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ON THE SOLUTION AND APPLICATIONS OF
GENERALIZED EQUATIONS USING NEWTON’S METHOD

Abstract. We provide local and semilocal convergence results for New-
ton’s method when used to solve generalized equations. Using Lipschitz as
well as center-Lipschitz conditions on the operators involved instead of just
Lipschitz conditions we show that our Newton–Kantorovich hypotheses are
weaker than earlier sufficient conditions for the convergence of Newton’s
method. In the semilocal case we provide finer error bounds and a better
information on the location of the solution. In the local case we can pro-
vide a larger convergence radius. Our results apply to generalized equations
involving single as well as multivalued operators, which include variational
inequalities, nonlinear complementarity problems and nonsmooth convex
minimization problems.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the generalized equation

F (x) +G(x) 3 0,(1)

where F : D0 ⊆ D ⊆ H → H is a continuous operator which is Fréchet-
differentiable at each point of the interior D0 of a closed convex subset D
of a Hilbert space H with values in H, and G is a multivalued maximal
monotone operator from H into H (to be made precise later) [3], [9], [10].

The generalized Newton iteration

F ′(xn)(xn+1) +G(xn+1) 3 F ′(xn)(xn)− F (xn) (n ≥ 0)(2)

has already been used to generate a sequence approximating x∗. In partic-
ular Uko [11], [12] has provided local and semilocal convergence results for
method (2) as well as a procedure for the computation of the inner-iterative
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procedures for the computation of the generalized iterates xn (n ≥ 0). This
way he extended the classical Newton–Kantorovich results nonsmooth gen-
eralized equations. His results extend earlier work on nonsmooth equations
[5], [7], [9], [10]. As in the classical cases Uko used Lipschitz differentiability
conditions on F ′ and the maximality properties of G.

Here using a combination of center-Lipschitz and Lipschitz conditions
we provide local and semilocal convergence results for method (2) with the
following advantages over earlier works and in particular [12]:

(a) our results hold whenever the corresponding ones in [12] hold but not
vice versa;

(b) in the semilocal case our Newton–Kantorovich hypotheses sufficient
for the convergence of (2) are weaker than the corresponding one
in [12];

(c) our error bounds on the distances ‖xn+1 − xn‖, ‖xn − x∗‖ are finer
and the information on the location of the solution x∗ more precise;

(d) in the local case and under weaker hypotheses our convergence radius
can be larger. This observation is very important in computational
mathematics (see also Remark 3).

Examples of special cases of (1) can be found in [1]–[3], [7]–[15] and the
references there.

2. Semilocal analysis of method (2). Throughout this section we
assume that

‖F ′(x)− F ′(y)‖ ≤ q‖x− y‖,(3)

‖F ′(x)− F ′(x0)‖ ≤ q0‖x− x0‖,(4)

for all x, y ∈ D0 and some fixed x0 ∈ D0. Moreover, G is a nonempty subset
of H ×H so that there exists a ≥ 0 such that

[x, y] ∈ G and [v, w] ∈ G ⇒ 〈w − y, v − x〉 ≥ a‖x− v‖2,(5)

and which is not contained in any larger subset of H ×H.
We will use Lemma 2.2 from [12, p. 256]:

Lemma 1. Let G be a maximal monotone operator satisfying (5), and
let M be a bounded linear operator from H into H. If there exists c ∈ R
such that c > −a, and

〈M(x), x〉 ≥ c‖x‖2 for all x ∈ H,(6)

then for any b ∈ H there exists a unique z ∈ H such that

M(z) +G(z) 3 b.(7)

We provide the following result on majorizing sequences:
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Lemma 2. Assume that there exist parameters L,L0, η ≥ 0 with L0 ≤ L,
and δ ∈ [0, 1] such that

hδ = (δL0 + L)η ≤ δ.(8)

Then the sequence {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1 +
L(tn+1 − tn)2

