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GLOBAL EXISTENCE
OF SOLUTIONS FOR INCOMPRESSIBLE

MAGNETOHYDRODYNAMIC EQUATIONS

Abstract. Global-in-time existence of solutions for incompressible mag-
netohydrodynamic fluid equations in a bounded domain Ω ⊂ R3 with the
boundary slip conditions is proved. The proof is based on the potential
method. The existence is proved in a class of functions such that the veloc-
ity and the magnetic field belong to W 2,1

p (Ω × (0, T )) and the pressure q
satisfies ∇q ∈ Lp(Ω × (0, T )) for p ≥ 7/3.

1. Introduction. In a bounded domain Ω ⊂ R3 with boundary S we
consider the initial-boundary value problem for the equations of incompress-
ible magnetohydrodynamics (see [4, 7])

(1.1)

∂tv + v · ∇v +∇(q +H2/2)

−H · ∇H − ν∆v = f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

∂tH + v · ∇H −H · ∇v − νσ∆H = 0 in ΩT ,

divH = 0 in ΩT ,

n ·D(v) · τα + γv · τα = 0 in ΩT ,

v · n = 0 on ST = S × (0, T ),

H = 0 on ST ,

v|t=0 = v(0) in Ω,

H|t=0 = H(0) in Ω,
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where v = v(x, t) is the velocity of the fluid, H = H(x, t) the magnetic field,
f = f(x, t) the external force, n the unit outward vector normal to S, τα,
α = 1, 2, tangent vectors to S, q = q(x, t) the pressure, γ > 0 the constant
slip coefficient. Moreover, D(v) = {vi,xj + vj,xi}i,j=1,2,3 is the dilatation
tensor.

The aim of this paper is to prove the global-in-time existence of solutions
to (1.1) with small data in the Lp-approach.

Now we recall some results concerning mathematical questions of equa-
tions of magnetohydrodynamics (mhd). The first results on global existence
of weak solutions to various initial-boundary value problems for mhd equa-
tions were given in [5, 6]. In these papers global existence of strong solutions
in 2d and in the axially symmetric case was also proved. Moreover, global
existence of regular solutions for small data was obtained.

In [8] existence, regularity and global properties of solutions of mhd
equations such as global estimates, invariant sets, attracting sets have been
obtained.

In [9, 10] by applying the semigroup technique global existence of regular
solutions of mhd equations was proved under either smallness assumptions
or some geometrical restrictions (2d, axially symmetric case).

Finally in [11] Stupialis has proved the existence of local solutions to the
mhd equations such that the displacement term is taken into account.

In this paper we present a very simple and short proof of existence of
global regular solutions to problem (1.1).

The main result can be stated as follows

Theorem. Let f ∈Lp(ΩT ), f(0)∈L2(Ω), p ≥ 7/3, and let (v(0),H(0))
belong to W 2−2/p

p (Ω). Assume that ‖f(t)‖L2(Ω) ≤ ‖f(0)‖L2(Ω)e
−λt for some

λ > 0 and f(t) describes dependence on time only. Let

A = ‖f‖Lp(ΩT ) + ‖v(0)‖
W

2−2/p
p (Ω) + ‖H(0)‖

W
2−2/p
p (Ω).

Assume that A is so small that cT 1/p ≤ 1. Assume also that S ∈ C2.
Then there exists a solution for problem (1.1) such that (v,H) ∈W 2,1

p (ΩT ),
∇q ∈ Lp(ΩT ) and the following estimate holds:

‖v‖W 2,1
p (Ωk) + ‖H‖W 2,1

p (Ωk) + ‖∇q‖Lp(Ωk)

≤ c(‖f‖Lp(Ω×(k−1)T0,(k+1)T0) + ‖v(k)‖
W

2−2/p
p (Ω) + ‖H(k)‖

W
2−2/p
p (Ω)),

where Ωk = Ω × (kT0, (k + 1)T0) for k ∈ N, T0 > 0 and c is independent of
time.

