2) we get
(3.4) w' (@™, 7)) < w + €.

Combining (3.3) and (3.4) we obtain w™ (&>, 7>°) > w™ (a", 7" ), contra-
dicting the optimality of (a"*, 7). m

Now we can prove the main theorem.

THEOREM 3.4. Let ((af,7f') : t = 0,...,T — 1) be optimal strategies

mazimizing (1.3) with the corresponding functions (Ug,...,U}), n € N.
Then for every x € (0, 00),

lim (o}, 7)) (z) = (a7°,7¢°)(x) as., t=0,...,T —1.

n—oo

Proof. The assertion follows from the foregoing proposition applied con-
secutively to the Bellman functions (3.1) with v := Uj* and v" := V/i;
for t =T —1,...,0. We only need to check that lim, . V;*(x) = V,>*°(x)
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for x € (0,00) and t =T,...,1. For t = T this is obvious since V? = U},
n € N. If we have proved that (af,7}') — (ag°,7;°) for some ¢t < T, then
from uniform convergence on compact sets and the Lebesgue Theorem, for
all z € (0, 00),

(1]
2]
(3]

[4]
[5]
[6]

lim Vi*(z) = lim (U (zaf (2)) + E(Via (27 (2), G) [ Fr)

= U (zag®(v)) + B(VE (2750 (2), ¢) | Fi)
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