2(1− L0tn+1)
(n ≥ 0)(9)

is nondecreasing , bounded above by t∗∗ = 2η/(2− δ) and converges to some
t∗ such that

0 ≤ t∗ ≤ t∗∗.(10)

Moreover , the following error bounds hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤
δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η.(11)

Proof. The result clearly holds if either δ, L or η is zero. Assume δ, L, η
6= 0. We must show that for all n ≥ 0,

L(tn+1 − tn) + δL0tn+1 ≤ δ, tn+1 − tn ≥ 0, 1− L0tn+1 > 0.(12)

Estimate (11) then follows immediately from (9) and (12). We use induction
on n. For n = 0 we have

L(t1 − t0) + δL0t1 = Lη + δL0η ≤ δ, t1 ≥ t0, 1− L0η > 0

by (8). But then (9) gives

0 ≤ t2 − t1 ≤
δ

2
(t1 − t0).

Assume (11) and (12) hold for all n ≤ k + 1. Then

(13) L(tk+2 − tk+1) + δL0tk+2

≤ Lη
(
δ

2

)k+1

+ δL0

[
t1 +

δ

2
(t1 − t0) +

(
δ

2

)2

(t1 − t0) + . . .+
(
δ

2

)k+1

(t1 − t0)
]

≤ Lη
(
δ

2

)k+1

+ δL0η
1− (δ/2)k+2

1− δ/2

= Lη

(
δ

2

)k+1

+
2δL0η

2− δ

[
1−

(
δ

2

)k+2]

=
{
L

(
δ

2

)k+1

+
2L0δ

2− δ

[
1−

(
δ

2

)k+2]}
η.
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By (8) and (13) it suffices to show

L

(
δ

2

)k+1

+
2L0δ

2− δ

[
1−

(
δ

2

)k+2]
≤ L+ δL0,

or

δL0

{
2

2− δ

(
1−

(
δ

2

)k+2)
− 1
}
≤ L

[
1−

(
δ

2

)k+1]
,

or [
L0δ

2

2− δ − L
][

1−
(
δ

2

)k+1]
≤ 0,

or
L0δ

2

2− δ ≤ L,(14)

which is true by the choice of δ. Hence, the first estimate in (12) holds for
all n ≥ 0. We must also show that

tk ≤ t∗∗.
For k = 0, 1, 2 we have

t0 = 0 ≤ t∗∗, t1 = η ≤ t∗∗, t2 ≤ η +
δ

2
η =

2 + δ

2
η ≤ t∗∗.

It follows from (11) that for all k ≥ 0,

tk+2 ≤ tk+1 +
δ

2
(tk+1 − tk) ≤ tk +

δ

2
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ . . . ≤ t1 +
δ

2
(t1 − t0) + . . .+

(
δ

2

)
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ η +
δ

2
η +

(
δ

2

)2

η + . . .+
(
δ

2

)k+1

η

=
[
1 +

δ

2
+
(
δ

2

)2

+ . . .+
(
δ

2

)k+1]
η

=
1− (δ/2)k+2

1− δ/2 η <
2

2− δ η = t∗∗.

Moreover, we have

L0tk+2 <
2L0η

2− δ ≤ 1(15)

(by (8)). Hence, the sequence {tn} is bounded above by t∗∗. It also follows
from (9) that {tn} is nondecreasing and so it converges to some t∗ satisfy-
ing (10).

That completes the proof of Lemma 2.
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Remark 1. It follows immediately from the proof of Lemma 2 that con-
dition (8) can be replaced by the weaker

(8)′ hδ ≤ δ,
L0δ

2

2− δ ≤ L,
2L0η

2− δ ≤ 1, δ ∈ [0, 2).

We present the main semilocal convergence theorem for method (2) using
Lipschitz conditions (3) and center-Lipschitz conditions (4).

