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GLOBAL SOLUTION TO THE CAUCHY PROBLEM
OF NONLINEAR THERMODIFFUSION

IN A SOLID BODY

Abstract. We consider the initial-value problem for a nonlinear hyperbo-
lic-parabolic system of three coupled partial differential equations of second
order describing the process of thermodiffusion in a solid body (in one-
dimensional space). We prove global (in time) existence and uniqueness
of the solution to the initial-value problem for this nonlinear system. The
global existence is proved using time decay estimates for the solution of the
associated linearized problem. Next, we prove an energy estimate in Sobolev
spaces with constant independent of time. Such an energy estimate allows us
to apply the standard continuation argument to continue the local solution
to be defined for all times.

1. Introduction. In this paper we prove the existence and uniqueness
of a global solution to the Cauchy problem for the nonlinear system of
partial differential equations describing the process of thermodiffusion in
a solid body. We consider a special version of the differential equations
given by W. Nowacki (cf. [11], [12]). He considered the displacement u, the
temperature θ1, and the chemical potential θ2 as independent fields. These
fields depend on the space variable x and the time variable t, and satisfy
the following Cauchy problem:

(1.1)
[begin.]


ρ̃(∂tu, ∂xu, θ1, θ2)

∂2u

∂t2
− (λ̃+ 2µ̃)(∂tu, ∂xu, θ1, θ2)

∂2u

∂x2

+ γ̃1(∂tu, ∂xu, θ1, ∂xθ1, θ2, ∂xθ2)
∂θ1

∂x

+ γ̃2(∂tu, ∂xu, θ1, ∂xθ1, θ2, ∂xθ2)
∂θ2

∂x
= 0,
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(1.1)
[cont.]



c̃(∂tu, ∂xu, θ1, θ2)
∂θ1

∂t
− k̃(∂tu, ∂xu, θ1, θ2)

∂2θ1

∂x2

+ γ̃1(∂tu, ∂xu, θ1, ∂xθ1, θ2, ∂xθ2)
∂2u

∂t∂ x

+ d̃(∂tu, ∂xu, θ1, θ2)
∂θ2

∂t
= 0,

ñ(∂tu, ∂xu, θ1, θ2)
∂θ2

∂t
− D̃(∂tu, ∂xu, θ1, θ2)

∂2θ2

∂x2

+ γ̃2(∂tu, ∂xu, θ1, ∂xθ1, θ2, ∂xθ2)
∂2u

∂t∂x

+ d̃(∂tu, ∂xu, θ1, θ2)
∂θ1

∂t
= 0,

(1.2)
u(0, x) = u0(x), ∂tu(0, x) = u1(x),

θ1(0, x) = θ10(x), θ2(0, x) = θ20(x),

where t ∈ R+, x ∈ R and

(1.3) %̃, λ̃, µ̃, c̃, η̃, d̃, k̃, D̃ : R4 → R+ γ̃1, γ̃2 : R6 → R+.

In equations (1.1) we denote by:

• λ̃, µ̃ the material coefficients,
• ρ̃ the density,
• γ̃1, γ̃2 the coefficients of thermal and diffusion dilatation,
• k̃ the coefficient of thermal conductivity,
• D̃ the coefficient of diffusion,
• ñ, c̃, d̃ the coefficients of thermodiffusion.

The coefficients satisfy the condition

(1.4) ñc̃− d̃2 > 0.

The condition (1.4) implies that (1.1) is a hyperbolic-parabolic system of
partial differential equations. The functions ρ̃, λ̃, µ̃, c̃, ñ, d̃, k̃, D̃, γ̃1, γ̃2

satisfy

(1.5) ρ̃, λ̃, µ̃, c̃, ñ, d̃, k̃, D̃ ∈ C∞(R4), γ̃1, γ̃2 ∈ C∞(R6).

We will replace the system (1.1) with initial conditions (1.2) by an equivalent
system of partial differential equations of the first order.

Let us introduce the following notation:

(1.6) Ū = [U1, U2]T , θ̄ = [θ1, θ2]T ,

where (cf. [10])

(1.7) U1 = ∂xu, U2 = ∂tu.



Cauchy problem of nonlinear thermodiffusion 439

We can write the Cauchy problem (1.1)–(1.2) in the following equivalent
form:

(1.8)

{
A0(Ū , θ̄)∂tŪ +A1(Ū , θ̄)∂xŪ = F (Ū , θ̄, ∂xθ̄),

B0(Ū , θ̄)∂tθ̄ −B1(Ū , θ̄)∂2
xθ̄ = Q(Ū , θ̄, ∂xŪ , ∂xθ̄),

(1.9)

{
Ū(0, x) = Ū0(x) ≡ [∂xu0(x), u1(x)]T ,

θ̄(0, x) = θ̄0(x) ≡ [θ10(x), θ20(x)]T ,

where

(1.10)

A0(Ū , θ̄) =

[
(λ̃+ 2µ̃)(Ū , θ̄) 0

0 ρ̃(Ū , θ̄)

]
,

A1(Ū , θ̄) =

[
0 (λ̃+ 2µ̃)(Ū , θ̄)

(λ̃+ 2µ̃)(Ū , θ̄) 0

]
,

are real symmetric matrices and A0 is a positive-definite matrix. The ma-
trices B0(Ū , θ̄), B1(Ū , θ̄) have the following form:

(1.11) B0(Ū , θ̄) =

[
c̃(Ū , θ̄) d̃(Ū , θ̄)
d̃(Ū , θ̄) ñ(Ū , θ̄)

]
, B1(Ū , θ̄) =

[
k̃(Ū , θ̄) 0

0 D̃(Ū , θ̄)

]
.

These are symmetric and positive-definite matrices. This is a consequence
of condition (1.4). The right hand sides of (1.8) have the form

(1.12)

F (Ū , θ̄, ∂xθ̄) = −

[
0 0
γ̃1 γ̃2

]
∂xθ̄,

Q(Ū , θ̄, ∂xŪ , ∂xθ̄) = −

[
0 γ̃1

0 γ̃2

]
∂xŪ .

We assume that the entries of the matrices A0 and B0 satisfy

(1.13)

{
A0
ij(η) = O(|η|k0), i, j = 1, 2, η ∈ R4,

B0
ij(η) = O(|η|k0), i, j = 1, 2, η ∈ R4,

and

(1.14) (A0)−1A1 = −

[
0 1

λ+2µ
ρ 0

]
+

[
0 0
A1

21 0

]
where A1

21 = O(|η|k0),

(1.15) (A0)−1F = −

[
0 0
γ1
ρ

γ2
ρ

]
∂xθ̄ −

[
0 0
f1 f2

]
∂xθ̄



440 A. Szymaniec

where fi = O(|ζ|k0), i = 1, 2,

(1.16)
(B0)−1B1 =

[
kn

nc−d2 − dD
nc−d2

− kd
nc−d2

cD
nc−d2

]
+

[
B1

11 B1
12

B1
21 B1

22

]
,

B1
ij = O(|η|k0), i, j = 1, 2,

(1.17)
(B0)−1Q =

[
0 −nγ1−dγ2

nc−d2

0 dγ1−cγ2
nc−d2

]
∂xŪ +

[
0 q1

0 q2

]
∂xŪ ,

qi = O(|ζ|k0), i = 1, 2,

for ζ ∈ R6 and for some k0 ≥ 3. The initial-boundary value problem for
the linear system of thermodiffusion has been investigated by W. Nowacki
(cf. [12]), Ya. S. Podstrigach (cf. [14]) and G. Fichera (cf. [3]) by using the
methods of integral transformations and integral equations. J. Gawinecki
(cf. [4]) proved the existence, uniqueness and regularity of the solution to the
initial-boundary value problem for the linear system of thermodiffusion in
a solid body. The matrix of fundamental solutions (cf. [5]) was constructed
using the Fourier transformation for three cases: of the linear system of
thermodiffusion in the quasi-static case, in the thermal stresses theory, and
for the whole system of equations.

