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GENERAL METHOD OF REGULARIZATION.
I: FUNCTIONALS DEFINED ON BD SPACE

Abstract. The aim of this paper is to prove that the relaxation of the
elastic-perfectly plastic energy (of a solid made of a Hencky material) is
the lower semicontinuous regularization of the plastic energy. We find the
integral representation of a non-locally coercive functional. In part II, we
will show that the set of solutions of the relaxed problem is equal to the set
of solutions of the relaxed problem proposed by Suquet. Moreover, we will
prove the existence theorem for the limit analysis problem.

1. Introduction. In this paper we investigate the convex functional

(1.1) BD 5 ur B(e(u)) = | h(z,e(u))
9]

with constraints on the boundary of {2, where e(u) is the symmetrized
gradient of u and BD({2) is the space of bounded deformations (cf. (2.1)
and (2.2)). Moreover, we assume that B(e(u)) = oo if e(u) ¢ L'. In [§]
we find the lower semicontinuous (1.s.c.) relaxation of B, and we show that
the relaxation is a l.s.c. function (in the weak* BD topology), not greater
than B. Here we prove that this relaxation is the largest 1.s.c. minorant less
than B, i.e. it is the Ls.c. regularization of B (cf. [18, p. 10]). If the volume
forces are equal to 0, then we can omit the assumption of global coercivity
of the functional considered (cf. Theorem 14 and Assumption 7).

The l.s.c. regularization (in the L{ -topology) of functionals defined on
the space BV ({2) is investigated in many papers ([2], [3], [5], [20]), but their
authors do not consider problems with constraints on the boundary of 2.
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In some contributions (cf. [5]) only a relaxation of the original problem is
found, i.e. a l.s.c. minorant of the original functional.

Fonseca and Miiller [20] find the Ls.c. regularization (in L') of a qua-
siconvex functional on BV ({2). However, they neglect kinematic boundary
conditions and assume local coercivity (if f(z,u, A1) = 0 for A; # 0 then
f(z,u, A) = 0 for every A; moreover, the function ¢ in their condition (H3)
is continuous).

In [6] an integral representation for the regularization in SBV (2, R™)
of the functional

(1.2) u | f(z,Va@)de+ | o, [u)(2),v(z) dHy 1 (x)
2 2(u)

with respect to the BV weak™* convergence is obtained, where
(1.3)  cAl < f(z,A) <COA+ALD,  alg] <ol €v) < Cil¢]

for every x, A, &, with constants C > ¢ > 0, C; > ¢; > 0. The kinematic
boundary conditions are ignored.

In [7], the global method of relaxation (cf. [10]) is applied to l.s.c. reg-
ularization of symmetric-quasiconvex functionals, defined on SBD({2). The
authors ignore the kinematic boundary condition (i.e. the Dirichlet condi-
tion). The essential assumption of the method is the local coercivity of the
density of elastic-plastic energy (with work of external forces) (see assump-
tion (1.3) above and [10, formula (2.3"), Theorems 3.7 and 3.12]). Note that
the existence theorem is proved in the space BD({2), larger than SBD({2).

In [11], the global method of relaxation (cf. [10]) is applied to l.s.c. regu-
larization of quasiconvex functionals with constraints (Dirichlet condition).
These functionals are defined on BV (£2). The constraints considered do not
describe the relaxation proposed by Suquet (see [26] and part II of the pa-
per). Here, similarly to [7], the essential assumption of the method is the
local coercivity of the density of elastic-plastic energy (with work of external
forces) (cf. assumption (1.3)).

Kohn and Temam [23] solve the existence problem for an elastic-perfectly
plastic solid made of a homogeneous Hencky material. To prove that the
functional of the total potential energy is weak™* 1.s.c. on BD({2), they use the
method of relaxation of the kinematic boundary condition. They do not show
that the relaxed problem is the l.s.c. regularization of the original problem.
Indeed, in Theorem 6.1 of [27, Chapter 2] and Theorem 6.1 of [27, Chapter
1] only the equality of the infima of the relaxed and original problems is
shown. But it is not proved that for every solution u of the relaxed problem
there exists a sequence {u,, }men which minimizes the original problem and
u,, — U as m — oo.
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The existence problem for an anisotropic elastic-plastic solid made of
a non-homogeneous Hencky material with the Signorini constraints on the
boundary (i.e. with the unilateral contact condition) is solved in [8]. The
Signorini problem for an isotropic homogeneous body made of a Hencky
material (with the von Mises plastic yield condition) is solved in [29].

In [14] the Ls.c. regularization of the elastic-plastic energy of a homo-
geneous Hencky material with the von Mises (or Tresca) yield condition is
found. The work of external forces is neglected. The local coercivity of the
relevant functional is assumed. Moreover, the kinematic boundary condi-
tions are not studied in [14].

Here we prove that the relaxation (established in [8]) is the Ls.c. regu-
larization of elastic-plastic energy if the volume force is equal to 0 and if
Assumption 5 is satisfied (see Theorem 14). In this case we do not assume
that the functional considered is coercive. Therefore, a body with cavities
can be described by such a functional. Moreover, we can assume that the
density of elastic-plastic energy has nonlinear growth at infinity, on a ray,
and has linear growth on the complementary ray of the same straight line
(cf. mechanics of soil).

It seems that this paper is the first one where the problem of regular-
ization of a non-coercive functional, with the Dirichlet condition, is solved.
Here the density of energy is not bounded from below.

In the special case when the integral of the total elastic-plastic energy is
coercive, the relaxation is the l.s.c. regularization of the total energy in the
weak* BD topology (cf. (5.5) and Theorem 18). That is, we prove that for
every solution u of the relaxed problem (RP%), there exists a generalized
sequence (net) {u,, }memn which minimizes the original problem (P ;) and
u,, — u in weak* BD({2) topology (see (3.9)—(3.11), (5.1), (5.3), (5.4) and
(5.8)).

We show that the set of solutions of the relaxed problem is equal to the
set of solutions of the relaxed problem proposed by Suquet (see [26] and
Theorem 11 in part II).

In [15] and [16] Christiansen has found the solution for the limit analysis
problem, associated to the relaxed problem proposed by Suquet. But the
limit analysis problem is not explicitly formulated in [15]. Also, the rela-
tion between solutions of the relaxed problem and solutions of the relaxed
problem proposed by Suquet is not considered.

In Section 3 of part II, we obtain the existence theorem for the limit
analysis problem, associated to the relaxed problem proposed by Suquet.
In Corollary 10 of part II, we obtain a criterion of coercivity of the original
problem (Py ;), or the relaxed problem (RP5) (see (3.9)-(3.11), (5.1), (5.3),
(5.4) and (5.8)).
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In the Appendix of part II, we show the scheme of duality in convex
optimization in the case of Hencky plasticity.