Theorem 1. Let F and G satisfy (3), (4) and (5), (6) respectively , for
M = F ′(x0). For x0 ∈ D0 assume there exists y0 ∈ H such that G(x0) 3 y0
and ‖F (x0) + y0‖ ≤ b0 for b0 > 0. Moreover suppose (8) holds for

L0 =
q0

c0 + a
, c0 = c, L =

q

c0 + a
, η =

b0
c0 + a

,(16)

and
U(x0, t

∗) = {x ∈ X : ‖x− x0‖ ≤ t∗} ⊆ D.(17)

Then the sequence {xn} (n≥0) generated by generalized Newton’s method (2)
is well defined , remains in U(x0, t

∗) for all n ≥ 0, and converges to a unique
solution x∗ of equation (1) in U(x0, t

∗). Moreover the following error bounds
hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn,(18)

‖xn − x∗‖ ≤ t∗ − tn,(19)

where {tn} is given by (9).

Proof. We use induction on k = 0, 1, 2, . . . to show:

xk ∈ U(x0, t
∗),(20)

‖xk+1 − xk‖ ≤ tk+1 − tk,(21)

U(xk+1, t
∗ − tk+1) ⊆ U(xk, t∗ − tk),(22)

∃yk ∈ H such that yk ∈ G(xk),(23)

∃bk > 0 such that ‖F (xk) + yk‖ ≤ bk,(24)

∃ck > −a such that 〈F ′(xk)(x), x〉 ≥ ck‖x‖2 for all x ∈ H.(25)

The assertions (20), (23)–(25) are true if k = 0 by the hypotheses of the
theorem. It then follows from (25) and Lemma 1 that there exists a unique
x1 ∈ H satisfying (2). By (5), (6), (9), (16) and (2) we obtain in turn

a‖x1 − x0‖2 + 〈y0 + F (x0)− F ′(x0)(x0 − x1), x1 − x0〉 ≤ 0,

hence

a‖x1 − x0‖2 + 〈F ′(x0)(x1 − x0), x1 − x0〉 ≤ 〈−F (x0)− y0, x1 − x0〉,(26)

and so

‖x1 − x0‖ ≤ a0 =
b0

c0 + a
= t1 − t0.(27)
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For every z ∈ U(x1, t
∗ − t1),

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0,(28)

which implies z ∈ U(x0, t
∗− t0). It follows from (27) and (28) that (21) and

(22) hold for k = 0. Given they hold for n = 0, . . . , k and again using (25)
and Lemma 1 we conclude that there exists a unique xk+1 ∈ H satisfying (2),

‖xk+1 − x0‖ ≤
k+1∑

i=1

‖xi − xi−1‖(29)

≤
k+1∑

i=1

(ti − ti−1) = tk+1 − t0 = tk+1 ≤ t∗,

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) < t∗, θ ∈ [0, 1].(30)

Hence (20) holds if k is replaced by k + 1. As in (26) we obtain in turn

a‖xk+1 − xk‖2 + 〈yk + F (xk)− F ′(xk)(xk − xk+1), xk+1 − xk〉 ≤ 0,

so

(31) a‖xk+1 − xk‖2 + 〈F ′(xk)(xk+1 − xk), xk+1 − xk〉
≤ 〈−F (xk)− yk, xk+1 − xk〉,

and thus

‖xk+1 − xk‖ ≤ tk+1 − tk.(32)

That is, (21) and (22) hold with k replaced by k + 1.
By (4) and (29) we get

‖F ′(xk+1)− F ′(x0)‖ ≤ q0‖xk+1 − x0‖ ≤ q0tk+1.(33)

Set

ck+1 = c0 − q0tk.(34)

Then by hypothesis (8) we get

ck+1 > −a.(35)

Therefore

〈F ′(x0)(x)−F ′(xk+1)(x), x〉 ≤ ‖F ′(x0)−F ′(xk+1)‖ ‖x‖2 ≤ q0tk‖x‖2(36)

for all x ∈ H. Hence (25) holds with k replaced by k + 1.
Define

yk+1 = −F (xk)− F ′(xk)(xk+1 − xk).(37)