The aim of this paper is to prove the existence of a global (in time)
solution to the initial value problem for the system (1.8) in suitably chosen
Sobolev spaces. In our paper we use the method of Sobolev spaces, Lp-Lq

time decay estimates for the solution of the linearized system associated
with the nonlinear system (1.1), the method of energy estimates and the
continuation rule (cf. [6]). The paper is organized as follows:

In the Introduction we present the equations of nonlinear thermodif-
fusion in a solid body in one-dimensional space and formulate the main
theorem. In Section 2 some basic notation is presented. Section 3 is devoted
to the Lp-Lq time decay estimates for the Cauchy problem for the linear
system of thermodiffusion. In Section 4 we formulate the local existence
theorem for the solution of the Cauchy problem for (1.1). In Section 5 the
proof of high energy estimates for the solution of the Cauchy problem for
(1.1) is presented. Finally, in Section 6 the proof of the main theorem is
given.

We start with the formulation of the main results:

Theorem 1.1. Let s ≥ 9 be an integer and p = 2k0+2
2k0+1 , k0 ≥ 3 (k0 as in

(1.13)–(1.17)). Suppose that

(1.18) (∂xu0, u1, θ10, θ20) ∈ Hs(R) ∩ Ls,p(R).

Then for a sufficiently small positive constant δ and under the assumptions
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(1.4)–(1.5), if

‖(∂xu0, u1, θ10, θ20)‖Hs(R) + ‖(∂xu0, u1, θ10, θ20)‖Ls,p(R) < δ,

then there exists a unique smooth solution to the Cauchy problem (1.1)–(1.2)
with the following properties:

(∂xu, ∂tu) ∈ C0([0,∞);Hs(R)) ∩ C1([0,∞);Hs−1(R)),

(θ1, θ2)∈C0([0,∞);Hs(R)) ∩ C1([0,∞);Hs−2(R)) ∩ L2([0,∞);Hs+1(R)).

Moreover as t → ∞, we have the following asymptotic behaviour of the
solution:

‖(∂xu, ∂tu)‖L∞(R) = O(t−k0/(2k0+2)),

‖(∂xu, ∂tu)‖L2k0+2(R) = O(t−k0/(2k0+2)),

‖(∂xu, ∂tu)‖L2(R) = O(1),

‖(θ1, θ2)‖L∞(R) = O(t−k0/(2k0+2)),

‖(θ1, θ2)‖L2k0+2(R) = O(t−k0/(2k0+2)),

‖(θ1, θ2)‖L2(R) = O(1).

2. Basic notation. We denote the points of Rn by x = (x1, . . . , xn),
y = (y1, . . . , yn) and equip Rn with the canonical metric

|x− y| =
[ n∑
i=1

(xi − yi)2
]1/2

.

If α = (α1, . . . , αn) is an n-tuple of nonnegative integers αj , we call α a
multi-index of order |α| = α1 + · · ·+αn. If ∂i = ∂/∂xi for i = 1, . . . , n, then
∂αx = ∂α1

1 · · · · · ∂αnn . Let X be a Banach space and Ī ⊂ R a closed interval.
Then Ck(Ī , X) (k ≥ 0 an integer) denotes the space of k-times continuously
differentiable functions f on Ī with values in X (cf. [9]) with the norm

‖f‖Ck(Ī,X) = sup
t∈Ī

k∑
i=0

‖∂itf(t)‖X .

Let
S(Rn) = {ϕ ∈ C∞(R) : sup

x
|xα(∂βϕ)(x)| <∞ for all α, β}

be the space of rapidly decreasing functions. The dual space of S(Rn) is
called the space of tempered distributions S ′(Rn) (cf. [1], [7]). A linear func-
tional Tf on S(Rn) belongs to S ′(Rn) when there exist C > 0 and m ∈ N
such that

|Tf (ϕ)| ≤ C sup
x∈Rn

[
(1 + |x|)m

∑
|α|≤m

|(∂αϕ)(x)|
]
∀ϕ ∈ S(Rn).
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The Fourier transformation of a function f ∈S(Rn) is defined by (cf. [1], [13])

S(Rn) 3 Ff(ξ) ≡
�

Rn
e−ixξf(x) dx,

and the inverse Fourier transformation is

S(Rn) 3 F−1(Ff)(x) = (2π)−n
�

Rn
eixξ(Ff)(ξ) dξ.

The direct and inverse Fourier transformations are extended to S ′(Rn) by

FT (ϕ) ≡ T (Fϕ), F−1T (ϕ) ≡ T (F−1ϕ), T ∈ S ′(Rn).

We have the following theorem:

Theorem 2.1. Let 1 ≤ p ≤ 2. The Fourier transformation is a linear
and continuous map of Lp(Rn) onto Lp/(p−1)(Rn) and

‖Ff‖Lp/(p−1)(Rn) ≤ (2π)n(1/2−1/p)‖f‖Lp(Rn).

The space Wm,p(Rn), 1 ≤ p < ∞, m ∈ N, called the Sobolev space,
consists of all functions u ∈ Lp(Rn) for which the weak partial derivatives
∂αu of order α (|α| ≤ m) belong to Lp(Rn) (cf. [1], [2]), i.e.

Wm,p(Rn) = {u ∈ Lp(Rn) : ∂αu ∈ Lp(Rn), |α| ≤ m},
with the norm

‖u‖Wm,p(Rn) =
( ∑
|α|≤m

‖∂αu‖pLp(Rn)

)1/p
.

For s ∈ R and 1 ≤ p ≤ ∞ let Ls,p(Rn) denote the image of Lp(Rn) under
the linear mapping Jsu = F−1((1 + | · |2)−s/2Fu), with the norm

‖f‖Ls,p(Rn) ≡ ‖F−1((1 + | · |2)s/2Ff)‖Lp(R)

(cf. [2]).
Let C∞0 (Rn) be the set of all smooth functions with compact support

in Rn. Let J be a nonnegative real-valued C∞0 (Rn) function with J(x) = 0
if |x| ≥ 1 and

	
Rn J(x) dx = 1. For example

J(x) =

{
Ce−1/(1−|x|2) for |x| ≤ 1,
0 for |x| > 1.

If ε > 0, then the function Jε(x) = ε−nJ(x/ε) is nonnegative, belongs
to C∞0 (Rn) and satisfies Jε(x) = 0 if |x| ≥ ε and

	
Rn Jε(x) dx = 1. The

convolution

(Jεu)(x) = (Jε ? u)(x) =
�

Rn
Jε(x− y)u(y)dy

is called a mollifier of u. Let f , g be linear operators such that the com-
positions f ◦ g and g ◦ f are defined. We write [f, g] for the commutator



Cauchy problem of nonlinear thermodiffusion 443

of f and g, i.e. [f, g] = f ◦ g − g ◦ f . We record the following properties
(cf. [7], [15]).