2. Some basic definitions and theorems. Let {2 be a bounded, open,
connected set of class C' in R™. The space of continuous functions with
compact support is denoted by C.. Let C*°(§2,R™) be the space of R™-
valued, infinitely differentiable functions. Moreover, the space of infinitely
differentiable functions equal to 0 at the boundary Fr {2 of (2 is denoted by
C§°(82). Finally, M, (£2,R™) is the space of R™-valued, Radon, bounded,
regular measures on {2, with the norm || - ||y, (2,rm)-

We will use the dual pairs (M., C..) or (M, Cy), where M, is the space of
regular measures. The duality pairing will be denoted by (-, -), and the scalar
product of z,z* € R™ by z-z* or zz*. The scalar product of w, w* € R**"
is denoted by w : w* = wiw};. Let g = (g1,...,9m) € C(£2,R™) and
p= (1, fim) € Mp(2,R™). Then §,g-p = §,en =310 §, gipi- If
F:Y — RU{oo}, then F* denotes its polar function (see [18]) F*(y*) =
sup{(y*,y) — F(y) | y € Y}, and domF = {y € Y | F(y) < oo} is the
effective domain of F'. If () is a subset of Y, then I (-) stands for its indicator
function (taking the value 0 in @ and oco outside), and I7)(-) stands for its
support function.

Finally, we need the following notations. Let V be a metric space. Then
By (=, r) is the closed ball in V' with center = and radius r. Furthermore,
cly(Z) stands for the closure of Z C V in the topology of the space V;
analogously, cl.(Z) is the closure of the set Z in the norm || - ||. Similarly
int Z denotes the interior of Z. We will also consider the spaces E™ of real
n x n matrices and E? of symmetric real n x n matrices. We set ||[e;;]||gn
=21 =1leijl and [|-[[gz = || [|&=, where [e;;] € E". We denote by ® (resp.
®s) the tensor product (resp. symmetric tensor product). Let £°(£2,R™),,
be the set of pu-measurable functions from (2 into R™. If 7 C 2% is a linear
topology in a vector space X, then [X, 7] denotes the topological space and
[X,7]* is the space dual to [X,7]. We define the following Banach spaces
(see [23], [27], [28]):

(2.1) LD(2) = {u € L'(2,R™)

gij(u)

1 aul a’LLj 1 .o

= - L ($2 =1,...
2(81‘]—'—8.171) € ( )725] ) )n})

(2.2)  BD(2)={ue L'(2,R") | e;(u) € My(2),i,j=1,...,n},

with the natural norms
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n n
(2.3) lalzo = lalzt ) e @l fullzp = lullot) ) lles; (@),
i,j=1 i,5=1

Ro ={u € BD(2) | e(u) = 0} denotes the space of rigid motions in R™.

PROPOSITION 1 (see [27]). Let BD(§2) and L'(Fr2,R") be endowed
with the norm topologies. There exists a continuous surjective linear trace
B from BD(82) into L*(Fr 2,R") such that yp(u) = wg o for all u €
BD(2)NC(2,R"). =

We define the spaces
(2.4) X =C.(2,R") x C.(2,EY), Xo={(g,h) € X|g=divh},
endowed with the natural norm

(2.5)  lgllccerm + IIhllcen

= sup{[|g(@)[[e~ | = € 2} + sup{[[h(z)[le. [z € £2}.
Then BD({2) is isomorphic to the dual of [X/Xo, [ - [lc(er) + - |lc@.gm)]
(see [28]). The topology o((X/X0)*, X) = o(BD(£2),C.(£2,R")xC.(£2, E?))
is called the weak™ BD topology. A net {us}sep C BD(S2) is convergent to
ug € BD(f2) in this topology if and only if for all (g,h) € X,

(2.6) Sg‘(ug—ug)da:—kSh:s(uo—u(;)—>0.

Q Q
For every ¢ € L'(Fr 2,R"), the set {u € BD(£2) | vp(u) = ¢} is dense
in the space [BD({2), weak™ topology]| (see [8, Proposition 2.5]). The trace
operator «yp is not continuous on [BD({2), weak* topology] if the space
L'(Fr2,R") is endowed with a Hausdorff topology (or a T}j-topology, see
[19, Chapter I, Section 5] and [27]).

DEFINITION 1 (see [27] and [19, Chapter I, Section 6]). A net {us}sep
converges to ug (in the topology (2.7)-(2.8)) if

E?

(2.7) us —ug in |- ||zr(orn) for all p such that 1 <p <qg=n/(n—1)
and weakly in LY(2,R") (¢ = o0 if n =1),
(2.8) e(us) — e(ug) weak™ in M, (2, EY).
PROPOSITION 2 (cf. [8] and [9, Proposition 2]). The weak* BD(S2) topology
and the topology (2.7)—(2.8) are equivalent on bounded subsets of BD({2). m
The injection of [BD({2), weak*] into [LP(£2,R™), weak topology] is con-
tinuous on bounded subsets of BD({2), where 1 <p <g=n/(n—1) (¢ = o0
ifn=1).
We define the Banach space of measurable functions

(2.9) W (02, div) = {o € L®(2,E") | dive € L"(2,R")}
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endowed with the natural norm |ofwnr(@av) = [oli=~wE) +
[[div o | n(omrny (cf. [27, Chapter II, Section 7] and [8]). The distribution
o : g(u), where o € W"(§2,div), u € BD(S2), defined (for every ¢; €
C(2)) by

(2.10) (o :e(u),v1)p'xp =— S(diva) ‘uypy dr — S o (u®grad¢;) dz,
2 o}

is a bounded measure on 2, and it is absolutely continuous with respect to

le(u)| (see [27]).

ASSUMPTION 1. 2 and (2, are bounded open connected sets of class C'!
in R™. Moreover, 2 CC {21. m

THEOREM 3 (cf. [27]). There exists a continuous, linear, surjective, open
map Bp from [W"(£2,div), || - [[w=(0,4iv)] onto [L(Fr £2,R"), || - ||L~] such
that for every o € C(£2,E7), Bp(o) = O\pe 0 - V, where v denotes the
exterior unit vector normal to Fr 2. Furthermore, for all u € BD(S2) and
all o € W™ (£2,div), the following Green formula holds:

(2.11) S o:e(u)+ S(div o) -udr = S Be(o) - vp(u)ds.
2 2 Fr 2

3. Auxiliary theorems and spaces. In this paper, the Lebesgue and
Hausdorff measures on (2 and Fr {2 are denoted by dz and ds, respectively.
Let Iy and I (= fl) be Borel subsets of Fr {2 such that Iy NI} = 0
and ds(Fr§2 — (IyUI1)) = 0. We will consider an elastic-perfectly plastic
body, occupying the given set (2. We first introduce some functions. Let
K : 2 — 2B¢ be a multifunction.

ASSUMPTION 2 (cf. [8]). K(z) is a convex closed subset of EY, for all
x € 2. Moreover, there exists zg € C1(£2, E") such that
(3.1) zo(x) € K(x) for every z € 2
and the following conditions hold:
(i) if z(z) € K(z) for dz-almost every (da-a.e.) x € £2, z € C(2,EY)
and zjin o € W™ (§2,div), then z(y) € K(y) for every y € {2;

(ii) for every y € 2 and every w € K(y) there exists z € C(£2,E?)
such that zi,, o € W"(§2,div),z(y) = w and z(z) € K(z) for every
z € .
Conditions (i) and (ii) are equivalent to the condition that for every
y € L2,
(3.2) K(y) ={z(y) |z € C(2,E}), Zjins o € W"(£2,div),
z(z) € K(zx) for dz-a.e. x € 2}. m
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DEFINITION 2. Let j* : 2 x EI' — R U {00} be a convex normal integ-
rand, i.e.