Then (23) holds by (7) and
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(38) ‖F (xk+1) + yk+1‖ ≤ ‖F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)‖

=
∥∥∥

1�

0

[F ′(xk + θ(xk+1 − xk))− F ′(xk)](xk+1 − xk) dt
∥∥∥

≤ q

2
‖xk+1 − xk‖2 = bk+1,

where

ak =
bk

ck + a
(k ≥ 0).(39)

Thus for every z ∈ U(xk+1, t
∗ − tk+1), we have

‖z − xk‖ ≤ ‖z − xk+1‖+ ‖xk+1 − xk‖(40)

≤ t∗ − tk+1 + tk+1 − tk = t∗ − tk.
That is,

z ∈ U(xk, t∗ − tk).(41)

The induction for (20)–(25) is now complete.
Lemma 2 implies that {tn} is a Cauchy sequence. By (9) and (32) it

follows that {xn} is also a Cauchy sequence, and so it converges to some
x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a closed set). By letting m→∞ in

‖xk+m − xk‖ ≤
k+m−1∑

i=k

‖xi+1 − xi‖ ≤
k+m−1∑

i=k

(ti+1 − ti) = tk+m − tk(42)

we obtain (19). Moreover, since limk→∞ xk+1 = x∗ and

lim
k→∞

[F ′(xk)(xk − xk+1)− F (xk)] = −F (x∗),

G(xk+1) 3 F ′(xk)(xk+1 − xk)− F (xk),

it follows that G(x∗) 3 −F (x∗). Hence x∗ is a solution of (1).
Finally, to show uniqueness in U(x0, t

∗), assume there exists a solution
y∗ ∈ U(x0, t

∗). Then we obtain

a‖xk+1 − y∗‖2 + 〈F ′(xk)(xk+1 − y∗), xk+1 − y∗〉
≤ 〈F (y∗)− F (xk)− F ′(xk)(y∗ − xk), xk+1 − y∗〉

or equivalently (as in (31))

‖xk+1 − y∗‖ ≤
q

2(ck + a)
‖xk − y∗‖2 < ‖xk − y∗‖(43)

(
since q

2(ck+a)‖xk − y∗‖ < 1 by (8)
)
. Hence we get x∗ = limk→∞ xk = y∗.

That completes the proof of Theorem 1.

Remark 2. Note that t∗ can be replaced by 2η/(2− δ) in condition (17).
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Remark 3. To compare our Theorem 1 with earlier ones, in particular
with Theorem 2.11 of [12], we define the scalar function p by

p(s) =
L

2
s2 − s+ a0,(44)

where L is given by (16). Uko’s Newton–Kantorovich hypothesis (see (2.14)
in [12]) becomes

h = 2La0 ≤ 1,(45)

whereas ours for δ = 1 reduces to

h1 = (L+ L0)a0 ≤ 1.(46)

But in general
L0 ≤ L.(47)

Hence (45) always implies (46) but not vice versa unless L = L0. If strict
inequality holds in (47) then (46) may hold but not (45). In Example 3
that follows we show that L/L0 may be arbitrarily large. Moreover define a
sequence {sn} by

sn+1 = sn +
L
2 s

2
n − sn + a0

1− Lsn
, s0 = 0 (n ≥ 0),(48)

and set
s∗ = lim

n→∞
sn.(49)

Then it is known [3], [6] that

s∗ =
1−√1− 2L0a0

L
,(50)

sn+1 − sn = − p(sn)
p′(sn)

=
L
2 (sn − sn−1)2

1− Lsn
(n ≥ 1),(51)

s∗ − sn+1 =
L
2 (s∗ − sn)2

1− Lsn
≤ 1
L2n+1h

2n+1
(n ≥ 0).(52)

Uko essentially showed error bounds (18) and (19) with the sequence {sn}
and point s∗ replacing {tn} and t∗ respectively.