2. Notation and auxiliary results. In our considerations we will need
anisotropic Sobolev spaces Wm,n

p (ΩT ), where m,n ∈ R+ ∪ {0}, p ≥ 1, and
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ΩT = Ω × (0, T ) with the norm

‖v‖p
Wm,n
p (ΩT ) = ‖v‖p

Wm,0
p (ΩT )

+ ‖v‖p
W 0,n
p (ΩT )

where

‖v‖p
Wm,0
p (ΩT )

=
T�

0

‖v‖pWm
p (Ω) dt, ‖v‖p

W 0,n
p (ΩT )

=
�

Ω

‖v‖pWn
p (0,T ) dx

for

‖v‖pWm
p (Ω) =

∑

|α|≤[m]

‖Dα
xv‖pLp(Ω) +

∑

|α|=[m]

�

Ω

�

Ω

|Dα
xv(x, t)−Dα

y v(y, t)|p
|x− y|s+p(m−[m])

dx dy,

‖v‖pWn
p (0,T ) =

∑

|β|≤[n]

‖Dβ
t v‖pLp(0,T ) +

∑

|β|=[n]

T�

0

T�

0

|Dβ
t v(x, t)−Dβ

t′v(x, t′)|p
|t− t′|1+p(n−[n])

dt dt′,

where s ≡ dimΩ; [m] is the integral part of m; Dα is the derivative in the
distributional sense; Dα

x ≡ ∂α1
x1
. . . ∂αsxs ; α = (α1, . . . , αs) is a multiindex.

We will use the following results.

Lemma 2.1 ([2]). Let f ∈ Lp(ΩT ), G ∈ W 1,0
p (ΩT ) and p ≥ 2. Assume

that there exist functions A,B ∈ Lp(ΩT ) such that ∂tG−div f = divB+A

and diam suppA < 2λ1 for sufficiently small λ1 > 0. Let v(0) ∈W 2−2/p
p (Ω),

b ∈ W 1−1/p,1/2−1/2p
p (ST ), b3 ∈ W 2−1/p,1−1/2p

p (ST ), where b ≡ (b1, b2, 0)T .
Then there exists a solution of the problem

∂tv − ν∆v +∇q = f,

div v = G,

n ·D(v) · τα + γv · τα|ST = bα (α = 1, 2),

v · n|ST = b3,

v|t=0 = v(0),

such that v ∈W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ), and the following estimate holds:

‖v‖W 2,1
p (ΩT ) + ‖∇q‖Lp(ΩT ) ≤ c(T )(‖f‖Lp(ΩT ) + ‖B‖Lp(ΩT ) + λ1‖A‖Lp(ΩT )

+ ‖G‖W 1,0
p (ΩT ) + ‖b‖

W
1−1/p,1/2−1/2p
p (ST )

+ ‖b3‖W 2−1/p,1−1/2p
p (ST ) + ‖v(0)‖

W
2−2/p
p (Ω)),

where c(T ) is an increasing positive function of T .

Lemma 2.2. Let u, v ∈W 2,1
p (ΩT ) and u(0), v(0) ∈W 2−2/p

p (Ω), Ω ⊂ R3.
Assume that p ≥ 7/3. Then
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‖u · ∇v‖Lp(ΩT ) ≤ cT 2/p sup
t
‖u‖

W
2−2/p
p (Ω) sup ‖v‖

W
2−2/p
p (Ω)

≤ cT 2/p(‖u‖W 2,1
p (ΩT ) + ‖u(0)‖

W
2−2/p
p (Ω))(‖v‖W 2,1

p (ΩT ) + ‖v(0)‖
W

2−2/p
p (Ω)),

where c does not depend on T .

3. Existence. To prove the local existence we utilize the following
method of successive approximations:

(3.1)

∂tvn − ν∆vn +∇qn
= f − vn−1 · ∇vn−1 +Hn−1 · ∇Hn−1 −∇(H2

n−1/2),

div vn = 0,

∂tHn − νσ∆Hn = Hn−1 · ∇vn−1 − vn−1 · ∇Hn−1,

divHn = 0,

n ·D(vn) · τα + γvn · τα = 0, α = 1, 2,

n · vn|S = 0,

Hn|S = 0,

vn|t=0 = v(0), Hn|t=0 = H(0),

and v0 = H0 = 0.

Lemma 3.1. Assume that f ∈ Lp(ΩT ), v(0) ∈ W
2−2/p
p (Ω), H(0) ∈

W
2−2/p
p (Ω), p ≥ 7/3. Then there exists T0 > 0 such that for all T ≤ T0

system (1.1) has a unique solution v ∈ W 2,1
p (ΩT ), H ∈ W 2,1

p (ΩT ), ∇q ∈
Lp(ΩT ), and the following estimate holds:

(3.2) ‖v‖W 2,1
p (ΩT ) + ‖H‖W 2,1

p (ΩT ) + ‖∇q‖Lp(ΩT )

≤ c(T )(‖f‖Lp(ΩT ) + ‖v(0)‖
W

2−2/p
p (Ω) + ‖H(0)‖

W
2−2/p
p (Ω)).