Theorem 2.2. Let 1 ≤ p <∞ and u ∈ Lp(Rn), Then

(a) Jεu ∈ C∞(Rn).
(b) ‖Jεu‖Lp(Rn) ≤ ‖u‖Lp(Rn).
(c) limε→0 ‖Jεu− u‖Lp(Rn) = 0.
(d) For all m ∈ N and q ≥ p Jεu ∈Wm,q(Rn).
(e) Let s ≥ [n/2] + 2 and 0 ≤ l ≤ s. Then for u ∈ L∞(Rn)∩Hs(Rn) and

v ∈ H l(Rn) we have

‖[Jε, u]∂xv‖Hl(Rn) ≤ C‖u‖Hs(Rn)‖v‖Hl(Rn),

‖[Jε, u]∂xv‖Hl(Rn) → 0 as ε→ 0.

Theorem 2.3 (Gronwall’s inequality). If y ∈ C1(R) satisfies
dy

dt
+ p(t)y ≤ q(t)

for some p, q ∈ C0(R), then for t > 0,

y(t) ≤
[
y(0) +

t�

0

q(σ)e
	σ
0 p(τ) dτ dσ

]
e−

	t
0 p(τ) dτ .

We now recall the theorem about the existence and uniqueness of the so-
lution of the Cauchy problem for the parabolic-hyperbolic system of partial
differential equations (cf. [7], [15])

(C.1)


A0

1(u, v)ut +
n∑
j=1

Aj11(u, v)∂ju = f1(u, v,∇v),

A0
2(u, v)vt −

n∑
j,k=1

Bjk
2 (u, v,∇v)∂j∂kv = f2(u, v,∇u,∇v),

with initial condition

(C.2) (u, v)(0, x) = (u0, v0)(x)

where t ≥ 0, x ∈ Rn, n ∈ N and u, v are vectors with m′ and m′′ components,
respectively.

We make the following assumptions.
The pair (u, v)(t, x) takes its values in an open convex set U ⊂ Rm

(m = m′ + m′′). A0
1(u, v), A0

2(u, v), Aj11(u, v) are real symmetric square
matrices and A0

1(u, v), A0
2(u, v) are positive-definite for (u, v) ∈ U . The

functions A0
1(u, v), A0

2(u, v), Aj11(u, v) are sufficiently smooth in (u, v) ∈ U .
Bjk

2 (u, v, ξ) are real symmetric and satisfy Bjk
2 (u, v, ξ) = Bkj

2 (u, v, ξ) for
(u, v, ξ) ∈ U × Rnm′′ . The form

∑n
j,k=1B

jk
2 (u, v, ξ)ωjωk is real, symmetric
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and positive definite for (u, v, ξ) ∈ U ×Rnm′′ and ω = (ω1, . . . , ωn), |ω| = 1.
The right hand sides f1(u, v, ξ) and f2(u, v, η, ξ) are sufficiently smooth in
(u, v, ξ) ∈ U × Rnm′′ and (u, v, η, ξ) ∈ U × Rnm, and for some constant
(ū, v̄) ∈ U satisfy the condition

f1(ū, v̄, 0) = 0, f2(ū, v̄, 0, 0) = 0.

We have (cf. [7], [15])

Theorem 2.4. Let the above assumptions be satisfied and s ≥ [n/2] + 3.
If (u0−ū, v0−v̄) ∈ Hs(Rn), then there exists a constant T > 0, depending on
the norms of the initial values, so that the initial-value problem (C.1)–(C.2)
has a unique solution (u, v) satisfying the conditions

u− ū ∈ C0([0, T ];Hs(Rn)) ∩ C1([0, T ];Hs−1(Rn)),
v − v̄ ∈ C0([0, T ];Hs(Rn)) ∩ C1([0, T ];Hs−2(Rn)) ∩ L2([0, T ];Hs+1(Rn)).

Below we recall some helpful inequalities (cf. [15], [18]).

Theorem 2.5 (Gagliardo–Nirenberg inequality). Let 1 ≤ r, p ≤ ∞
and m ∈ N. Then there exists a constant C > 0 such that for all u ∈
Wm,p(Rn) ∩ Lr(Rn) we have

‖∇ju‖Lq(Rn) ≤ C‖∇mu‖
j/m
Lp(Rn)‖u‖

1−j/m
Lr(Rn),

where j = 0, 1, . . . ,m and 1
q = j

m

(
1
p −

1
r

)
+ 1

r .

Theorem 2.6 (Moser-type inequality). Let m,n, r ∈ N and 1 < p ≤ ∞.
If g ∈ Cr(Rm) and f = (f1, . . . , fm) ∈ L∞(Rn)∩W r,p(Rn), then there exists
a constant C = C(m,n, p, r) > 0 and a closed sphere B̄ ⊂ Rm so that

‖∂rxg(f)‖Lp(Rn) ≤ C‖∂fg‖Cr−1(B̄)‖f‖r−1
L∞(Rn)‖∂

r
xf‖Lp(Rn).

Theorem 2.7. Let s, s0 ∈ N, s0 = [n/2] + 1, s ≥ s0 + 1 and u ∈
L∞(Rn) ∩W s,2(Rn).

(a) If 1 ≤ l ≤ s is an integer and v ∈W s−1,2(Rn), then for 0 ≤ k ≤ l we
have

[∂kx , u]v ∈ L2(Rn)

and
l∑

k=0

‖[∂kx , u]v‖L2(Rn) ≤ C‖∂xu‖W s−1,2(Rn)‖v‖W l−1,2(Rn).

(b) If 0 ≤ l ≤ s is an integer, v ∈ W l,2(Rn) and Jε(x) is a mollifier,
then

[Jε, u]∂xv ∈W l,2(Rn),
‖[Jε, u]∂xv‖W l,2(Rn) ≤ C‖u‖W s,2(Rn)‖v‖W l,2(Rn),
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and
‖[Jε, u]∂xv‖W l,2(Rn)

ε→0−−−→ 0.

3. Lp-Lq time decay estimates for the Cauchy problem of the
linearized system of equations of thermodiffusion. The aim of this
section is to state the Lp-Lq time decay estimates for the solution of the
Cauchy problem of the linear system of equations of thermodiffusion asso-
ciated with the nonlinear system (1.1)–(1.2) which has the form

(3.1)


ρ∂2

t u− (λ+ 2µ)∂2
xu+ γ1∂xθ1 + γ2∂xθ2 = 0,

c∂tθ1 − k∂2
xθ1 + γ1∂

2
txu+ d∂tθ2 = 0,

n∂tθ2 −D∂2
xθ2 + γ2∂

2
txu+ d∂tθ1 = 0,

with the initial conditions

(3.2)
u(0, x) = u0(x), ∂tu(0, x) = u1(x),

θ1(0, x) = θ10(x), θ2(0, x) = θ20(x).

Before we formulate the main theorem of this section we state an important
fact:

Remark 3.1. The conditions (1.3) and (1.4) imply that

ρ, λ, µ, γ1, γ2, c, k, d, n,D > 0 and nc− d2 > 0.

Now, we formulate the Lp-Lq time decay estimate for the solution of the
Cauchy problem for the system (3.1)–(3.2).