That is, for all n ≥ 0,

‖xn+1 − xn‖ ≤ sn+1 − sn,(18)′

‖xn − x∗‖ ≤ s∗ − sn.(19)′

We show that our error bounds are finer and the location of the solution
x∗ more precise:

Proposition 1. Under the hypotheses of Theorem 1 (for `0 < `) and
(45) the following error bounds hold :

tn+1 < sn+1 (n ≥ 1),(53)
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tn+1 − tn < sn+1 − sn (n ≥ 1),(54)

t∗ − tn ≤ s∗ − sn (n ≥ 0),(55)

t∗ ≤ s∗,(56)
(57) 0 ≤ tn+1 − tn ≤ α2n−1

(sn+1 − sn) (n ≥ 1), α =
1− `η
1− `0η

∈ [0, 1),

(58) 0 ≤ t∗ − tn ≤ α2n−1
(s∗ − sn) (n ≥ 1).

Moreover , tn = sn (n ≥ 0) if ` = `0.

Proof. We use induction on n to show (53) and (54) first. For n = 0 in
(9) we obtain

t2 − η =
`η2

2(1− `0η)
≤ `η2

2(1− `η)
= s2 − s1

and so
t2 < s2.

Assume that

tk+1 < sk+1, tk+1 − tk < sk+1 − sk (k ≤ n+ 1).

Using (9) and (48) we get

tk+2 − tk+1 =
`
2(tk+1 − tk)2

1− `0tk+1
<

`
2(sk+1 − sk)2

1− `sk+1
= sk+2 − sk+1.

For m ≥ 0, we obtain

(59) tk+m − tk
< (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + . . .+ (tk+1 − tk)
< (sk+m − sk+m−1) + (sk+m−1 − sk+m−2) + . . .+ (sk+1 − sk)
< sk+m − sk.

By letting m→∞ in (59) we obtain (55). For n = 1 in (55) we get (56).
Finally, (57) and (58) follow easily from (9) and (48). Note also that (57)

holds as a strict inequality if n ≥ 2.
That completes the proof of Proposition 1.

Remark 4. We now complete this section with three numerical examples
when G = 0 on D. In the first one, hypothesis (45) fails whereas (46) holds.
In the second example, we show that estimates (18), (19) compare favorably
with (18)′, (19)′, respectively. In the third one, we show that L/L0 can be
arbitrarily large.

Example 1. Let H = R, D = [
√

2 − 1,
√

2 + 1], x0 =
√

2 and define a
function F on D by

F (x) =
1
6
x3 −

(
23/2

6
+ .23

)
.(60)
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Using (3)–(6) we obtain

a = 0, c = 2, a0 = .23, L = 2.4142136, L0 = 1.914213562,

h = 2La0 = 1.1105383 > 1,(61)

and by (8) for δ = 1,

(L+ L0)a0 = .995538247 < 1.(62)

That is, there is no guarantee that Newton’s method {xn} starting at x0
converges to a solution x∗ of equation F (x) = 0, since (45) is violated. How-
ever since (62) holds, Theorem 1 guarantees the convergence of Newton’s
method to x∗ = 1.614507018.

Example 2. Let H = R, x0 = 1.3, D = [x0 − 2η, x0 + 2η] and define a
function F on D by

F (x) = 1
3(x3 − 1).(63)

As in Example 1 we obtain

a0 = .236094674, L = 2.097265501, L0 = 1.817863519,

h = 2Lη = .990306428 < 1,

h1 = (L+ L0)η = .92434111 < 1 (for δ = 1),

t∗ = .369677842, s∗ = .429866445.