Proof. Let

Xk(T ) = ‖vk‖W 2,1
p (ΩT ) + ‖Hk‖W 2,1

p (ΩT ),

d(T ) = ‖v(T )‖
W

2−2/p
p (Ω) + ‖H(T )‖

W
2−2/p
p (Ω).

In view of Lemmas 2.1, 2.2 and the imbeddings W 2,1
p (ΩT ) ⊂ Lq1(ΩT ),

∇W 2,1
p (ΩT ) ⊂ Lq2(ΩT ), W 2−2/p

p (Ω) ⊂ Lq3(Ω), ∇W 2−2/p
p (Ω) ⊂ Lq4(Ω)

with 5/p − 5/q1 ≤ 2, 5/p − 5/q2 ≤ 1, 5/p − 3/q3 ≤ 2, 5/p − 3/q4 ≤ 1
(see [1, 3]) we have

(3.3) Xn(T ) ≤ cT 1/p(X2
n−1(T ) + d2(0)) + c(‖f‖Lp(ΩT ) + d(0)).

Suppose that

(3.4) Xn−1(T ) ≤ A
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and

(3.5) cT 1/p(A2 + d2(0)) + c(‖f‖Lp(ΩT ) + d(0)) ≤ A
Then we have the estimate

(3.6) Xn(T ) ≤ A
for all n ∈ N.

To satisfy condition (3.5) we assume

(3.7) cT 1/pA ≤ 1/2

and

(3.8) cT 1/pd2(0) + c(‖f‖Lp(ΩT ) + d(0)) ≤ 1
2
A.

Then for small A we have T ≤ (1/2cA)p, and then by (3.8), the data must
be suitably small.

To show convergence we introduce the differences ṽn = vn− vn−1, H̃n =
Hn −Hn−1, q̃n = qn − qn−1. They satisfy the following system of equations
for n ≥ 2:

(3.9)

ṽn − ν∆ṽn +∇q̃n = − (ṽn−1 · ∇vn−1 + vn−2 · ∇ṽn−1)

− (H̃n−1 · ∇Hn−1 +Hn−2 · ∇H̃n−1)

− (H̃n−1i∇Hn−1i +Hn−2i∇H̃n−1i)
div ṽn = 0,

∂tH̃n − νσ∆H̃n = H̃n−1 · ∇vn−1 +Hn−2 · ∇ṽn−1

− (ṽn−2 · ∇Hn−1 + vn−2 · ∇H̃n−1),

div H̃n = 0,

ṽn · n = 0,

n ·D(ṽn) · τα + γṽn · τα = 0,

H̃n = 0,

ṽn|t=0 = 0, H̃n|t=0 = 0,

where the summation over i is assumed.
Let us introduce

Γn(T ) = ‖ṽn‖W 2,1
p (ΩT ) + ‖H̃n‖W 2,1

p (ΩT ).

From (3.9) we obtain

(3.10) Γn(T ) ≤ cT 1/pAΓn−1(T ).

Hence for cT 2/p A < 1 we have convergence. This ends the proof.
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To prove the global existence we have to control the initial data in order
to be able to apply Lemma 3.1.

Lemma 3.2. Assume that f ∈ Lp(ΩT ), f(0) ∈ L2(Ω), Ω is a bounded
domain, and let ‖f‖L2(Ω) ≤ ‖f(0)‖L2(Ω)e

−λt, λ > 0. Assume that the Korn
inequality (3.13) is valid. Then the following decay estimate holds:

(3.11) ‖v‖2L2(Ω) + ‖H‖2L2(Ω) ≤ ce−c0t for c0 > 0.

Proof. Multiplying (1.1)1 by v and (1.1)3 by H, adding, integrating over
Ω and using the boundary conditions we obtain

(3.12)
d

dt
(‖v‖2L2(Ω) + ‖H‖2L2(Ω)) + νσ‖∇H‖2L2(Ω)

+ ν‖D(v)‖2L2(Ω) + γ‖v · τ‖2L2(S) =
�

Ω

f · v dx.

Assume that we have the Korn inequality

(3.13) ‖v‖2H1(Ω) ≤ c‖D(v)‖2L2(Ω).