(a) the function E? 5 w* — j*(x,w*) is convex and ls.c. for dz-a.e.
T € (2;

(b) there exists a Borel function j* : 2 x E* — R U {oo} such that
j*(z,-) = j*(x,-) for dz-a.e. x € 2

(cf. [18, Chapter 8, p. 232]). Moreover, assume
(3.3) {w* e E! | j*(z,w") < o0} = K(z) for dz-a.e. xz € (2.
AsSUMPTION 3. For every 7 > 0 there exists ¢ such that

(3.4) sup{ Sj*(m,z*)dac z" € L*(2,EY), ||z"]|p~ <T
2

and z*(z) € K(x) for dz-a.e. x € (Z} < ¢ < 00.

ASSUMPTION 4. There exist u® € LD({2) and ¢ € L*(£2,R) such that
(3.5) J (x,w*) > e(u®)(z) : w" + q(x)
for dz-a.e. x € 2 and every w* € E”, and yg(u®) =0 on Fr(2. m

The set KC(x) denotes the elasticity convex domain at the point x.
Define

(3.6) jlx,w)=j5"(z,w) =sup{w: w* — j*(z,w") | w" € E'}

for dr-a.e. x € (2 and all w € E7. Then j is a convex normal integrand (cf.
[18, Chapter 8, Proposition 1.2]). Define j : 2 x E? — R U {oco} by

(3.7) Joo(x, W) = sup{w : w* — Ic(,y(W") | w" € E]}

for z € 2 and w € E".

Let f € L™(£2,R") and g € L*°([7,R™). In this paper we consider the
functional

(3.8) BD(£2) > uw P, j(u) = AF(u) + Gj(e(u)),

where

(3.9) AF(u)=—-AL(w) + Ic,@woy(w), L(uw) = {f ude+ | g vp(u)ds,
k9] I

u’ € LY(I,R") and
(3.10) Co(u’) ={ue BD(2) | yp(u)r, = u’}.



182 J. L. Bojarski

The functional G, : M,(£2,E?) — R U {oo} is given by
Sj(m,p,) dr if p € LY(2,E?), i.e. p is absolutely

(311) Gj(p) =1 *

continuous with respect to dz,

00 otherwise.

The formula (3.8) describes the total elastic-perfectly plastic energy of a
body occupying the given subset 2 of R™. This body is subjected to volume
forces f € L™(£2,R™) and boundary forces g € L*°(I1,R™). The constant
A >0, A < oo is the load multiplier (see [27, Chapter I, Section 4]). The set
C,(u”) consists of the kinematically admissible displacement fields for the
body clamped on I (see [8] and [27]).

AsSUMPTION 5. There exists og € C(ﬁ, E}) such that ogine €
Wn(£2,div), Bg(oo) = Ag on I and og(z) € K(z) for dz-a.e. z € 2. m

By Assumption 5, the boundary force g € L°°(I,R") is a regular func-
tion.

PROPOSITION 4 (see [27, p. 255]). If uw € BD(f2,), then
(312)  e(w) = eu)io + (W) g, _p + (YI(W) — vh(w) @, vds,
where the inside trace v : BD(£2) — L'(Fr2,R") and outside trace
v9 : BD(1 — 2) — L*(Fr 2,R™) are given by v5(u) = ujp o for u €
BD(2) N C(2,R") and v§(u) = wrep for u € BD(y — 2) N C(2, —
2,R™), respectively, and where @5 denotes the symmetric tensor product:
(P ®s v)ij = (pivy + pjvi) /2.

DEFINITION 3 (see [22]). A Borel set C C R" is called a Caccioppoli set
if sup{§,div fdx | f € Cj(22,R"), |f(2)|[rr < 1 V2 € 25} < oo for all
bounded open subsets {25 of R".

REMARK 1. For every o € W"(f2,div) and u € BD(f2) the distri-
bution o : e(u) is a regular measure on 2. Thus there exist sequences
{028} ken and {25} ren of subsets of 21 such that

(3.13) A =0F cFrRc b =intQF, VEeN,
(3.14) if ky < ko then 281 c QF2 ¢ Q2 c Ok,
(3.15) o e(n)|(25 — 2% < 1/k, VkeN.

Moreover, by Urysohn’s Lemma [19, Theorem 1.5.10], for every k € N, there
exists a continuous function 1y, : 21 — [0, 1] such that 1y (z) = 1 for z € 2F
and ¢y (z) = 0 for z € 2 — QF. Then for every ¢ € C.(21) we have
Spe 0ot e(u) =limg—o §, Yrpo : e(u) (cf. [4, Theorem 3.1]).

LEMMA 5 (see [9, Lemma 5]). If there exists a closed Caccioppoli set
C C 1 with C = clint C such that Iy = Fr 2NC, with ds(Fr 2 NFrC) =0,
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then for all u € BD(£21) and all o € W™ (£2y,div),
(3.16) | Bolo0)- (Y8 (W) —v5(w)ds = | o : [(v5 (u) —v5(w) @ v] ds,

F2 FZ
where we denote o : e(u)| w0 by o : (VG (u) — v5(u) ®, v]ds. =

ASSUMPTION 6. Let I'T1 = Fr2NC, where C = clintC C (27 is a closed
Caccioppoli set and ds(Fr 2 NFrC) =0. =

Let p € M ($2,E?). We recall that |u| is the total variation measure
associated with p, i.e. for every p-measurable subset 2 of 2 we have
ul(2) = sup{fz ¢ : p | ¢ € C(2,EY), maxi;([¢ijllo(e) < 1} Then
lellna, (2) = § [12]. The density of p with respect to |p| will be denoted by
dp/d|p|. Let p = po(x) dx + ps be the Lebesgue decomposition of p into
the absolutely continuous and singular parts with respect to dx.

We consider the spaces Y!(£2) and Cq;, (2, E?) given by

(3.17) Y'(2) ={M € My(2,E?) | 3u; € BD(§,),
s(ul)\ﬁ =M, W09 = 0},
(3.18) Caiv(2,E}) = {o € C(2,E}) | 0o € W™(£2,div)}.

These are topological vector spaces put in duality by the bilinear pairing

(3.19) (M,0)yic=|o: M= Z \ oy
2 1,j=102
REMARK 2. The definition of spaces in duality requires that for every
o € Cy4iy (92, E7), o # 0, there exists M = e(u) € Y!(§2) such that

(3.20) SO’:M:SO':E(U)— S o: () ®,v)ds #0

0 2 Fr 2
(cf. (3.12), (3.16)). But for every o € Caiv(£2, E?) such that dive = 0 in
2, and for every M = e(u) € Y!(02),

(3.21) S o:e(u) — S o: (Y @, v)ds = — S(diva’) -udr =0
Q Fr 02 Q

(see (2.11) and (3.16)). Therefore the duality should be defined between the
spaces Y1(§2) and Cg;, (2, E?) /{0 € C(£2,E") | dive = 0}. To simplify the
proofs, the previous definition, given by (3.18) and (3.19), is considered here.
We do not get a contradiction, since we do not use the Hausdorff property
of the topology o (Caiy (2, E?), Y1(£2)).

