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WEAK SOLUTIONS TO THE NAVIER-STOKES
EQUATIONS IN A Y-SHAPED DOMAIN

Abstract. We prove the existence of weak solutions to the Navier—Stokes
equations describing the motion of a fluid in a Y-shaped domain.

1. Introduction. We consider the inflow-outflow problem in a reverse
Y-shaped domain, with one inflow and two outflows. This can be treated
as a simple model of the blood flow in veins or arteries. The motion
of the fluid is described by the Navier—Stokes equations with boundary
slip conditions. The domain 2 C R? is given by 2 = 21 U 2 U (23
with the boundary 02 = § = ), Si U S where £, i = 1,2,3,
is a cylindrical type domain. To simplify the notation, we often omit the
obvious index ¢ so that Sf = S;. We denote by @ the unit outward vec-
tor normal to the boundary S and by 7;, j = 1,2, vectors tangent
to S. We introduce the velocity vector v(z,t) = (v(z,t),v?(z,t),v3(z,t))
€ R3 with v;(z,t) = v(x,t)|,, the velocity defined on §2;, and the pressure
p = p(x,t) € RY. The domain (2 and the velocity vectors are presented in
Figure 1.

The problem reads

vi+v-Vo—divT(v,p) = f in 27 =02 x(0,T),
divo =0 in 27,

(1.1) vli=0 = v(0),
v-Tfg =0,

v-Tls, = —ai,
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ViR)

Fig. 1. Y-shaped domain

v-nls, =ai, 1=2,3,
1.1 vt -Dw) - Tj+yv-7; =0, j=1,2, onS},
J J 0
[cont.]
n-D) -7, =0, j=12, onS;,i=1,2,3,

where f = f(z,t) = (fi(x,t), f2(z,t), f3(x,t)) € R? is the external force,
v is the constant viscosity coefficient, v > 0 is the slip coefficient, and the
stress tensor T and the dilatation tensor D are given as

D(v) = {U,ia;j + Ujgcz bij=123, T(v,p) = vD(v) — pl.
The inflow a1 and outflows a9, a3 satisfy the compatibility condition
Sa1:8a2+xa3.
S1 Sa S3

We set m; = 1|, We define the artificial boundaries D; = 2, N (2, i = 2, 3.

Then
U1 = U,
(1.2)
ﬁl'T(Uhpl):ﬁl‘T(Ui’pi) on DZ7Z:2737]:172
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In Section 2, we prove some a priori energy type estimates. This is mo-
tivated by considerations from [Z1]. Section 3 is devoted to the proof of
existence of weak solutions to the problem (1.1) by the Galerkin method
(see [L, Chapter 6, Section 7]). The last part is the Appendix where the
properties of solutions in the neighborhood of the transmission sections Do
and D3 are examined.

2. Problem reformulation and a priori estimates. To obtain energy
type estimates we need to work with a function v which satisfies the homo-
geneous Dirichlet boundary condition. To reformulate the problem (1.1) we
introduce a new function « satisfying

a1 -Tls, = —a1, o mls, =—a;,  1=2,3,
and next, we define functions u; on (2; by
U; = V; — Oy, i:1,2,3.

Thus we have

divu; = —divea,, ;- ﬁi’Si =0.
Let ¢ = (¢1,¢2, ¢3) be a solution to the problem
ASOZ = —div (673 in Q’i?

n; -V, =0 on S; and Sé,
Y1 = @5 OHDi,i:2737
0

— 0 = —; D, 1=2,3,
ony 1 8711()02 on Ui, 1

where n; is the curvilinear coordinate along the curve tangent to m;,
1=1,2,3. We claim

LEMMA 2.1. For every extension function o such that o; € H'(§2),
i =1,2,3, there exists a solution ¢ = (p1,p2,p3) to the problem (2.1) and
the following bound holds:

3 3
(2.2) S IVeillnzay < e > §lailla o)
=1 =1

For convenience of the reader, we sketch the proof of this technical result
in the Appendix.
Therefore, we can define new functions

wi:vi—ai—VgoiEvi—éi
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satisfying the following system:
wit + w; - Vw; +w; - V; + 6; - Vw; — div T(wy, p;)
=fi—0it—0;-Vé+vdivD(s) = F; inf,
divw; =0 in {2,

wj - ﬁ’S‘ = Oa

k3

2.3 —
( ) w; - n]sé = O,

i D(w,) 75 + ;7
= —vi-D(&) - Fj — 76 -7 = By, j =1,2,  onS},
ﬁ']D)(wi)-?j:—ﬁ'D(éi)-7jEij,j:1,2, on S;,

and the transmission conditions

(2.4) wy = w; and ainlwl = Ginlwi onD;, i=2,3.