Then (3.12) implies

(3.14)
d

dt
(‖v‖2L2(Ω) + ‖H‖2L2(Ω)) + ν′(‖v‖2L2(Ω) + ‖H‖2L2(Ω))

≤ c‖f‖L2(Ω)‖v‖L2(Ω),

where ν′ = min{ν, νσ}.
Let

α(t) = ‖v(t)‖2L2(Ω) + ‖H(t)‖2L2(Ω).

Then (3.14) implies

(3.15)
d

dt
(α(t)eν

′t) ≤ c‖f(t)‖2L2(Ω)e
ν′t.

Integrating (3.15) with respect to time gives

(3.16) α(t) ≤ ce−ν′t
t�

0

‖f(t′)‖2L2(Ω)e
ν′t′ dt′ + e−ν

′tα(0).

Using the decay assumption

‖f(t)‖L2(Ω) ≤ ‖f(0)‖L2(Ω)e
−λt

we obtain

(3.17) α(t) ≤ ce−2λt‖f(0)‖2L2(Ω) + e−ν
′tα(0).

This ends the proof.

Remark 3.3. If (3.13) does not hold, we obtain from (3.12) the inequal-
ity

d

dt
(‖v‖2L2(Ω) + ‖H‖2L2(Ω))

1/2 ≤ c‖f‖L2(Ω)
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so

‖v(t)‖L2(Ω) + ‖H(t)‖L2(Ω) ≤ c
t�

0

‖f(t′)‖L2(Ω) dt
′(3.18)

+ ‖v(0)‖L2(Ω) + ‖H(0)‖L2(Ω).

Proof of the Theorem. To prove global existence we introduce a smooth
function

ζ = ζ(T1, T2, t) =
{

1 for t ≥ T1,

0 for t ≤ T2,
T1 > T2.

Let ṽ = vζ, H̃ = Hζ, q̃ = qζ, f̃ = fζ. Then problem (1.1) takes the form

(3.19)

∂tṽ − ν∆ṽ +∇q̃ = f̃ − v · ∇ṽ −H · ∇H̃ −Hi∇H̃i + vζ̇,

div ṽ = 0,

∂tH̃ − νσ∆H̃ = H · ∇ṽ − v · ∇H̃ +Hζ̇,

div H̃ = 0,

ṽ · n|s = 0,

n ·D(ṽ) · τα + γṽ · τα|s = 0,

H̃|s = 0,

ṽ|t=0 = 0, H̃|t=0 = 0,

where |ζ̇| ≤ c/(T1 − T2) and summation over repeated indices is assumed.
Assume that we have proved local existence up to time T > T1. Then

from (3.19) we have

d(T ) ≡ ‖ṽ(T )‖
W

2−2/p
p (Ω) + ‖H̃(T )‖

W
2−2/p
p (Ω)(3.20)

≤ c(‖ṽ‖W 2,1
p (ΩT ) + ‖H̃‖W 2,1

p (ΩT )) ≤ c(‖f‖Lp(ΩT ) + T 2/pA2)

+
1

(T1 − T2)2

T1�

T2

(‖v(t′)‖L2(Ω) + ‖H(t′)‖L2(Ω)) dt
′

≤ c(‖f‖Lp(Ω×(T2,T1)) + (T )2/pA2)

+
1

(T1 − T2)
sup
t

(‖v(t)‖L2(Ω) + ‖H(t)‖L2(Ω))

Assuming that T is large, T1 − T2 small compared to T but still large, and
using the decay estimate for f we can assume

(3.21) ‖f‖Lp(Ω×(T2,T1)) + (T1 − T2)2/pA2

+
1

T1 − T2
sup

t∈(T2,T1)
(‖v(t)‖L2(Ω) + ‖H(t)‖L2(Ω)) ≤ d(0).
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This enables continuation of the local solution. For any k ∈ N and T0 =
T1 − T2 we have (see Lemma 3.2, Remark 3.3)

(3.22) ‖f‖Lp(Ωk) + (T1 − T2)2/pA2

+
1

(T1 − T2)
sup

t∈(kT0,(k+1)T0)
(‖v(t)‖L2(Ω) + ‖H(t)‖L2(Ω)) ≤ d(0),

where Ωk = Ω × (kT0, (k + 1)T0). Hence

(3.23) ‖v‖W 2,1
p (Ωk) + ‖H‖W 2,1

p (Ωk) ≤ c(‖f‖Lp(Ωk) + d(0))

for sufficiently small initial data.
This ends the proof of existence of global solutions.
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