This remark relates to the spaces Y!(£2) x M!(I,
C(I1,E?), put in duality in part II (by formulae (2.1
the proofs, we do not replace the above spaces by Y !(

and Cg;, (2, E7) x
(2.4)). To simplify

)
)
2) x MY(I') and
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(3.22)  [Caw(2,EM) /{0 € C(2,E) | dive = 0}]
x [C(Fl,E?)/{n € C(I.E) | Vu e My(TLRY), | k: [n@, v]ds = OH.

1

We say that a net {My}rex C Y1(£2) converges to My in the topol-
ogy o(Y1(2),C4y(2,ED)) if (M — My),a)yixc — 0 for every o €
Caiv(£2,E?). Let Y'(£2) be endowed with this topology. Then Cy;, (2, E?)
is the dual space to Y!(£2), i

a(Y

(3.23) [Y'(£2),0(Y'(22), Cdiv(f_?a EY))]" = Cai(2,EY)
(cf. [17, Theorem V.3.9]). Similarly,
(3.24) [Caiv(2,E7), 0(Caiv (2, E7), Y (2))]" = Y (02).

The space BD({?) is isomorphic to A = {u € BD({1) | uj,_5 = 0} (cf.
Assumption 1). Moreover, A is isomorphic to Y!(£2), and the isomorphism
is given by A > u— e(u) g € Y!(£2). The Banach spaces [BD(£2), |- ||zp]
and [Y1(£2), |||y, ()] are isomorphic (cf. [8, Proposition 4.24]). Each closed
ball cl;j. (B(0,7)) (in Y!) is compact in the topology o (Y (£2), Caiv (2, EZ)),
where clj.| denotes the closure in the norm of BD({2) (see [8, Proposi-
tion 4.23]). The space [cl|.|,, (Bp(0,72)), weak® BD({2) topology] is iso-
morphic to [cly.| ;5 (Bep(0,72)),0(Y(£2), Caiv (2, ET))] (cf. [8, Proposition
4.25]).
The functional B} : Y'(£2) — R U {oo} is defined by

(3.25)  Bi(e(u)g) = — | o0 (vp(w) @, v)ds+ | j(z,e(u)) dz
I 2

+ S I{[uo—’yé(u)]@)suzo}([uo —vp(w)] @, v)ds
Iy

if upeLD(2) and v, 5 = 0, where B5(0y) = Ag on I, and Bi(s(u)lf—z)
= oo otherwise. We assume that there exists u € BD(2;) such that uj, €
LD(£2) and B} (e(0) ) < oc.

4. Lower semicontinuous regularization. In this section the lower
semicontinuous (1.s.c.) regularization of the functional B} is found, where
the space BD(2) is endowed with the topology o (Y (£2), Cg;y (2, ET)).

Because of the duality between Y'(£2) and Caiv (2, E?), we define a
functional (B%)* : Caiv(2, E?) — RU {co} by

(4.1)  (BY) (o) = sup{(e(u)3,0)y1xc —Bi(e(w);q) | u € BD(21),
up € LD(?2) and uj,, g = 0}
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We say that (_IB )* is the dual functional to ]Bi with respect to the duality
between Yl(Q) and Cgi, (2, E?) (see [18, pp. 16-18]). The bidual functional
(BJ)** : Y'(£2) — RU {oo} is defined by
(42) (B (e(w)p)
= sup{(e(u)z, o) vixc — (BY)"(0) | o € Cain (2, E})}.
Because of (3.12), the space Y ({2) ., is isomorphic to {—yp(u) @, v €

L'(Fr 2,E?) | u € BD(£2)}. Thus, the bilinear form between M (2, EZ) x
Y (2)r o and Cqiv (12, E2) is given by
(4.3) (W, —~vL(u) @, v),0)1 = S oW+ S o (—v5() @, v)ds

2 Fr 2
for every w e M, (2, E?), —v5(u)ds®,v € Y () and o € Caiv (2, ED).
Therefore a net {os5}scp C Caiv(£2,E?) is convergent to g € Cyiy (12, E?)
in the topology
(4.4) o (Cai (2, E), L' (2, EY) x YH(2)jpep2)
if ((w,—vL(u) ®sv), (09— 05))1 — 0 for every w € LY(2,E") and every
—v5(u)ds ®; v € Y'(2)rep. The extension IB% of IB%] onto the space
M, (2, E?) x Y (2)pep; is given by

(45) Bi(w,—yp(w)ds @, v) = — | 00 : (vp(n) @, v)ds+ | j(z, w) dz
I k9]

+ S w0 ()] @av—0} (00 — Y5 ()] @4 v) ds
Io
if w e L'(,E}) and u € BD({2), where Bp(09) = Ag on I, and
B (w, —vp(u)ds ®, v) = oo otherwise. B
By duality between M (2, E}) X Y'(02)r and Caiv (2, EZ), we define

a functional (B ) Caiv (2, E?) — R U {oo} (cf. (4.3)). This functional is
given by

(4.6) (B)(0) =swp{ [o:wde— | Bo(0) vs(w)ds
2

Fr 2
— Bl (w, —yp(u)ds ®, v) ( we L'(2,EL), ue BD(2)}.
The bidual functional (BJ)** : Y1(2) — R U {00} is defined by
(4.7) (B (w,—vh(u)ds @, v)
—sup{ [o:w— | Ba(e) vhds - (B) (o) | o € Can(@.ED)}

9] Fr 2
for (w, —vL(u)ds ®s v) € Y1(2) (cf. (3.16)).
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LEMMA 6 (see [8]). For every o € Cai(£2,E") we have (IE&)*(U) >
(B)* (o). Moreover, (B%)**(M) < (B%)**(M) for every M € Y'(2).

Proof. Indeed, in the definition of (]Ef\)* we take the supremum over a
larger domain. The second inequality follows from the first. m

DEFINITION 4 (cf. [12]). A subset Hy of £°(£2,R™),, is said to be PCU-

stable if for any continuous partition of unity («o,...,aq) such that
Qg,...,aq € C®(f2,R), and any zo,...,zq € Hp, the sum Z?:o o;Z; 1s
in Ho.