Now, we introduce weak solutions to (2.3)—(2.4).

DEFINITION 2.1. A weak solution to (2.3)—(2.4) is a triple (wy, w2, ws3)
satisfying the identities

3
(2.5) Z(S w; ¢ dx dt + S H(w;)pdrdt+v S D(w;)D(p) dx dt

i=1 0T oF or
2 3
9> | wimso 7; dShdi— Z Yo U]g)-Fdef,>ZZ | Fipdad,
Jj=1sT j=10=0,i iT i=1 T

where H(w) = w-Vw+w-Vi+3§-Vw, for any sufficiently smooth function ¢
with divp =0, ¢ - 711lg = 0.

We introduce some useful notation:

3
lulp,q = Z iz, @) Qe {0 ST 0,8}, pel,ol,

lulls = Z lull (g Q€ {R,5}, se R, U{0},

3

|l q.0r = Z lullLy0,1:0,0), @ €1{82,S}, p,q €1,
=1
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and a space natural for the study of the Navier—Stokes equations:
0T R 2 1/2
Vo' (20) = {u Hullypory = esssup [lul ) + (S IVullz, o dt) < oo}.
te(0,T) 0

We will need the following result:

LEMMA 2.2 (Korn inequality). Assume that

3
i i 2
(2.6) Bo(w) =Y {(wi, +wl)dr <o
ij=10
and
2
(2.7) Z]w-?jgﬁo <oo, w-nlg=0, divw|p=0.

J=1

Then there exists a constant ¢ independent of w such that

2
(2.8) ]2 o) < C(Eg(w) +y |w-@|§2(50)) = CE.
j=1

Proof. We have

ij=1 <Q Q
3
=2 Z < S(w;j)Q dx + S(wij w’ )y, dw)
ij=1 0 Q
3
=2 Z (S(w;j)zdx—i-xw’ wJ-nidS>
ij=1 0 S
3
=2 Z ( S(w;j)z dx — Swi w g dS),
ij=1 0 S

where {, f denotes P { o, fi- This implies
(2.9) |Vw]§79 <cE.

For a non-axially symmetric function w we can use the results in [Z2] to find
that

(2.10) w3, < 8|Vwl3 o+ M(8)Eg(w)
so that (2.9) and (2.10) yield (2.8). =

We will show the following a priori estimate for w.
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LEMMA 2.3. Assume that a1 € Lg(0,T; L3(S1)), Va € La(0,T; L3(12))
and w;(0) € La(£2;), i =1,2,3. Let
re(t) = ’f%/w) + |O‘t’§/5,9 + |Vat|§/5,9 + ’04%,50 + |VO‘|3,Q(1 + !alivg(g))
with

T
| (1) dt < oo
0

Then
6 +|V 2 t
(211) |w|%/o(nt) S CeC(|al‘3’6’Si ‘ Oé‘g,z,gt)(xr2(t/) dt/ + |’UJ(0)’% _Q)
2 b
0

Proof. With ¢ = w and w-7|g = 0 we get by definition of weak solutions

3

1d

(212) > (5 £|wi|%,9i + {16 Vs - wi + wi - V6w da+ vD(wi) 3,
=1 £2;

3

(zzz > | Bojwi 7y dsy + | Fi'Uh’d.’E).