Theorem 3.1. Let 1 < p < 2 < q < ∞, 1/p + 1/q = 1, and N ∈ N. If
the initial values (3.2) are sufficiently smooth, namely

(Ū0, θ̄0) ∈WN,p(R),

and

N >

(
2
p
− 1
)

(s− 1) + 1 ≥ 0, s > 2,

then the solution of the initial-value problem (3.1)–(3.2) satisfies

‖(Ū , θ̄)(t, ·)‖Lq ≤ C(1 + t)1/2−1/p‖(Ū0, θ̄0)‖WN,p ∀t > 0

where C is independent of (Ū0, θ̄0) and t.

A detailed proof of Theorem 3.1 can be found in [16] and [17].

4. Local existence and uniqueness of the solution of the Cauchy
problem of nonlinear thermodiffusion. We consider the nonlinear sys-
tem (1.8)–(1.9). The local existence and uniqueness of the solution of the
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Cauchy problem for (1.8)–(1.9) follows from the following theorem, due to
S. Kawashima (cf. [7]).

Theorem 4.1. Assume that the conditions (1.4)–(1.5) and (1.10)–(1.13)
are satisfied. If the initial data are sufficiently smooth, i.e. Ū0, θ̄0 ∈ Hs(R),
s ≥ 3 (s is an integer) and satisfy the condition

‖(Ū0, θ̄0)‖Hs(R) < δ0

(where δ0 is sufficiently small and positive), then there exists a constant
T > 1 depending on ‖(Ū0, θ̄0)‖Hs(R) such that the solution of the initial-value
problem (1.8), (1.9) is unique, and

(4.1)
Ū ∈ C0(0, T ;Hs(R)) ∩ C1(0, T ;Hs−1(R)),

θ̄ ∈ C0(0, T ;Hs(R)) ∩ C1(0, T ;Hs−2(R)) ∩ L2(0, T ;Hs+1(R)).

Sketch of proof. The proof is based on Theorem 2.4 (cf. [7], [15]). Below,
we show that the assumptions of that theorem are satisfied:

• In view of conditions (1.10)–(1.11) the matrices A0, B0, B1 are sym-
metric and positive-definite, since all coefficients of system (1.1) are
positive (cf. condition (1.3)), and for the matrix B0 we have ñc̃−d̃2 > 0
(cf. condition (1.4)), and A1 is a real symmetric matrix.
• The functions F (η, σ, ν), Q(η, σ, ξ, ν) (where η, σ, ξ, ν ∈ R2 correspond

to Ū , θ̄, ∂x Ū and ∂x θ̄ respectively) described by (1.12) satisfy the
conditions

F (η, σ, 0) = 0, Q(η, σ, 0, 0) = 0 ∀ η, σ ∈ R2.

This means that we can apply Theorem 2.4. This ends the proof of
Theorem 4.1.

5. High energy estimates. In this section we prove high energy es-
timates for the solution of the problem (1.8)–(1.9), which is guaranteed by
Theorem 4.1.

Theorem 5.1. Let s ≥ 4 be an integer and (Ū , θ̄) be the solution of the
initial-value problem (1.8)–(1.9) in the interval [0, T1], T1 < T (cf. Th. 4.1).
If

‖(Ū , θ̄)(t)‖L[s/2],∞(R) < 1

for all t ∈ [0, T1], then for k0 ∈ N,

‖(Ū , θ̄)(t)‖Hs(R) ≤ Cs‖(Ū0, θ̄0)‖Hs(R) · e
Cs

	t
0 ‖(Ū ,θ̄)(ξ)‖

k0

L[s/2],∞(R)
dξ

for all t ∈ [0, T1], where the constant Cs is independent of T1.
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Lemma 5.1. If H(Ū , θ̄) is a matrix satisfying the following conditions:

1◦ Hij(η) ∈ C∞(R4) for i, j = 1, 2, 3, 4,
2◦ |Hij(η)| = O(|η|k0), k0 ≥ 1,

and

3◦ (Ū , θ̄)(t) ∈ L1,∞(R), ∂t(Ū , θ̄)(t) ∈ L∞(R),
4◦ ‖(Ū , θ̄)(t)‖L∞(R) < 1, ∀t ∈ [0, T ],

then

(a) ‖∂tH(Ū , θ̄)‖L∞ ≤ C‖(Ū , θ̄)‖k0−1
L∞ ‖∂t(Ū , θ̄)‖L∞,

(b) ‖∂xH(Ū , θ̄)‖L∞ ≤ C‖(Ū , θ̄)‖k0−1
L∞ ‖∂x(Ū , θ̄)‖L∞.

Proof. Applying the Taylor formula to the matrix H in the neighborhood
of 0, we have

Hij(Ū , θ̄) =
∑

|β1+β2|≤k0

∂(β1,β2)Hij(0)
β1!β2!

Ūβ1 θ̄β2

+
∑

|β1+β2|=k0+1

k0 + 1
β1!β2!

1�

0

(1− z)k0∂(β1,β2)Hij(zŪ , zθ̄)Ūβ1 θ̄β2 dz.

In this and the following lemmas, we write ∂(β1,β2) for partial derivatives of
order |β1+β2| = β1

1 +β2
1 +β1

2 +β2
2 of some functions f with respect to η ∈ R4,

η = (η1, η2, η3, η4), of the following form: ∂(β1,β2)f(η) ≡ ∂
β1
1
η1 ∂

β2
1
η2 ∂

β1
2
η3 ∂

β2
2
η4 f(η),

where β1! = β1
1 !β2

1 !, β2! = β1
2 !β2

2 ! and β1
1 , β

2
1 , β

1
2 , β

2
2 ∈ N. This is because

we need partial derivatives with respect to (η1, η2) and (η3, η4), where the
couples correspond to Ū = (U1, U2) and θ̄ = (θ1, θ2) respectively. By 2◦ we
have

(5.1) Hij(Ū , θ̄) =
∑

|β1+β2|=k0

∂(β1,β2)Hij(0)
β1!β2!

Ūβ1 θ̄β2

+
∑

|β1+β2|=k0+1

k0 + 1
β1!β2!

1�

0

(1− z)k0∂(β1,β2)Hij(zŪ , zθ̄)Ūβ1 θ̄β2 dz

= H1
ij(Ū , θ̄) +H2

ij(Ū , θ̄).

Then

(5.2) ∂tH
1
ij = C

∑
|β1+β2+µ1+µ2|=k0

|µ1+µ2|=1

∂(β1+µ1,β2+µ2)Hij(0)
(β1 +µ1)!(β2 +µ2)!

Ūβ1 θ̄β2(∂tŪ)µ1(∂tθ̄)µ2
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and

(5.3) ∂tH
2
ij(Ū , θ̄)

=
∑

|β1+β2|=k0+1
|µ1+µ2|=1

k0 + 1
β1!β2!

1�

0

z(1− z)k0∂(β1+µ1,β2+µ2)Hij(zŪ , zθ̄)

× Ūβ1 θ̄β2(∂tŪ)µ1(∂tθ̄)µ2 dz +
∑

|β1+β2+µ1+µ2|=k0+1
|µ1+µ2|=1

k0 + 1
(β1 + µ1)!(β2 + µ2)!