PROPOSITION 7. The functional (IE&)** defined by (4.7), (4.6) and (4.5)
18 given by the expression

(48) (B (ew)m) = — | o0: (vh(w) ®, ) ds
I

ool (u° = yh(w) @, v) ds

+ iz, e(u),) dot | joo(z,de(u), /dle(), ) de(u),|
9] 9]

for every e(u) 5 € Y!(02), where Bg(og) = A\g on I.
Proof. Indeed, by [25, Theorem 3A and Proposition 2M], for every o €
Caiv (2, E") we have
(4.9) (]@f\)*(a) = sup{ S o:wdx+ S o: (—v5() ®, v)ds
Q Fr2

+ { oo (vh(w) @ v)ds — | Trwo_y1 (wy—oy (0° — v (0) @, v) ds
F1 FO

— [ (e, w)de ‘ ue BD(2), uj,_g =0 and w € L'(£2, Eg)}
2

= sup{})a’ : wdm—éj(x,W)dﬁf‘W € Ll(QaE?)}

+sup{ | By(o0) - Cds — | Bu(o) - Cds

I I

+ | o (0 = vh(w) @ v)ds
Iy

| Loty (@ = Y5 (W) @, v) ds ’ ¢ e LY, R, uc BD(Q)}
Iy
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- S o: (v ®,v)ds
Iy
= Sj*(:c,o’) dr + S I{U‘,@B(U):)\g}(U) ds — S o: (u0 ®sv)ds

2 I Iy
(cf. (3.16)). Since vp is a surjection from BD(2) onto L!(Fr (2, ,R™) (ct.
Theorem 2.1 of [27, Chapter 2]) and by (3.5) we deduce that inf ]B%J < o0.
Moreover, we replace v5(u) by ¢ € L1(I,R™).

By the duality between Y!(£2) and Cqiy (2, E}) we obtain (I@f\)** The

space Cqiv(§2, E?) is PCU-stable, so by the proofs of Theorem 1 and 4 of
[12] we get

(4.10)  (B))™(e(u) )

= sup{ S o:e(W))y ot S o: (—v5() ®, v)ds
(% Fr 2

- S]*(ZC,O')d[L‘— S I{tr|a’~u:)\g}(a)ds+ X U:(uo Qs V)ds‘
2 Fl Fg

o € Oy (2,E") and Vz € 2, o(z )EIC(x)}
= sup{ {[o: (e(w),) = j" (2, 0)] dw + {[o : (d(e(w),)/d|e(u), ]
(] (0]
— (.o de),| — { (o v) 5 ds — | Lpw|worg) (o ) ds
I I
+ o (0 = vh(w) @, v) = i (w,0))ds | o € Care (2. E2) }

Io

for every e(u)5 € Y'(02), which is (4.8) (cf. (3.4)). In the above calculations
we use the equality j%, (2, 0) = I () (o), which holds for every o € Ef and
x € 2. Moreover, by (3.2) and (3.3), o(z) € K(z) for every = € 2. Since
Br(ao) = Mg on I', we have §. A\g-yp(u)ds = §. a0 : (v5(u) ®; v)ds.
By Assumptions 5 and 3 we get (@i)*(ao) <00 m

LEMMA 8. For every u € BD({21) such that ujo € LD(£2), ug _
= 0 and yh()r, = u, we have (B))™(e(w)q) = (BY)™(e(w)q)
B3 (e(w)5)-

Proof. By Lemma 6, we have (B})™(M) < (B})**(M) < B{(M) for
every M € Y1(2) (see [18, pp. 16-18]). Therefore, by (4.8), we get the

assertion. m
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LEMMA 9. For every o € Cqiy(2,E?) and every o € Caiy (2, E?) such
that dives = 0, we have (B})*(o) = (B)* (o + o).

Proof. By definition (4.1) and by Green’s formula (2.11) we get
(411)  (B))*(o) = sup{ - {(divo) - ude — B)(e(u) ) (

2
un € LD(2) and vy, _5 = 0}

— sup{ — S[div(cr +o05)] - udr — ]Bf\(é‘(u)@) ‘
Q

up € LD(2) and vy, _5 = O} = (B))* (0 +0,). =

We say that a net {0} }rex C Caiv(£2, E?) converges to & € Cy;y (2, ET)
in the topology
(412) U(Cdiv(ﬁv E?)v Ll(Qv EZ) X {CP € Y1(§)|Fr9 ‘ Py = 0})
if
(4.13) {(or—5):wdz+ {(0x—5): (p@sv)ds — 0
(9] In
for every w € L1(2,E?) and p € L'(I1,R").

LEMMA 10. Let f : Caiv(£2,E?) — R be a linear functional, continuous
in the topology (4.12), such that f(as) = 0 for every o, € Cqiv (2, ET)
with divas = 0 in 2. Then there exists u € LD(§2) such that for every
o c Cdiv(_Q,E?),

(4.14) flo) = S o:e(u)dr — S o: (yp(u) ®sv)ds,
Q Fr
and yg(u) =0 on Iy.

Proof. Since f is continuous in the topology (4.12), by Theorem V.3.9 of
[17] there exist m € L(£2, E") and 1 € BD({2) such that vz (1) = 0 on Iy,
and f(o) ={,0 :mdz -, ,0o:(yp(0) ®,v)ds for all o € Cai, (2, EZ).
For every o1 € W"(21,div) with dive; = 0 in 2, and 045 € C(2,En),
we have
(4.15) floyg) =V o1 mde— | o1 (y5(@) ®,v)ds =0.

9] Fr 02

Then by Proposition 1.1 and Theorem 1.3 of [27, Chapter II] there exists
u € LD(S2) such that equality (4.14) holds.

Indeed, for all o5 € C(£21,E") such that dives = 0 in §2;, we have
(o020 :mde—{_ oo: (yp(0)®sv)ds = 0. Then, by Proposition 1.1 of [27,
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Chapter I1], there exists u € D’ ({21, R™) such that for every o € C}(£2;,E"),
(4.16) S o:e(u) = S o :mdx — S o:(yp(u)®sv)ds = f(am),

o) Q Fr
and
mdx in {2,
(4.17) e(u) =4 —(yp(0) ®sv)ds on Fro,
0 in 2, — 02
(see [24]). For every o3 € C1(§2;,E?) such that o3 = 0 in £2, we have
(4.18) S o3 :e(u) = Xa'gzmdx— S o3 : (y(u) ®sv)ds =0,
2 Q Fr 2

therefore we can assume that ﬁl o,—g = 0. Moreover, by Theorem 1.3 of [27,
Chapter 1T}, U, € LD(£2), because m € L'(2,E?). m

Let Q : Cqiv(£2,E?) — RU {c0} be defined by
(419)  Q(o) = inf{(B))*(o + 0,) | o5 € C(2,E") and div o, = 0},

PROPOSITION 11. Let u® = 0 on Iy. For every o € Cqiy(£2, E?) we have
(4.20) (B])" (o) = cla12) Q(o),
where cl(4.12) Q denotes the largest minorant which is less than Q and l.s.c. in

the topology (4.12) (i.e. clis.12) Q s the ls.c. regularization of Q in (4.12)).