That is, we provide a better information on the location of the solution x∗

since

U(x0, t
∗) ⊂ U(x0, s

∗).(64)

Moreover using (2) and (63) we can tabulate the following results:

Comparison table

xn Estimates (18) Estimates (19) Estimates (18)′ Estimates (19)′

x1 = 1.0639053254 .236094674 .133583172 .236094674 .193771771

x2 = 1.0037617275 .102400629 .031182539 .115780708 .0779910691

x3 = 1.0000140800 .028585756 .002596783 .053649732 .024342893

x4 = 1.0000000002 .002575575 .000021208 .020186667 .004156226

n = 5 .000021207 .000000001 .003987206 .00016902

n = 6 .000000001 0 .000166761 .000002259

Example 3. Let H = R, x0 = 0 and define a function F on R (G = 0)
by

F (x) = b0x+ b1 + b2 sin eb3x,

where bi, i = 0, 1, 2, 3, are given parameters. It can easily be seen that for b3
large and b2 sufficiently small, L/L0 may be arbitrarily large. That is, (46)
may be satisfied but not (45).
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3. Local analysis for method (2). Throughout this section we assume
that

‖F ′(x)− F ′(x∗)‖ ≤ `‖x− x∗‖ for all x ∈ D0.(65)

We can show the following local result for method (2):

Theorem 2. Let G be a maximal monotone operator satisfying (5). Sup-
pose (6) holds for M = F ′(x∗) and the generalized equation (1) has a solution
x∗ in D0 such that

U(x∗, r∗) ⊆ D0,(66)

where

r∗ =
2
3`

(a+ c).(67)

Then the sequence {xn} (n ≥ 0) generated by generalized Newton’s method
(2) is well defined , remains in U(x∗, r∗) for all n ≥ 0, and converges to x∗

provided that x0 ∈ U(x∗, r∗).
Moreover the following error bounds hold for all n ≥ 0:

‖x1 − x∗‖ ≤
`

2(a+ c)
‖x0 − x∗‖2,(68)

‖xn+1 − x∗‖ ≤
`

2(a+ c− `‖x0 − x∗‖)
‖xn − x∗‖2 ≤ d0d

2n (n ≥ 1),(69)

where

d0 =
2(a+ c− `‖x0 − x∗‖)

`
,(70)

d = ‖x0 − x∗‖d−1
0 .(71)

Proof. We first establish the existence of solution x1. Using (6) and (65)
we obtain in turn for all x ∈ H

〈[F ′(x∗)− F ′(x0)](x), x〉 ≤ ‖F ′(x∗)− F ′(x0)‖ ‖x‖2(72)

≤ `‖x0 − x∗‖ ‖x‖2

so
c‖x‖2 − `‖x0 − x∗‖ ‖x‖2 ≤ 〈F ′(x0)(x), x〉,

that is,

(c− `‖x0 − x∗‖)‖x‖2 ≤ 〈F ′(x0)(x), x〉.(73)

It follows by the choice of x0 that

− `‖x0 − x∗‖ > −a.(74)

Hence by Lemma 1, x1 exists, and solves (1). By (5) we obtain

a‖x1 − x∗‖2 ≤ 〈F (x∗)− F (x0)− F ′(x0)(x1 − x0), x1 − x∗〉
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so that

(75) a‖x1 − x∗‖2 + 〈F ′(x0)(x1 − x∗), x1 − x∗〉
≤ 〈F (x∗)− F (x0)− F ′(x0)(x∗ − x0), x1 − x∗〉

or equivalently

(a+ c)‖x1 − x∗‖ ≤
`

2
‖x0 − x∗‖2,

which shows (68), x1 ∈ U(x∗, r∗), and in particular

‖x1 − x∗‖ < ‖x0 − x∗‖.(76)

Assume xk ∈ U(x∗, r∗), xk solves (1) and

‖xk − x∗‖ < ‖x0 − x∗‖ (k ≥ 1).(77)