×
1�

0

(1− z)k0∂(β1+µ1,β2+µ2)Hij(zŪ , zθ̄)Ūβ1 θ̄β2(∂tŪ)µ1(∂tθ̄)µ2 dz.

The mean value theorem (cf. 3◦) implies that there exists 0 < ξ < 1 such
that

(5.4) ∂tH
2
ij(Ū , θ̄) =

1
k0 + 2

∑
|β1+β2|=k0+1
|µ1+µ2|=1

1
β1!β2!

∂(β1+µ1,β2+µ2)Hij(ξŪ , ξθ̄)

× Ūβ1 θ̄β2(∂tŪ)µ1(∂tθ̄)µ2

+
∑

|β1+β2+µ1+µ2|=k0+1
|µ1+µ2|=1

1
(β1 +µ1)!(β2 +µ2)!

× ∂(β1+µ1,β2+µ2)Hij(ξŪ , ξθ̄)Ūβ1 θ̄β2(∂tŪ)µ1(∂tθ̄)µ2 .

From (5.2), (5.4) we can see that H1 and H2 depend on a polynomial of
order k0 − 1 and k0, respectively, of Ū and θ̄, where terms of H1 and H2

only depend on the first order partial derivatives with respect to t. Then by
the imbedding theorem, we have

‖∂tH(Ū , θ̄)‖L∞ ≤ C‖(Ū , θ̄)‖k0−1
L∞ ‖∂t(Ū , θ̄)‖L∞ + C‖(Ū , θ̄)‖k0L∞‖∂t(Ū , θ̄)‖L∞

≤ C‖(Ū , θ̄)‖k0−1
L∞ ‖∂t(Ū , θ̄)‖L∞ ,

in view of condition 4◦. This proves property (a). The proof of (b) is analo-
gous.

Lemma 5.2. Let Hij(·) ∈ C∞(R4) be the elements of the matrix H(η)
and suppose the functions Ū(t), θ̄(t) satisfy Ū(t) ∈ C∞(R) ∩Hs(R), θ̄(t) ∈
C∞(R) ∩Hs+1(R), s ≥ 3, and ‖(Ū , θ̄)‖L[s/2],∞ < 1. Then for α ≤ s,

‖[∂αx , H(Ū , θ̄)]∂xŪ‖L2 ≤ C(s)‖∂sx(Ū , θ̄)‖L2 ,

‖[∂αx , H(Ū , θ̄)]∂2
xθ̄‖L2 ≤ C(s)(‖∂s+1

x θ̄‖L2 + ‖∂sx(Ū , θ̄)‖L2).
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Proof. Using the commutator and the Leibniz formula, we have

I := ‖[∂αx , H(Ū , θ̄)]∂xŪ‖L2 ≤
∑

k+l=α−1

ckl‖∂k+1
x H(Ū , θ̄)∂l+1

x Ū‖L2 .

In view of the Hölder inequality with exponents k
α−1 + l

α−1 = 1, we have

I ≤ C
∑

k+l=α−1

‖∂k+1
x H(Ū , θ̄)‖L2(α−1)/k(R)‖∂

l+1
x Ū‖L2(α−1)/l(R).

By using the Gagliardo–Nirenberg inequality (cf. Theorem 2.5) we can write

‖∂kx∂xH(Ū , θ̄)‖L2(α−1)/k ≤ C‖∂αxH(Ū , θ̄)‖k/(α−1)
L2 ‖∂xH(Ū , θ̄)‖1−k/(α−1)

L∞ ,

‖∂lx∂xŪ‖L2(α−1)/l ≤ C‖∂αx Ū‖
l/(α−1)
L2 ‖∂xŪ‖1−l/(α−1)

L∞ .

Since k
α−1 + l

α−1 = 1, we have

‖∂kx∂xH(Ū , θ̄)‖L2(α−1)/k

≤
∑

k+l=α−1

Cα[‖∂xH(Ū , θ̄)‖L∞‖∂αx Ū‖L2 ]
l

α−1 [‖∂x Ū‖L∞‖∂αxH(Ū , θ̄)‖L2 ]
k

α−1 .

For terms involving partial derivatives of H(Ū , θ̄) we use the Moser inequal-
ity (cf. Theorem 2.7), and from the assumptions of Lemma 5.2 we obtain

‖∂αxH(Ū , θ̄)‖L2 ≤ C‖(Ū , θ̄)‖α−1
L∞ ‖∂

α
x (Ū , θ̄)‖L2 ,

‖∂xH(Ū , θ̄)‖L∞ ≤ C‖(Ū , θ̄)‖L∞‖∂x(Ū , θ̄)‖L∞ .

Using the above inequalities and the condition ‖(Ū , θ̄)‖L[s/2],∞ < 1 we can
write

I ≤
∑

k+l=α−1

Cα[‖(Ū , θ̄)‖L∞‖∂x(Ū , θ̄)‖L∞‖∂αx Ū‖L2 ]
l

α−1

× [‖∂xŪ‖L∞‖(Ū , θ̄)‖α−1
L∞ ‖∂

α
x (Ū , θ̄)‖L2 ]

k
α−1 ≤ C‖∂αx (Ū , θ̄)‖L2 .

This proves the first inequality. The proof of the second is similar.

Lemma 5.3. If g ∈ C∞(R6), Ū ∈ C∞(R)∩Hs(R), θ̄ ∈ C∞(R)∩Hs+1(R),
s ≥ 3 and ‖(Ū , θ̄)‖L[s/2],∞ < 1 then for α ≤ s,

‖∂αx (g(Ū , θ̄, ∂xθ̄)∂xθ̄)‖L2 ≤ C(s)(‖∂s+1
x θ̄‖L2 + ‖∂sx(Ū , θ̄)‖L2),

‖[∂αx ; g(Ū , θ̄, ∂xθ̄)]∂xŪ‖L2 ≤ C(s)(‖∂s+1
x θ̄‖L2 + ‖∂sx(Ū , θ̄)‖L2).

Proof. The proof is similar to the proof of Lemma 5.2.

Now, we start the proof of Theorem 5.1. We consider the system of differ-
ential equations (1.8) with initial data (1.9). We apply Friedrichs mollifiers
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(cf. [15]) in the following form. We put Uε = Jε ? Ū , θε = Jε ? θ̄, where
Jε(x) is a nonnegative function that belongs to C∞0 and ? is convolution.
We rewrite the system (1.8) as

(5.5)

{
∂tŪ − ((A0)−1A1)(Ū , θ̄)∂xŪ = ((A0)−1F )(Ū , θ̄, ∂xθ̄),

∂tθ̄ − ((B0)−1B1)(Ū , θ̄)∂2
xθ̄ = ((B0)−1Q)(Ū , θ̄, ∂xŪ , ∂xθ̄).

The positive-definite matrices A0 and B0 have inverses (A0)−1, (B0)−1. We
define

(5.6)
A = (A0)−1A1, f = (A0)−1F̄ ,

B = (B0)−1B1, q = (B0)−1Q̄.