Proof. Step 1. Suppose there exist oy € Caiv(£2, E?) and a constant
6o > 0 such that

(4.21) (B})* (1) + 0o < clia12) Q(o1).
On account of Lemmas 6 and 9, to prove the proposition, it suffices to show
that this assumption leads to a contradiction.
The linear space
(4.22) Mg = {0, € Cqiv(2,E?) | dive, = 0}

is a closed subspace of Cyj, (2, E?) endowed with the topology (4.12). In-
deed, by the Green formula (2.11),

(4.23) My = ﬂ {0' € Cdiv(ﬁa E?)
ueLD(f2),vs(u)=00n1Ily

Sa:s(u)d:c— S ,GB(O')-'YB(u)dSZO:S(diva)~udw}.
Q Fr Q

Step 2. Let
(4.24) @ : [Caiv(2,E"), topology (4.12)] — Cgiv (2, E)/ My
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be a linear function (canonical homomorphism) such that My = ker®
= {0 € Cqiy(2,E?) | &(o) = 0}. Moreover, let Cg;y(2,E?)/ My be en-
dowed with the strongest topology for which @ is continuous. Since My is
closed in (4.12), Caiv(£2,E?)/My is a Hausdorff topological space (cf. [13,
Chapter I]). Therefore the point (@(o1), (B])*(o1) + do) is a closed sub-
space of [Caiyv (2, EY)/ Mg x R. The epigraph of o — cli.12) Q(o), defined
by epicliy12) Q = {(o,a) € Caiv(2,E") x R | cls.12) Q(o) < a}, is convex.
Then the set

(4.25) A={(5.a) € [Cai({2,ET)/Mo] x R |

Jo € Oy (2, ED), clig12) Q(o) < a and (o) = 7}
is convex (cf. [13, Chapter I]). Moreover A is closed in [@iv(ﬁ, E?)/ Mo xR,
since cli4.12) Q(0) = clia.12) Q(o+0y) for all o € Cyiv (12, EY) and oy, € M.

By the Hahn-Banach theorem, there exists a closed affine hyperplane H
which strictly separates A and (@(o1), (B} )*(o1) + do). Let

(4.26) M ={(d,a) € [Cai ({2, EY)/Mo] x R | f2(F) + ba + c2 = 0},
where b,co € R and fa : [Caiv(2,E?)/My] — R is a continuous linear
functional such that for every (&,a) € A,

(427) fg(&)—i—ba—l-Cg > 0, fQ(@(Ul))—Fb((B])\)*(O'l)+50)+62 < 0.

Step 3. Now we consider the case when b = 0. From (4.9) and Assump-
tion 4, we deduce that inf{( IB%J —§,e(u®) i ods| o€ Caiv(2,EN)} is
finite, since u’ = 0. Moreover by the Green formula we obtain

inf{})s(ue) (o5 —o)dx ‘ dives = 0} =— (S)e(ue) rodx,

(see Assumption 4). Let

(4.28) h = |f2(P(01)) + 2| > 0,
(429) d = max [1; (B))* (1) + Jo — S e(u®) : o1 de
2

_inf {(@f\)*(a) — S e(u®):odx ‘ o € Caiv(£2, E?)H
1)

and d = h/(2(/1\) Then the functional
(4.30)  [Cai(2,EM)/Mo] xR > (7,a)

— fo(o )+d(a+d (B )(01)—5O+Ss(ue):aldm)+02
n
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strictly separates {(d,a) € [Caw(£2,E?)/Mo] x R | 30 € Cq (2, E?),

clia.12) Qo) —{,e(u®) : odr < a and &(o) = o} and the point (P(o1),
(BY)*(o1) + 60 — §,e(u®) : o1 dx) (cf. (4.25)).

Step 4. By (4.27) and (4.30) there exists a continuous linear functional
f3 1 [Caiv(£2,EY)/Mo] — R and ¢3 € R such that

(4.31) f3(P(a1)) + e3> (B))* (1) + 0 and  f3(F) +c3<a

for every (o,a) € A. Therefore the functional o — f 1(0) + c3, defined by
(4.32) Ca(2,EY) 3 0 fo(o) + c3 = f3(P(0)) + c3,

strictly separates epiclyy. 12) @ and

(4.33) {(0,a) € Car(2,E") xR |0 € Mo+ {01}, a = (B,)*(o1) + do}-

Moreover Mg C ker f4. Since & is continuous in the topology (4.12) and f3
is continuous on Caiy (§2, EY)/ Mo, it follows that fy = f3 o @ is continuous
in the topology (4.12) over the space Caiy (2, ET).

Step 5. By Lemma 10, there exists u € LD(f2) such that yg(u) = 0 on
FO and

(4.34) filo)=\o:e@dz— | o:(vp@) @.v)ds
(% Fr 2

for every o € Cdiv(ﬁ, E?), because Mg C ker fy.

Step 6. We say that a net {ok}ver C Caiw(2,ET) converges to & €
Caiv(£2,E?) in the topology
(4.35) o (Caiv(2,E™), {p € Y () | Ju € BD(¢),

e(u) =, up € LD(2), U, _p=0, 7JI3(u) =0on Ip})
if
(4.36) \(or—5):e(u)dz— | (0% —5): (vp(n) ®sv)ds — 0
(% Fr 2

for every u € LD(S2) such that yg(u) = 0 on I. The Ls.c. regularization
of (B})* in the topology (4.35) (denoted by cl(4.35)(B})*) is given by

(4.37)  cliass) (@g\)*(a) = sup{ S o:e(u),dr — S o: (v5(n) @, v)ds
Q Fr 2

- (ﬁgi)**(s(u)lﬁ) ‘ u € BD(§21), ujg € LD(2), ), 5 =0,
h(w) =0 on Iy |

= sup{ X o:e(u)odr — S o (v5(u) @, v)ds
9] Fr 2
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— B} (e(u) ) |u € BD(f), ujq € LD(12),

Wo,_o =0, vh(w) =0 on Iy } = (B})"(0)

for 0 € Caiy(2,E?) (cf. Lemma 8 and [18, p. 15]). From (4.31), (4.32),
(4.34) and (4.37) we obtain a contradiction. m

LEMMA 12. For every © > 0, the topology (4.12) is stronger than
0(Caiv (2, E7), Y1(£2)) over the set {o € Cai (2,E?) | ||dive| - <T}.

Proof. Let {o,}rer C {0 € Caiv(2,E) | ||dive||zn(orn) < 7} be a
net convergent to & in the topology (4.12). Then for every u € LD({2) with
vp(u) =0 on Iy,

\(o:—6):e(u)dz+ | (0, —5): (—vB(0) ®,v)ds — 0.