_ 2 -
+|wi - Tj|2758> =
1 j=lo=0,igi Q;

1

Now, we analyze the second term on the l.h.s. We have

S 0; - Vw; -w;dz = S(ai—i—Vgoi)-Vwi-widx
£2;

2;
= S «o; - Vw; - w; de + S Vi - Vw; - widr =11 + I»
Qi Qz‘

so that

Il(wi) =

1
div(oyw?) da — 5 S div e - w? do = I¢ + 1D,
i 2
Next, we calculate
1 1 1
I{(uwn) = ~3 S ayw? dSy + 3 S o - mws dDy + 3 S o - w3 dDs,
S1 Do D3

1
S aiwg ds; — 3 S Q- ﬁlwg dD;, 1=2,3.
Si Di

1
Ii(w) =

Thus,

3
ZI?(’U)Z‘) = %( — S alw% dS1 + S aQwS dSy + S a3w§ ng),
i=1 S1 S2 S3
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and we can estimate
3

= If(w;) < efflwalf g, + c(1/eP)larl§ s, lwil3 g, -
=1

For I? we have

3
> 1w

i=1

< bwlg o+ c(1/5)|Val3 olwl3 o

SO

3
‘Zh(w)

=1

<e(jwlg o+ [wli o) +c(1/en)(lalss, +Val o)lwl; o

Also we obtain

3 3
1 1 1 . 2
2121% _QZSV(’OZ V(w §ZSA §ZSdlvaiwi.
=1 02 =1 £ =1 §2;
Consequently,
|3 Bawi)| < calull o + e(1/2)Val} gluld -
i=1

Next, we consider the expression
S w; - Vo; - w; = S w; - Vo - w; + S wi'V(V(pi)-wiEIg—l-I4
with

‘ i[;,,(wi)

i=1

| S )

i=1

< eslwlg o +c(1/e3)[Val3 glw]3 o,

< ealwlf o + c(1/0)|Vafi olwl3 o

We sum (2.12) over i = 1,2,3, and use the above estimates. Then, we use
the imbedding inequality

luls,2 < cllullywy o),
and the Korn inequality (2.8):
2
lollimey < e § D)+ lw-7Bs,),
2 j=1

to obtain
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14d
(213) 5 a’w@,n +wlin )

3 2
il | s DS | B 7y
02 i=1 j=10=0,2 Sg

= CA|w‘%,Q + J:

where A = |a1[§ s T |Val3 . We now deal with the r.h.s. of the above
inequality. The last two terms have the form

3
J= Z > é(fi — 8iy — 0 V8w da + v é divID(5;) - w; da

— S (Vﬁﬂ@(éﬂ?fwi T+ ~; - Tj W Fj) dSé - S I/ﬁiD(di)Fjwi T ds;.
S§ Si

To simplify we only study the second term of J:

2
S diV]D)((Sl) Swp = Z Z S ﬁ1D(51)7jwl “Tj— S D(él) . D(wl)
o o=0,1 j=1 §1 @
2
+ Z Z S ﬁlD((Sk)?jwk “Tj,
k=23 j=1 Dy,
2
VdivD(s) - ws = > Y | mb(6) 7w 75 — | D(6) - D(w;)
; 0=0,i j=1 §i 2
2
+Z S D (6;)Tjw; - T
Jj=1D;
2
= > | mb@)Fwi -7 — | D) - D(w;)
0=0,i j=1 Si £2;
2
—Z S mD(6) 7w - T5, 1 =2,3,
J=1D;
to obtain
3
J:Z(S(fi_(si,t_(si : Vd,) C Wi —7Y S 5i-Fj-w,~-?j dS(Z] —v S ]D(él) -D(wﬁ)
=1 12 Sé 2

(Ji+ Jo+ J5) = J1 + Jo + Js.

IR

Il
—

2
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Then
1| < eslwlg o+ 0(1/55)(|f|§/5,9 + |5t|§/5,rz + 6 V5|§/5,Q)’
where

16tl6/5,0 < latls/s,0 + [Veileso < latlsss.o + ‘ S VGVO&’WS 0
Q b

< c(latless,0 + [Vatlss,0),
and G is the Green function for the problem for (. Similarly,
|0+ Vdlg/5,0 < |0]3,0|Vil2,0 < dalyio)Valze.

We examine Jy and J3 to get

2] < esluldngg +c<1/e6>(|a|250+2|m Veli.s,)
7j=1

< eslwlF + e(1/e6)(|al3 5, + [Val3 o),
| T3] < erlwlF (o) + e(1/e7)ID(0)13 0
< er|wlf ) + c(1/en)([Valzo + [VVe|20)?