Using the standard energy methods together with mollification we get

(5.7)

{
∂tŪ

α
ε −A(Ūε, θ̄ε)∂xŪαε = fα + fαε +Aαε + [∂αx , A(Ūε, θ̄ε)]∂xŪε,

∂tθ̄
α
ε −B(Ūε, θ̄ε)∂2

xθ̄
α
ε = qα + qαε +Bα

ε + [∂αx , B(Ūε, θ̄ε)]∂2
xθ̄ε,

where

(5.8)

∂αx Ūε = Ūαε , ∂αx θ̄ε = θ̄αε ,

fαε = ∂αx (Jε ? f(h)− f(hε)),

qαε = ∂αx (Jε ? q(h)− q(hε)),

Aαε = ∂αx [Jε ? (A(h)∂xŪ)−A(hε)∂xŪε],

Bα
ε = ∂αx [Jε ? (B(h)∂2

xθ̄)−B(hε)∂2
xθ̄ε.

Multiplying both sides of the equations (5.7) respectively with A0(Ūε, θ̄ε),
B0(Ūε, θ̄ε) and taking the scalar product (·; ·) with properly chosen Ūαε and
θ̄αε and integrating with respect to x, we have

(5.9)



1
2
d

dt
(Ūαε ;A0Ūαε ) =

1
2

(Ūαε ; ∂tA0Ūαε )− 1
2

(Ūαε ; ∂xA1Ūαε )

+ (Ūαε ;A0fα) + (Ūαε ;A0fαε ) + (Ūαε ;A0Aαε )

+ (Ūαε , A
0[∂αx , A]∂xŪε),

1
2
d

dt
(θ̄αε ;B0θ̄αε ) + (θ̄α+1

ε ;B1θ̄α+1
ε ) =

1
2

(θ̄αε ; ∂tB0θ̄αε )

− (θ̄αε ; ∂xB1θ̄α+1
ε ) + (θ̄αε ;B0qα) + (θ̄αε ;B0qαε ) + (θ̄αε ;B0Bα

ε )

+ (θ̄αε ;B0[∂αx , B]∂2
xθ̄ε).

Taking into account (1.5), (1.10)–(1.12), Theorem 4.1, Lemma 5.1–5.3 and
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the Schwarz inequality, we have

(5.10)



1
2
d

dt
(Ūαε ;A0Ūαε )

≤ C‖(Ūε, θ̄ε)‖k0−1
L∞ (|∂t(Ūε, θ̄ε)|L∞ + |∂x(Ūε, θ̄ε)|L∞)‖Ūαε ‖2L2

+ C‖(Ūε, θ̄ε)‖k0L∞(‖θ̄s+1
ε ‖L2 + ‖(Ū sε , θ̄sε)‖L2)‖Ūαε ‖L2

+ C‖(Ūε, θ̄ε)‖k0L∞(‖Aαε ‖L2 + ‖fαε ‖L2)‖Ūαε ‖L2 ,

1
2
d

dt
(θ̄αε ;B0θ̄αε ) + c0‖θ̄α+1

ε ‖2L2

≤ C‖(Ūε, θ̄ε)‖k0−1
L∞ |∂t(Ūε, θ̄ε)|L∞‖θ̄αε ‖2L2

+ C‖(Ūε, θ̄ε)‖k0−1
L∞ |∂x(Ūε, θ̄ε)|L∞‖(Ūαε , θ̄αε )‖L2‖θ̄α+1

ε ‖L2

+ C‖(Ūε, θ̄ε)‖k0L∞(‖θ̄s+1
ε ‖L2 + ‖(Ū sε , θ̄sε)‖L2)‖θ̄αε ‖L2

+ C‖(Ūε, θ̄ε)‖k0L∞(‖Bα
ε ‖L2‖θ̄αε ‖L2 + ‖qαε ‖L2‖θαε ‖L2).

We introduce the following energy norms:

(5.11)

‖Ūε(t)‖2Es1 =
∑
α≤s

(Ūαε (t);A0(t)Ūαε (t)),

‖θ̄ε(t)‖2Es2 =
∑
α≤s

(θ̄αε (t);B0(t)θ̄αε (t)),

which are equivalent to the norm of the Sobolev space Hs(R). Summing
inequalities (5.10) over α ≤ s, we find that

(5.12)
1
2
d

dt
‖(Ūε, θ̄ε)‖2Hs + c0‖θ̄ε‖2Hs+1

≤ C‖(Ūε, θ̄ε)‖k0−1
L∞ (‖∂t(Ūε, θ̄ε)‖L∞ + ‖∂x(Ūε, θ̄ε)‖L∞)

× (‖(Ūε, θ̄ε)‖2Hs + ‖θ̄ε‖Hs+1‖(Ūε, θ̄ε)‖Hs)

+ C‖(Ūε, θ̄ε)‖k0L∞‖(Ūε, θ̄ε)‖
2
Hs +C‖(Ūε, θ̄ε)‖k0L∞‖Gε‖Hs‖(Ūε, θ̄ε)‖Hs

where
‖Gε‖Hs = ‖Aε‖Hs + ‖fε‖Hs + ‖Bε‖Hs + ‖qε‖Hs .

Applying the inequality ab ≤ 1
δa

2 + δ
2b

2, for sufficiently small δ we have

(5.13)
d

dt
‖(Ūε, θ̄ε)‖Hs ≤ C(‖(Ūε, θ̄ε)‖k0−1

L[s/2],∞‖∂t(Ūε, θ̄ε)‖L∞

+ ‖(Ūε, θ̄ε)‖k0L[s/2],∞)‖(Ūε, θ̄ε)‖Hs

+ C‖(Ūε, θ̄ε)‖k0L[s/2],∞‖(Ūε, θ̄ε)‖Hs + C‖(Ūε, θ̄ε)‖k0L∞‖Gε‖Hs



452 A. Szymaniec

Next we apply Gronwall’s inequality to obtain

(5.14) ‖(Ūε, θ̄ε)‖Hs

≤ C‖(Ū0ε, θ̄0ε)‖Hse
C

	t
0 (‖(Ūε,θ̄ε)‖

k0−1

L[s/2],∞‖∂t(Ūε,θ̄ε)‖L∞+‖(Ūε,θ̄ε)‖
k0

L[s/2],∞ ) dξ

+ C

t�

0

‖Gε‖Hse
C

	t
τ (‖(Ūε,θ̄ε)‖

k0−1

L[s/2],∞‖∂t(Ūε,θ̄ε)‖L∞+‖(Ūε,θ̄ε)‖
k0

L[s/2],∞ ) dξ
dτ.

Taking into account the Sobolev imbedding theorem (cf. [1]) for s ≥ 3 and
properties of Friedrichs mollifiers (cf. [8]), we have, as ε→ 0,

‖(Ūε(t), θ̄ε(t))‖Hs(R) → ‖(Ū(t), θ̄(t))‖Hs(R)

‖∂t(Ūε(t), θ̄ε(t))‖Hs−2(R) → ‖∂t(Ū(t), θ̄(t))‖Hs−2(R)

for t ∈ [0, T ].

This implies the convergences

‖(Ūε(t), θ̄ε(t))‖L[s/2],∞(R) → ‖(Ū(t), θ̄(t))‖L[s/2],∞(R)

‖∂t(Ūε(t), θ̄ε(t))‖L[s/2],∞(R) → ‖∂t(Ū(t), θ̄(t))‖L[s/2],∞(R)

for t ∈ [0, T ],

and
‖(Ū0ε, θ̄0ε)‖Hs(R) → ‖(Ū0, θ̄0)‖Hs(R).