As in (74) we get in turn

〈[F ′(x∗)− F ′(xk)](x), x〉 ≤ ‖F ′(x∗)− F ′(xk)‖ ‖x‖2 ≤ `‖x∗ − xk‖ ‖x‖2,
so

〈F ′(x∗)(x), x〉 − 〈F ′(xk)(x), x〉 ≤ `‖x0 − x∗‖ ‖x‖2

and hence
(c− `‖x0 − x∗‖)‖x‖2 ≤ 〈F ′(xk)(x), x〉,

which establishes the existence of xk+1. Moreover by (5) we get

a‖xk+1 − x∗‖2 ≤ 〈F (x∗)− F (xk)− F ′(xk)(xk+1 − xk), xk+1 − x∗〉,
that is,

a‖xk+1 − x∗‖2 + 〈F ′(xk)(xk+1 − x∗), xk+1 − x∗〉
≤ 〈F (x∗)− F (xk)− F ′(xk)(x∗ − xk), xk+1 − x∗〉

and so

(a+ c− `‖x0 − x∗‖)‖xk+1 − x∗‖ ≤
`

2
‖xk − x∗‖2,

which shows (69), xk+1 ∈ U(x∗, r∗), and limk→∞ xk = x∗.
That completes the proof of Theorem 2.

Remark 5. A local result similar to Theorem 2 is given in [12, Thm. 2.5]
where the following conditions, stronger and more difficult to verify, are used:

(78) ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x ∈ D0,

(79) there exists c1 > −a such that 〈F ′(z)(x), x〉 ≥ c1‖x‖2
for all x ∈ H, z ∈ D0.

The coercivity condition (79) which implies F ′(x)−1 exists for all x ∈ D0 is
rather strong, and may not hold in many problems occurring in applications.
Note also that it is possible to obtain a larger convergence radius despite
the fact that we use weaker conditions (see, e.g., Example 4 that follows).
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Remark 6. As noted in [1]–[3], [4], [11]–[15] the local results obtained
here can be used for projection methods such as Arnoldi’s, the general-
ized minimum residual method (GMRES), the generalized conjugate resid-
ual method (GCR), for combined Newton/finite-difference projection meth-
ods, in connection with the mesh independence principle in order to de-
velop the most efficient mesh refinement strategies, variational inequalities,
nonlinear complementarity problems and nonsmooth convex minimization
problems.

Remark 7. The local results obtained here can also be used to solve
equations of the form (1), where F ′ satisfies the autonomous differential
equation [3], [6]:

F ′(x) = T (F (x)),(80)

where T : H → H is a known continuous operator. Since F ′(x∗) = T (F (x∗))
= T (0), we can apply the results obtained here without actually knowing
the solution x∗ of equation (1).

Example 4. Let H = R, D = U(0, 1), G = 0 on D, and define F by

F (x) = ex − 1.(81)

Then it can easily be seen that we can set T (x) = x+ 1 in (80). We obtain

F ′(x)− F ′(x∗) = ex − 1 = x+
x2

2!
+ . . .+

xn

n!
+ . . .(82)

=
(

1 +
x

2!
+ . . .+

xn−1

n!
+ . . .

)
(x− x∗),

and for x ∈ U(0, 1),

‖F ′(x)− F ′(x∗)‖ ≤ (e− 1)‖x− x∗‖.(83)

That is, ` = e− 1. Moreover a = 0 and by (79), c1 = 1. Hence using (67) we
get

r∗ =
2

3(e− 1)
= .387984471.(84)

By (78) and (79) we obtain γ = e and c1 = e−1. It follows from Theorem 2.5
in [12] that

rU =
2
e2 = .270670566.(85)

Furthermore the convergence radius by Rheinboldt [8] is given by

rR =
2

3γ
= .245252961.(86)

We conclude that

rR < rU < r∗.(87)
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Hence our results provide a wider choice of initial guesses x0 than before.
This observation is important in computational mathematics (see also Re-
mark 6). Moreover, since ` < γ our error bounds on the distances ‖xn−x∗‖
are more precise than the ones using only condition (78) as in [12].
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