< er|wlp ) + c(1/e7)|Val3 .

The above estimates yleld

|| < elw|gi(o) + 0(1/5)[|f|§/5,9 + |04t\§/5,9 + |V04t’§/5,9 + |3,
+ Va3 o1+ |a|%4/31(9))]

= elw|g(p) + c(1/e)T%(t).
Then from (2.13) we obtain
1d
2 dt
If we set A(t) = |a1|37675{ + |V0z|372,m, this can be rewritten as

(2.14) — w30+ ‘w’Hl @ = < c(Afw|3 o + ().

(215) (e M) + fufi et < el (r)e A0

and integrated in time:
¢
A —cA(t
w(t) 3. + e [ [w(t) 3 e A dt’

0
t

< cedO ([ 2@y at' + w(0) o)

0

119
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We can estimate the r.h.s. and simplify as follows:
mm&ﬁﬁmm%@wzwwﬂﬁﬂwwﬂmw%)
0 0
Omitting the first term on the L.h.s. we get
(2.16) § w(t') 21 gy dt! < ceAD (§F2(t’) dt’ + |w(0)]§79>.
0 0
On the other hand, we can omit the second term in (2.15) to obtain

d .
(2.17) ([l ge=eA0) < er?(),

and integrate in time to get the estimate for |w|s . Together with (2.16)
this gives the result. »

We have v = w + 6 = w + a + Vi where
T
81 0(0ry < 1613 o o + Y 16(E)IF o dt!

0

T
< ’O"g,oo,QT + ‘vag,oo,_QT + S ()15 o dt’.
0
Thus, we have the following corollary:

LEMMA 2.4. Let the assumptions of Lemma 2.3 be satisfied and

T
(218)  A(T) = cllal oo gr + [Val2 . o) + | a2 g dt’ < .
0
Then
e(arl? g gr+IVal2, o) (¢
(2.19)  Joldpar < e’ BosT T e (T rgey av (o)) + AT
0

3. Weak solutions to (2.3). In this section, we follow the ideas from
[L, Chapter 6, Section 7]. We will use the Galerkin method to prove the
existence of weak solutions to the problem (2.3). Namely, we introduce the
sequence of approximating functions wy given as

N
WV, t) = 3 v (D)t (@),
k=1

where {a®}2° | is a system of orthogonal functions in Lo(£2) N J3(£2). Here,
J2) = {f € H(2) : divf = 0} and {a*}{°, is a fundamental system
in H(2) with sup,cp, [a*(z)| < 00, sup,eoq [a*(z)| < co. The coefficients
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Cin(0) are defined by
Cinli=0 = (wo,ar), k=1,...,N,
and the functions w" satisfy the following system with test functions a

3
1d
S LT (Gauat + ol Vulat 45 Vol ol 50l
i=1

k.

—f-VD(wfV)]]])(ak)) dx + S wl -7 ;a7 dSé}
5 2 %
:Z (Z Z S ngak-Fdef,—i— S ankd$>
i=1  j=10=0,i5i 2

for k=1,...,N. Thus, w" would be a weak solution to (2.3).
With (f,g) = {,, fgdz and (f,g)s = {4 fgdS this can be rewritten as

3

Z{(wﬁ, a®) + (Wl -V, d®) + (6; - Vwl, ) + (Wl - Vé;, a)

i=1
+u(D(w),D(a?)) + (w7 a" 7)) g}
32 '

= Z[Z (Btlfﬁak ?])Sl +(Flva‘k) ) kzla 7N
i=1 j=10=0,2
Thus,

3 2
=33 Y (Bog s + (Fah), k=1, N,

i=1 j=10=0,i
The above equations are in fact a system of ordinary differential equations
for the functions Cyy(t). The properties of the sequence a® imply

N
w50 = Cin(®).
k=1

On the other hand, we can obtain a priori bounds for the approximate solu-
tions w! of the same form as in (2.11):

T
(32) | ogr = sup [wao+ | [VeN|y o dt
2 0<t<T 5

2 T
szﬂ“( |2y at' + \w(O)Ig,a) =C
0

6
ellarl§ Vol
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Therefore, supy<;<7 |Crn (t)| is bounded on [0, 7] and w’ are well defined
for all times t.