Using Lebesgue’s dominated convergence theorem we can see that the terms
in the exponent in (5.14) (cf. [8]) tend to

C

t�

0

‖(U, θ)‖k0
L[s/2],∞ dξ, C

t�

τ

‖(U, θ)‖k0
L[s/2],∞ dξ

respectively. The fact that

‖Gε‖Hs(R) → 0 as ε→ 0

follows from the properties of mollification, the Leibniz formula and Taylor’s
theorem. This completes the proof of Theorem 5.1.

6. Energy inequality with constants independent of time and
proof of the main theorem. In this section we show that the solution
of the initial-value problem (1.8)–(1.9) is bounded in Sobolev norms by a
constant independent of T for sufficiently small initial data. We first prove
the following theorem.

Theorem 6.1. Let (Ū , θ̄)(t, x) be a solution of the initial-value problem
(1.8)–(1.9) in the interval [0, T1], and let s1 = [s/2] + 1, s ≥ 9. If (Ū , θ̄) ∈
Hs(R) ∩ Ls,p(R) where p = 2k0+2

2k0+1 , k0 ≥ 3 and

‖(Ū0, θ̄0)‖Hs(R) + ‖(Ū0, θ̄0)‖Ls,p(R) < δ

for sufficiently small δ, then there exists a constant <0 < ∞, independent
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of T1, so that

sup
t∈[0,T1]

(1 + t)
k0

2k0+2 ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R) ≤ <0.

Proof. Consider the system (1.8) with initial data (1.9). We can write
the solution of the Cauchy problem in the following form:

(6.1) (Ū , θ̄) = G(t, ·) ? (Ū0, θ̄0) +
t�

0

G(t− τ, ·)(F̄ , Q̄)(τ, x) dτ

where ? is convolution with respect to x, G(t, x) is the matrix given by the
formula (4.5) in [17], and the following matrix equalities are consequences
of the formulas (1.14)–(1.17):

F̄ =

[
0 0
A1

21 0

]
∂xŪ −

[
0 0
f1 f2

]
∂xθ̄,

Q̄ =

[
B1

11 B1
12

B1
21 B1

22

]
∂xθ̄ −

[
0 q1

0 q2

]
∂xŪ .

By Theorem 3.1 we have

(6.2) ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R) ≤ C(1 + t)−
k0

2k0+2 ‖(Ū0, θ̄0)‖Ls1+N,p(R)

+ C

t�

0

(1 + t− τ)−
k0

2k0+2 ‖(F̄ , θ̄)(τ)‖Ls1+N,p(R) dτ.

Let A be a matrix of elements Aij : R8 → R with Aij(ξ) = O(|ξ|k0), i, j =
1, . . . , 4.

Lemma 6.1. Let s ≥ s1 + N + 1 ≥ 4, N = 3k0+1
k0+1 , k0 ≥ 1. If Vi ∈

Ls,p(R) ∩Hs(R), i = 1, . . . , 4, p = 2k0+2
2k0+1 , and ‖V ‖L[s/2],∞(R) ≤ 1, then

‖A(V, ∂xV )∂xV ‖Ls1+N,p(R) ≤ C‖V ‖
k0
L[(s1+N)/2]+1,2k0+2(R)

‖V ‖Hs(R).

Proof. Using the Leibniz formula we have

(6.3) ∂s1+N
x (A∂xV ) =

∑
k+l=s1+N

ckl∂
k
xA∂l+1

x V

and

(6.4) ∂kxA(V, ∂xV )

=
∑

i
P4
m=1(pim+pim+4)=kPk

i=1 p
i
m=σmPk

i=1 p
i
m+4=σm+4

k∏
i=1

4∏
m=1

cimk(∂ixVm)p
i
m(∂i+1

x Vm)p
i
m+4∂σY A(V, ∂xV ),
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where σ = (σ1, . . . , σ8) is a multi-index, and Y = (V, ∂xV ). We decompose
A as

A(V, ∂xV ) = A1(V, ∂xV ) + A2(V, ∂xV )
where

A1(V, ∂xV ) =
∑

|β1+β2|=k0

1
β1!β2!

(∂(β1,β2)
V A)(0, 0)V β1(x)(∂xV )β2(x)

and

A2(V, ∂xV )

=
∑

|β1+β2|=k0+1

k0 + 1
β1!β2!

V β1(x)(∂xV )β2(x)
1�

0

(1− z)k0(∂(β1,β2)
V A)(zV, z∂xV ) dz.

The first element is a polynomial of degree k0 relative to Vi and ∂xVi. Taking
the kth derivative of A1 with respect to x (cf. (6.4)) we obtain a polynomial
of degree k0. Now we consider the derivative

∂s1+N
x (A1(V, ∂xV )∂xV ) =

∑
k+l=s1+N

∂kxA1(V, ∂xV )∂l+1
x V.

This expression contains derivatives of order [(s1 +N)/2] + 1 of V with
exponent one. Then we apply the Hölder inequality with exponents 1

p =
1
2 + k0

2k0+2 to obtain

‖A1(V, ∂xV )∂xV ‖Ls1+N,p(R) ≤ C‖V ‖
k0
L[(s1+N)/2]+1,q(R)

‖V ‖Hs(R).

We can describe the elements of the matrix A2 as follows:

∂s1+N
x (A2(V, ∂xV )∂xV ) =

∑
l+p+q+r=s1+N
|β1+β2|=k0+1

∑
i

P4
m=1(pim+pim+4)=rPr

i=1 p
i
m=δ1mPr

i=1 p
i
m+4=δ2m

×
r∏
i=1

4∏
m=1

cimr
(k0 + 1)(s1 +N)!
β1!β2!l!p!q!r!

∂l+1
x V ∂pxV

β1∂qx(∂xV )β2

× (∂xVm)p
i
m(∂i+1

x Vm)p
i
m+4

1�

0

(1− z)k0zpim+pim+4

× (∂(β1+δ1,β2+δ2)
Y A)(zV, z∂xV ) dz,

where δ1 = (δ1
1 , . . . , δ

1
4) and δ2 = (δ2

1 , . . . , δ
2
4) are multi-indices. The above

derivative is a polynomial of degree l where k0 +2 ≤ l ≤ k0 +s1 +N+2. The
derivatives of orders higher than [(s1 +N)/2] + 1 contain derivatives with
exponent one. For derivatives of order less than or equal to [(s1 +N)/2] + 1
we have H [(s1+N)/2]+1(R) ↪→ C0

B(R). Using the Hölder inequality with ex-
ponents 1

p = 1
2 + k0

2k0+2 we have

‖A2(V, ∂xV )∂xV ‖Ls1+N,p(R) ≤ C‖V ‖
k0
L[(s1+N)/2]+1,q(R)‖V ‖Hs(R).
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Using Lemma 6.1 and assuming that s1 ≥ 4 we have

(6.5) ‖(F̄ , Q̄)(τ)‖Ls1+N,p(R) ≤ C‖(Ū , θ̄)(τ)‖k0
Ls1,2k0+2(R)

‖(Ū , θ̄)(τ)‖Hs(R).

From the above inequality we obtain

(6.6) ‖(Ū , θ̄)‖Ls1,2k0+2(R) ≤ C(1 + t)−
k0

2k0+2 ‖(Ū0, θ̄0)‖Ls1+N,p(R)

+ C

t�

0

(1 + t− τ)−
k0

2k0+2 ‖(Ū , θ̄)(τ)‖k0Ls1,q(R)‖(Ū , θ̄)(τ)‖Hs(R) dτ.