0} Fr 2
By the Green formula (2.11) we obtain {, div(e,; — &) - udz — 0 for every
u € LD({2) such that yp(u) = 0 on Iy. The set {u € LD($2) | vp(u)|r,
= 0} is dense in [L™ = D(Q2,R™), || - ||pn/m-1], since CL(£2,R") is dense
in L™/ ("=1 (2, R") (see [1, Theorems 2.19 and 3.18], [27, Chapter II, Theo-
rem 1.2]). Then, by [17, Theorem II.1.18],

(4.38) \div(e, =) - wdz —0 Vvwe LV D(2,R"),
2

since {0'7- — &}TET C {0’ € Cdiv(§7 E?) ’ HleO" Ln(02.R") < T+ Hle{J\'HLn}
Therefore, {, div(er—&)-udz — 0 for every u € BD(£2), because BD(§2) C
L= R™) (cf. [27, Chapter II, Theorem 2.2]). By (2.11) the net
{0, }rer converges to & in o(Caiy (2, E7), YH($2)). =

PROPOSITION 13. Let u® = 0 on Iy and let Ay = {o € Cqiv(2,E?) |
ldive||Ln < k}. For every o € Caiv(£2,EY) and every k > ||div || L»,
(4.39) (B})*(@) = cla, Q(3),

where cla, Q(+) is the l.s.c. reqularization of the function o — Q(o)+14, (o)
in the topology (4.12) and 14, (+) is the indicator function of Ay.

Proof. Step 1. Suppose there exist o € Caiv(£2, E?) and constants &,
k > 0 such that k > ||dive|[z» and (B])*(o1) + 6o < cla, Q(o1). On
account of Lemmas 6 and 9, it suffices to show that this assumption leads
to a contradiction.

(4.40)  (B})™(e(w);p) = sup{(e(u);5, 0)y1xc — (BY) () | o € Ax},
(4.41) (BY)ja, (@) = (B)*(0) + La,(0) Vo € Cai(2,EL).
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For every o € Cyiy(£2,E?) let
(442)  clia5)(BY)ja, (0) = sup{(e(w) g, 0)yixo — (BL) ™ (e(w)q) |

u€ BD((), up € LD(2), ujg _5 =0, ~E(u) =0 on Ip}.
n < k we have
(4.43) liaany B (o) = (B (o)
(cf. (4.37)). Indeed,
(4.44)  sup{(e(u);, 01)vixc — (B))™*(e(w),5) | w € BD(2y),

un € LD(2), ujg _5 =0, ~L(u) =0 on Iy}

)
= sup{{e();g, o1)y1xc — (BY) " (e(u) ) | u € BD(21),
u € LD(2), ug _5=0, ~L(u) =0 on Iy}

Then for every k > 0 such that ||div oy |

if £ > ||divey| g, since (IB%JA)*’“ is the supremum over all affine mappings
Y(2) > €(u)|§ — <€(u)|(_27 o)y1xc + const which are less than (B ), and
o€ A

Step 2. Similarly to the proof of Proposition 11, for every k > 0, there
exists a linear functional fj : Caiv(£2, EY) — R given by

(4.45) Ji(o) = S o :e(u)dr — S o (vp(ug) ®s v)ds,
9} Fr 2

where ug € LD(2) and vp(u;) = 0 on Iy for every k > 0. Moreover, for
all k > 0 there exists ¢ € R such that

(4.46)  (BY)*(01) + 00 < fu(or) +cx and  fu(5) + cx < cla, Q(T)

for every & € Cg;y (2, E"). From (4.42), (4.43), (4.45) and (4.46) we obtain
a contradiction. m

THEOREM 14. Let u® =0 on Iy. For every ¢ € Y'(£2) we have (I@&)**(Lp)
= (B3) ()-

Proof. Suppose that there exist u; € BD(f21) with uy, 5 = 0 and
61 > 0 such that

(4.47) (BY)™ (e(w) ) > (B)™ (e(w) ) + 401

On account of Lemma 6, it suffices to show that this assumption leads to a
contradiction. There exists o2 € Caiv(£2, EY) such that

(4.48) (BA)™(e(u1) ) < {(e(wi) g o2)yixe — (BY)"(02)} + 61
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(cf. (3.19), (3.20), (4.2)). Therefore, by Proposition 11, Lemma 12, Propo-
sition 13, Green’s formula (2.11) and (4.48) there exists kg > 0 such that

(4.49)  (B)™(e(w)g) < { — [(dives) - w do — cla,, Q(UQ)} + 4
(9}

< Sup{ (dive) -uy dx — cla,, Qo) ‘ o € Caiv(92, EZ)} + 6

= sup
g

—

(dive) -u; dr — Q(o) ‘ o € Ayg,, cf. Lemma 12} + 0

(dive) - uy dz — inf{(B))*(o + o) |

I/\
f_/h\
{QL’-: {QL’—a bt”a

o, € C(2,E") and dive, =0 in 2} ‘ o € Caiv (12, EZ)} + 41

= supsup { — S(div(a' +0y)) upde — (@&)*(U + o)

o o5 O

0,0, € Cqiy(2,E"), dive, = 0} + 01

= (B)"" (e(w) ) + 0.
By (4.47) we have a contradiction. m
REMARK 3. The space
(4.50) {p e YY) |3uec BD(), e(w)z =,
u, € LD(82), ujo,—o =0}
(included in LY(2,E?) x L'(Fr 2, E?)) is not PCU-stable.

Proof. If the space (4.50) were PCU-stable, then (IB%JA)* = (IE&)* Hence
we get a contradiction, since there exists os € C(£2,E?) with dive, = 0
in 2 and ||os||L~ > 0 (cf. [21, formula (2.7)]). =

5. Basic conclusions. Now we pass to the mechanical conclusions. The
displacement formulation of the equilibrium problem (studied in [8]) for the
elastic-perfectly plastic body made of a Hencky material reads:

(5.1) (Py;) Find inf{\F(u) + G;(e(w)) | u € LD(2)},

where the functionals F' and G; are defined by (3.9)—(3.11).
Moreover, in [8] the bidual relaxed problem

(5.2) (RP%) Find inf{(A\Fr)™ (u) + G%*(e(w)) | u € BD(2)}
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is studied, where for every u € BD({2),
(5:3) (AFr)™ () = =AL(W) + | joo(z, (0° = y8(n)) @, v)) ds
Iy
(see (3.9)) and
(5.4) G (e() = | j(w e(w)a) dz + | joo (2, de(u)s/dle(w)s|) dle(w)s|-
Q Q

LeEMMA 15. If f € L"(£2,R™), where 6 > 0, then the functional
BD(2) 3 u — {,f-udz € R is continuous in the weak® BD({2) and
in o(Y(82), Caiv (2, ET)) topologies on bounded subsets of BD(S2).

Proof. Indeed, by Proposition 8, the set [cl|.j,,(Bsp(0,7)), weak”
BD(£2)] is homeomorphic to clj.,,(Bsp(0,7)) endowed with the topol-
ogy o(Y'(2),Caiy(2,ED)), for every r > 0. Moreover, by Proposition 2,
the injection of [BD({2), weak* topology| into [L?(£2,R™), weak topology]
is continuous on bounded subsets of BD({2), where ¢ = ni§f1 (¢ = o if
n+dé=1).m

ASSUMPTION 7. There exist k, > 0 and 7 > 0 such that j*(x,w*) < k;
for every w* € Bgn(0,71) and dz-a.e. x € 2. m

Suppose the function (3.8) is coercive over BD({2), i.e.
(5.5) if ||um||pp — oo then AF(u,,) + G;(e(u,,)) — oo
for every sequence {u, }men C BD(2). Moreover, let 0 < A\; < A. Then the

function (3.8) (where we replace A by A1) is coercive on BD({2). Similarly,
if the function

(5.6) BD(2) 3 u— [RP](0) = (A\Fp)™ (u) + G2 (e(u)) € RU {00}

is coercive and 0 < Ay < A, then [RPYY ;] is coercive over BD({2). Moreover,
we obtain

(5.7) AF(u) +Gj(e(u)) > [RP](n)  Yu e BD(£2).