Define now ¢y = (w™ (z,t), a*(z)). This sequence is uniformly bounded
by (3.2). We can also show that it is equicontinuous. Namely, we inte-
grate (3.1) with respect to t from ¢ to t + At to obtain

[V g (t+ At) — YN (t)]

t+At
< sug aF (z)| S (Jw™ -V |g.0+15 -V |a.0lw™ - Vile.o+|Flag) d’
Te t
t+At

+ V|Vak|27g S ’VwN|2,_Q dt’
t

t+At 32
+ ysup |a*(z)| S <|wN “Tjla,50 + Z Z Z |Baj|2753) dt’
z€s t i=1 j=10=0,i

< sup a"(z)|V At (sup [w |2, 0|V | o + |V, or)
TEeSf? TEN
+ sup [8]2,0|Vw™|y or)
TES?
t+At
+suB]ak(x)| \ |Floodt' + v|VaF|s oV AL VN |y or
xre t
t+At 2
+ysup |t (@) (VA TuN por + | 3 [Bjlas) e
zeS t =1
t+At 2
gC(k)(\/AtJr | (yF|2,Q+Z\Bij,S)dt').
t j=1

We can see that for given k£ and N > k the r.h.s. tends to zero as At — 0
uniformly in N. Thus, one can choose a subsequence Ny, such that ¥y,
converges as m — oo uniformly to some continuous function ¢ for any
given k. Since the limit function w is defined as

w(z,t) =Y Pr(t)af (@),
k=1

we conclude that (w™™ — w,) tends to zero as m — oo uniformly with
respect to t € [0,7] for any ¢ € J9(£2), and w(x,t) is continuous in ¢
in the weak topology. Moreover, estimate (3.2) remains true for the limit
function w.
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We will show that {w’™} converges strongly in L2(£27). To this end, we
need to apply the following version of the Friedrichs lemma: for any ¢ > 0,
there exists N. such that for any u € W} ($2),

Ne
k
ull3 o <) (u,a%) + £ Vul3 5.
k=1
This in terms of u = w™N™ — w™ reads
T
6
" = W gr < 30§ (W = i+ P = VT g
10

By (3.2), we have
[Vwm — w3 o <207

for some constant C. The above integral, for given V., can be arbitrarily
small provided m and [ are sufficiently large, so it tends to zero as m,l — oo.
Therefore, {w™ ™} converges strongly in Ly (£27).

We summarize the above convergence properties of the sequence {w™m}:

(i) w™m — w strongly in Ly(027T) for some w,
(ii) wNm — w weakly in Lo(§2) uniformly with respect to ¢ € [0, T7,
(iii) Vw™m — Vw weakly in Lo(027).

For given &% = Z?Zl d;(t)a’ (z), the sequence {w™™} satisfies the iden-
tities

X(i N @k 4 (w Nm-VwNm+5-VwNm+wNm-V5)¢k+VD(wNm)D(d5k)> dx

3 2
+y {whrF ek Fds =Y "3 | Bot 7 dSk + | ok da.
So i=1 j=10=0,i §i Q
Then we can pass to the limit as m — oo to obtain the identity for w. The
conditions divw? = 0, w" - fA|gr = 0 stay true for the limit function w as
well.
It remains to consider the limit lim; o w(x,t). We note that the w!m
satisfy the relation (2.12) (if we use the test function w™m). This yields
t
[wN™ 5,0 < lwolo,o + | ([Fla,0 + [Bla,s) dt
0

In the limit m — oo we obtain
t

(w2, < |wol2,0 + S (|F|2,0 + |Bla,s) dt
0
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which implies
lim (w2, 0 < |wol2,0.
t—0

On the other hand, since w™™ tends to w as m — oo, we have |wNm —wo|2,0
— 0. Therefore, |w™™ — wg| — 0 weakly in Lo(£2) as t — 0 and

|wol2,0 < lim |wlz 0.
t—0

We conclude that the limit lim; . |w|2, ¢ exists and is equal to |wg|2 o where
the convergence is strong, in the Ly({2) norm.
Consequently, we have proved the following result.