In view of Theorem 5.1 and the Sobolev imbedding theorem Ls1,2k0+2(R) ↪→
C

[s/2]
B (R) where s1 = [s/2] + 1 > [s/2] + 1/(2k0 + 2), s ≥ 9, we have

(6.7) ‖(Ū , θ̄)(ξ)‖L[s/2],∞(R) ≤ C‖(Ū , θ̄)(ξ)‖Ls1,2k0+2(R)

and

(6.8) ‖(Ū , θ̄)(τ)‖Hs(R) ≤ Cs‖(Ū0, θ̄0)‖Hs(R)

× e
{c supξ∈[0,T1](1+ξ)k

2
0/(2k0+2)‖(Ū ,θ̄)(ξ)‖k0

Ls1,2k0+2(R)

	τ
0 (1+ξ)−k

2
0/(2k0+2) dξ}

.

Putting

(6.9) <s1(T1) = sup
t∈[0,T1]

(1 + t)
k0

2k0+2 ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R)

and assuming that k0 ≥ 3 we have

(6.10) ‖(Ū , θ̄)(τ)‖Hs(R) ≤ Cs‖(Ū0, θ̄0)‖Hs(R)e
Cs<

k0
s1

(τ).

If we assume that

‖(Ū0, θ̄0)‖Ls,p(R) + ‖(Ū0, θ̄0)‖Hs(R) ≤ δ
then in view of (6.6) we have the estimates

(6.11) ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R) ≤ Csδ(1 + t)−
k0

2k0+2

+ Csδe
Cs<

k0
s1

(T1)
t�

0

(1 + t− τ)−
k0

2k0+2 ‖(Ū , θ̄)(τ)‖k0
Ls1,2k0+2(R)

dτ

and

(6.12) ‖(Ū , θ̄)(τ)‖Ls1,2k0+2(R) ≤ <
k0
s1 (T1)(1 + τ)−

k20
2k0+2 .

Multiplying both sides of (6.11) by (1 + t)
k0

2k0+2 and using (6.12) we have

(6.13) (1 + t)
k0

2k0+2 ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R) ≤ Csδ + Csδ<k0s1 (T1)eCs<
k0
s1

(T1)

× (1 + t)
k0

2k0+2

t�

0

(1 + t− τ)−
k0

2k0+2 (1 + τ)−
k20

2k0+2 dτ.
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Since

(1 + t)
k0

2k0+2

t�

0

(1 + t− τ)−
k0

2k0+2 (1 + τ)−
k20

2k0+2 dτ ≤ C ∀t ≥ 0, ∀k0 ≥ 3,

we have the inequality

(6.14) <s1(T1) ≤ Csδ + Csδ<k0s1 (T1)eCs<
k0
s1

(T1)

where the constant Cs depends on s only. We consider the function

f(x) = Cδ(1 + xk0eCx
k0 )− x.

If δ is sufficiently small, then the equation f(x) = 0 has positive roots; let
<0 be the smallest such root. Since

Cδ(1 + <k00 e
C<k00 )−<0 = 0

we have Cδ ≤ <0. Since f is continuous and f(0) = Cδ we have

(6.15)
f(x) ≥ 0, x ∈ [0,<0],
f(x) < 0, x ∈ (<0,<0 + ε) for some ε > 0.

If δ is sufficiently small, then

<s1(0) = ‖(Ū0, θ̄0)‖Ls1,2k0+2(R) ≤ Cs‖(Ū0, θ̄0)‖Hs(R) ≤ Csδ < <0

and

(6.16) <s1(0) ∈ [0,<0].

By Theorem 4.1 we have <s1 ≤ <0.

Theorem 6.2. Let s ≥ 9 be a positive constant and

(Ū0, θ̄0) ∈ Hs(R) ∩ Ls,p(R)

where p = 2k0+2
2k0+1 with k0 ≥ 3, and let (Ū , θ̄0)(t) be a solution of the initial-

value problem (1.8)–(1.9) in some interval [0, T1] and

‖(Ū0, θ̄0)‖Hs(R) + ‖(Ū0, θ̄0)‖Ls,p(R) < δ1

for a sufficiently small constant δ1 > 0. Then

‖(Ū , θ̄)(t)‖Hs(R) ≤ Ks,k0‖Ū0, θ̄0‖Hs(R) ∀t ∈ [0, T1]

where the constant Ks,k0 depends only on s and k0.

Proof. In view of the inequality (6.8) we put Ks,k0 = Cse
Cs<

k0
0 and

obtain
‖(Ū , θ̄)(t)‖Hs(R) ≤ Ks,k0 , t ∈ [0, T1],

which finishes the proof.

Proof of Theorem 1.1. Let δ = min(δ0, δ1, δ1/Ks,k0), where δ0, δ1,Ks,k0

are given by Theorems 4.1 and 6.2. If the initial data satisfy the conditions
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(Ū0, θ̄0) ∈ Hs(R) ∩ Ls,p(R), and

‖(Ū0, θ̄0)‖Hs(R) + ‖(Ū0, θ̄0)‖Ls,p(R) < δ,

then in view of Theorem 4.1 there exists a constant T0 = min(T, T1) and a
solution of the Cauchy problem in the interval [0, T0] satisfying the condition
(cf. Theorem 6.2)

‖(Ū , θ̄)‖Hs(R) ≤ Ks,k0‖(Ū0, θ̄0)‖Hs(R) ∀t ∈ [0, T0].

Since ‖(Ū , θ̄)(T0)‖Hs(R) < δ, applying Theorem 4.1 again and taking as
the new initial time t0 = T0 we obtain a solution in the interval [T0, 2T0]
satisfying the assumptions of Theorem 6.2 and ‖(Ū , θ̄)(2T0)‖Hs(R) < δ, etc.
Furthermore, from Theorem 6.1 we conclude that the global solution (Ū , θ̄)
satisfies the estimate

(6.17) ‖(Ū , θ̄)(t)‖Ls1,2k0+2(R) ≤ C(1 + t)−
k0

2k0+2 ∀t ≥ 0

where the constant C is independent of t. Next, the asymptotic decay of the
global solution in the L∞(R)-norm follows directly and using the inequalities
(6.7) and (6.17) we have

(6.18) ‖(Ū , θ̄)(t)‖L∞(R) ≤ C(1 + t)−
k0

2k0+2 ∀t ≥ 0,
and in view of Theorem 6.2 we have

(6.19) ‖(Ū , θ̄)(t)‖L2(R) ≤ C ∀t ≥ 0,

which finishes the proof of Theorem 1.1.

7. Conclusion. In this paper we proved the existence of a global (in
time) solution to the initial-value problem for three coupled partial differ-
ential equations of second order describing the process of thermodiffusion
in a solid body (in one-dimensional space). In the proof of Theorem 1.1 we
used a time decay estimate for the solution of the associated linear prob-
lem (cf. [17]), an energy estimate in the Sobolev space with constant in-
dependent of time, and the standard argument to continue the local solu-
tion for all times. The method used in the proof of the main theorem can
be adapted to the initial-value problem of thermodiffusion in a solid body
(in three-dimensional space) and to other initial-value and initial-boundary
value problems for partial differential equations describing other media in
continuum mechanics.
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