LEMMA 16. Let u € BD(2) and let {u,}pep C BD(£2) be a net con-
vergent to U in the topology o(Y1(£2), Caiv (2, E?)) (cf. [8, Propositions 4.24
and 4.25]). Moreover, for every p € P, let u, = u}, —l—uf,, where uf) € Ro and

the net {u}},cp is bounded in || - |pp. Then the net {u,},ecp is bounded in
Il - lBp and u, is convergent to u in the weak* BD topology.

Proof. For every ¥ € [BD(£2),0(Y'(2),Caiv(£2,E"))]* (see Proposi-
tion 6), ¥(u, — 1) = ¥(u?) + ¥(u), — u) converges to 0. Therefore the set
{#(u?) | p € P} is bounded. Indeed, the set {¥(u}) | p € P} is bounded,
because {u}},cp is bounded in || - ||pp and ¥ € [BD(£2),]| - ||Bp]*.

The space Ry of rigid motions is finite-dimensional, so {uf)}pep is
bounded in || - ||y1, because for every ¥ € [BD(£2),0(Y(£2), Caiv (2, E?))]*
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the set {¥(u2) | p € P} is bounded. Thus {u,},cp is bounded in || - ||zp.
Therefore {u,},cp — U in the weak* BD topology. m

LEMMA 17. Let u € BD(£2) and let {u,},ep C BD(£2) be a net con-
vergent to u in the weak™ BD({2) topology. Moreover, for every p € P, let
u, = u, + u’, where ul € Ry and the net {u}},cp is bounded in | - ||pp.
Then the net {uy,}pcp is bounded in || - ||pp and u, is convergent to u in

the topology o(Y*(£2), Caiv(£2, ET)).

Proof. The proof is similar to that of Lemma 16, with o(Y'(2),
Caiv(£2,E?)) replaced by the weak™ BD topology. m

The main conclusion of this section is the following.

THEOREM 18. Let u’ = 0 on Iy, ds(Ip) # 0 and f € L"0(02,R™),
where § > 0. If the function (3.8) is coercive over BD(S2), then the l.s.c.
reqularization of (3.8) in the weak™ BD({2) topology is the functional

(5.8)  BD(2)5ur [RP](W) = (AFr)™ (w) + G (e(u),
where (A\Fg)** and G75* are defined by (5.3) and (5.4).

Proof. Step 1. Let u € BD({2) and {u,},cp be a net such that u, — u
in the weak* BD({2) topology. Suppose the set

(5.9) {AF(up) + Gj(e(wy)) | p € P}

is bounded. Then, by coercivity of (3.8) (or by Assumption 7 and Lemma 17),
the net {u,},cp is bounded in || - ||gp(n). Therefore by Theorem 14 and
Lemma 15, liminfye p(AF(up) + Gj(e(uy))) > [RPY%](0).

Step 2. Let u, — u in the weak* BD({2) topology, and suppose the set
(5.9) is not bounded. Then either there exists a finer net {u,},ep, (P1 C P)
such that the set {A\F(u,) + G;j(e(u,)) | p € P1} is bounded, or, for every
finer net {up}yep, (P2 C P), the set {A\F(u,) + Gj(e(uy)) | p € Pa} is
unbounded. The first case has been considered in Step 1. In the second case,
by Assumption 7 and coercivity of (3.8), we get

(5.10)  liminf(AF(up) + Gj(e(uy))) = 00 > [RP{%](0)  for p € Py,

Step 3. Let (E&)**(e(ﬁ)@) < 00. By Theorem 14 there is a net {u; }iex
C BD(2) such that u; — 1 in o(Y'(£2), Cq;iv (2, E7)) and

(5.11) m ()\F(ut) +Gyeu) + A [ £ u, d:v) = (B))™ (e(@),n)-

li
tex
Q2

The assertion of Theorem 14 holds in the special case when g = 0 on [7.
Then
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(5.12) %gg [)\F(ut) +Gj(e(uy)) + /\< S f-ude+ S g - vp(u) ds)]
0 1

= (B (e()z) + A | g vp(@) ds € R,

Iy
because |)\SF1 g - vp(u)ds| < oco. By Assumption 7, Lemma 16 and (5.12),
the net {u;}scx is bounded in || - [ pp(p) and u; — U in the weak* BD(S2)

topology. Therefore, by Theorem 14 and Lemma 15, we conclude that
limen(AF(w) +G;(e(w))) = [RP{;1(0).

Step 4. Let (ﬁg\)**(e(ﬁ)@) = co. Then [RPy%](0) = o0, as A [, f - udx
is finite. If there exists a net {u, } ,e p, such that u, — u in the weak™ BD(2)
topology and lim inf e p, (AF'(u,) + G;(e(1,))) < oo, then we have a contra-
diction with Steps 1 and 2 of this proof. Therefore, for every net {u,},cp
such that u, — u in the weak™ BD({2) topology, we have liminf,c p(AF (u,)
+ Gile(uy)) = 0o = [RP"](q).

Step 5. For every u € BD(S2) we get
(5.13)  inf{liminf(AF(u,) + G;(e(up))) | {up}pep converges to u

in the weak* BD({2) topology} = [RP57;](1).
By [18, Chapter 1, Corollary 2.1] the proof is complete. m

In Theorem 6.1 of [27, Chapter 2] and in Theorem 6.1 of [27, Chapter 1]
only the equality of the infima of the relaxed and original problems has been
shown. But it has not been proved that for every solution 1 of (RP5Y), there
exists a net {U,, }men which minimizes Py ; and u,, — u weak* BD({2).

COROLLARY 19. The function (3.8) is coercive over BD(S2) if and only
if [RPY%] is coercive.

Proof. Suppose (3.8) is coercive. Then, by Theorem 18, so is [RP/’\*?}
Indeed, we have

(5.14) |z =sup {g gudz+|h:e(u) ‘ geC(2,R"), he C(2,E),
& "0 1)

||gk”C(Q,R) < ]-7 ”hZ]”C(Q,R) < 17 Viaja k= 17 .- '7n}

for every u € BD(£2) (cf. (2.3) and (2.4)—(2.6)). Then, for every r > 0,
clj.zp Bep(0,7) is the intersection of closed subsets in the weak® BD
topology. Since (3.8) is coercive, for every kg there exists rs; such that
AF(u) + Gj(e(u)) > ks for every u € LD(£2) — Brp(0,rs). By (5.7) the
proof is complete. =

If ds(I'p) = 0 and L(u) = 0 for every u € Ry, then the conclusions of
Theorem 18 and Corollary 19 hold, where the functionals (3.8) and [RP}
are defined over BD(£2)/Ry.
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