THEOREM 1. Let the assumptions of Lemma 2.3 be satisfied. Then there
exists a weak solution w to problem (2.3) such that w is weakly continuous

with respect to t in La(£2) norm and w converges to wo ast — 0 strongly in
Ly (£2) norm.

4. Appendix: sketch of proof of Lemma 2.1. We discuss the proper-
ties of the functions ¢;, i = 1,2, 3, solving problem (2.1). To this end, we need
the notion of a regularizer and a partition of unity for the domain (2. Namely,
let us define two collections of open subsets {w®)} and {2®)}, k € MUN,

such that w® ¢ 2®) c 2, |, w® =, 2" = 2, 20 NS = for k € M
and 2*) NS # () for k € N'. We assume that at most a finite number of 2(*)
have nonempty intersection.

We will treat in more detail only the local problem on some sufficiently
small subset 2%V C 2 such that 2V N Dy # ) and PV N SE # 0,7 = 1,2,
The case of a domain that intersects D3 is analogous and subsets that lie
entirely (i.e. with their closures) in one of £2¢, i = 1,2,3, are much easier to
treat.

First, we straighten the boundary (Sé U Sg) N 2V and by the reflection
technique we transform the problem on 2V to an equivalent problem on
some subset 2 where 2M N Dy # 0 and int{2M} N SE £ 0, i = 1,2 (see
Figure 2.)

The system (2.1) now reads

—Agol =dive n _QM N2,
—Apo = divas in 2M N {2,
91
8n1 D2.

Here, we denote in fact by ¢ the new function ¢ where ( is a smooth function
with compact support in 2. In the new coordinates the local problem on

_ Op2
D2 anl
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—_—
Ql Ql
1
oL % oM st
b, D,
S5 -
QZ
QZ
Fig. 2. Transformation from 2% to 2™
M takes the following form in a half-space:
—Agol =diveg for x5 > 0,
—Apo =diva for z3 < 0
(4.1) P2 2 3 )
o1 _Op
81‘3 23=0 81‘3 13:0’
and it is completed with the conditions at infinity:
p1 — 0 asx3 — o0,
(4.2)
w2 — 0 aszz— —o0.
We introduce new functions u; = @; — @; where @; satisfy the first

two equations of the system (4.1). Therefore, we consider the equivalent

problem
—Auyp =0 for 23 > 0,

—Aus =0 for 23 <0,

on _dwl 0% _0m| __,
8%3 8%3 23=0 8%3 8%3 23=0 o b

Uy — Uz|pg=0 = P2 — P1 = P2,
u; — 0 as x3 — o0,
uy — 0  as r3 — —oo.
Applying the Fourier transform (with respect to &’ = (z1,z2)), i.e.

H(é.v .%'3) = S e—i{x'u(x/, .Tg) d.’Bl,
]RQ
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where & = (£1,&2) and € - 2/ = & 21 + {229, we obtain the problem

_ 0%
2 — =0 forag >0,
Ox3
_ 0%y
§2UQ — =0 for x3 <0,
Ox3
(43) on o | o
a.%'3 a.%'3 £3=0 ’

Uy — Uz|zz=0 = 2,

up — 0 as z3 — o0,

up — 0 as x3 — —oo.
We can easily find the solutions

Uy = cre €158 Gy = cyelél®s,
where - ~

c1+cy =11, c¢1—co=1o,
thus

% (Y1 +92), 2= % (1 — 2).

We want to use u; to estimate the H? norm of u;. By way of example, we
examine u;. We observe that

Cl =

(i = toman <
] [3
oo d 2 0o
|l =T jata] = e an, <o
3 o 1°%3 0
ur|| <P
‘d% Lo
Consequently,
2 d2 2
> bl = (10 + €072 + | 7 )ae
=1
29

g§<<1+5) B+l W)ds a6,

~ ~
< elldlZaraqge) < elldlanzs)-

Hence, by the regularizer technique and the a priori estimate on ¢,
3 3

YoV Iveil? <> [ [Vail®

i=1 £ i=1 0

we deduce the statement of Lemma 2.1 and the estimate (2.2).
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