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PrzEMYSEAW RoLA (Krakow)

ARBITRAGE IN MARKETS WITHOUT SHORTSELLING
WITH PROPORTIONAL TRANSACTION COSTS

Abstract. We consider markets with proportional transaction costs and
shortsale restrictions. We give necessary and sufficient conditions for the
absence of arbitrage and also estimate the super-replication price.

1. Introduction. Let (£2,F,P) be a probability space equipped with
a finite discrete-time filtration F = (F;)L, such that Fr = F. Let S =
(S)E, = (SE,..., 8L, be an d-dimensional process adapted to F, which
has strictly positive components, i.e. Sf > 0, P-a.s. We assume that there ex-
ists a bank account or a bond on the market, which is a process B = (B;)],
and all transactions are calculated in units of this process. For simplicity we
assume that By = 1 forallt =0,...,T. A trading strategy on the market is a
d-dimensional process H = (H;)l_, = (H}, ..., H{)L_,, which is predictable
with respect to F. We denote the set of such strategies by P and define the
set of strategies without shortselling by P+ = {H € P | H > 0}.

Let A= (A1,...,\q), o= (p1,...,pq) and
O(x) =z + NaT + px~  fori=1,...,d where 0 < \j, u; < 1.
The vectors A, u model proportional transaction costs for buying and selling

respectively. We say that A < p if and only if \; < p; foralli =1,...,d. We
use the notation

t
(H-S); =Y H;-AS;
Jj=1
where - is the inner product in R%.
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Let x = (:Ut)"“)tT:1 be the gain or loss process in the market with propor-
tional transaction costs for the strategy H starting from 0 units in bank and
3 )\7M 1 .
stock accounts, i.e. ;" is defined as follows:

t
ot = ah ZSO Sj—1—p(—Ht) - S
7=1
t d d
=Y Y FAH)S =Y G (—H)S]
j=1 i=1 i=1

where the function ¢ is of the form ¢ = (¢1,...,¢q) and AH]’: = H]Z — H]Z:_1
fori = 1,...,d and j = 1,...,t, with H} = 0. We will usually omit the
symbol of the inner product. We get

t d
- ZAH Sj1 — ZZ)\ (AH)YSI = > > wi(AH)) ™S

j=1 i=1 j=1 i=1

+ H:S; — Z Ni(—H)TS, — Zﬂi(—Hbet

=1 i=1
t t
= (H-S)i — Y MAH) 85— 3 u(AH;) ™S
=1 =

- /\(Ht)_St - M(Ht)+st.
Notice that if H € Py then
t
wpt = (H - 8) = > MAH;) S —ZN AH;)™Sj -1 — pH;S;.
j=1
We use the notation LY (F;) for the set of non-negative, F;-measurable ran-

dom variables and write LY for ¢t = T. Let RE(\, p) == {x;’“(H) | H e Py}
and define the set of hedgeable claims to be

AT (A 1) =RE(A, ) — LY.
Let T;(A, 1) be the closure of AL (A, 1) in probability.
LEMMA 1.1. AL (X, p) is a convex cone.
Proof. Notice that the function ¢’ is convex for alli =1,...,d. m
DEFINITION 1.2. We say that there is no arbitrage on the market if
(NAYM) RE(\, 1) N LY = {0}.
Notice that the condition 1) is equivalent to AF (A, i) N LY = {o}.
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LEMMA 1.3. Let 0 < A1 < A9 and 0 < py < pa. Then (NAihu) -
(NAj‘f’“) and (NAi,ltl) - (NAi’”Q).

; A1, A2, A1 A2
Proof. Notice that z7"" > 27" and 27" > 27", =

LEMMA 1.4. Under |' ie. AL\ p) NLY = {0}, there is no ar-
bitrage on the market with any time horizon 1 < t < T, i.e. AF(\, pu) N

LY (F2) = {0}

Proof. Notice that if H is an arbitrage strategy in the model with time
horizon t (so at time ¢ we liquidate all positions in stock) then there is also
an arbitrage strategy in a model with larger time horizon, in particular with
time horizon T'. It is enough to take the same strategy H up to time ¢ and
later 0. m

Now similarly to [GRS| we introduce the definition of a consistent price
system and some related notions.

DEFINITION 1.5 ((A, p)-consistent price system). We say that a pair
(S,P) is a (A, pu)-consistent price system (()\ 1)-CPS) if P is a probabil-
ity measure equivalent to P and S = (St) —o is a d-dimensional process,
adapted to the filtration F, which is a P—martlngale and satisfies

S; B
1_Mi§§§§1+)\ia -a.s.,
foralli=1,...,dand t =0,...,T. For A = 4t we write briefly A-CPS.

DEFINITION 1.6 (right-sided A-consistent price system). We say that a
pair (S, P) is a right-sided \-consistent price system (A-CPST) if Pis a
probability measure equivalent to P and S = (St)t o is a d-dimensional,
strictly positive process, adapted to F, which is a P-martingale and

5
S’ <1+4X, P-as,

foralli=1,...,dand t=0,...,T

When the process S above is only a supermartingale or submartingale
we can formulate similar definitions.

DEFINITION 1.7 ((A, pu)-supCPS, (A, u)-subCPS). We say that a pair
(S,P) is a (X, p)-supermartingale (vesp. submartingale) consistent price sys-
tem if P is a probability measure equivalent to P and S = (St) is a

d-dimensional process, adapted to F, which is a P-supermartingale (resp.
submartingale) and

5t
1—p; < i <14 X;, P-as.,
¢
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foralli=1,...,dand t =0,...,7. When A\ = yu we write briefly A-supCPS
(resp. A-subCPS).

DEFINITION 1.8 (A-supCPST, A\-subCPST). We say that a pair (S, P)
is a right-sided \-supermartingale (vesp. submartingale) consistent price sys-
tem if P is a probability measure equivalent to P and S = (St)t _o is a
d-dimensional, strictly positive process, adapted to F, which is a P-super-
martingale (resp. submartingale) and

Gi

it, <14 X, P-as.,
St
foralli=1,...,dand t=0,...,T

Now we give the definition of robust no-arbitrage, similar to that intro-
duced in [S].

DEFINITION 1.9. We say that there is robust no-arbitrage on the market
if
(rNAL)

Je>0: (e <\ Af(e,p) N LY = {0}) or (e < p, AfF(N,e) N LY = {0}).

2. Main results

THEOREM 2.1. The implications (a)=(b)=(c)=(d)=-(e) are true where:

() AL (118 = {0); -

(b) AF (A, 1) N LY = {0} and Ajf(e, 1) = Af(e, ) for any e > \;

(¢) Af(e,p) N LY = {0} for any e > A;

(d) for any e > X there exists an e-CPS™ ( ~7(@) with dQ/dP € L

(e) for any e > X\ there exists, e-supCPS™t (S, Q) with dQ/dP € L.
);

REMARK 2.2. Notice that the conditions (d), (e) of Theorem mean
that there exists an e-CPS™ (resp. e-supCPS™) in the model with transaction
cost vectors € > A for buying and p for selling.

In the proof of Theorem will use the following lemmas whose proofs
can be found e.g. in [KS].

LEMMA 2.3. Let X,, be a sequence of random vectors taking values in R?
such that for almost all w € 2 we have liminf || X, (w)|l¢ < co. Then there is
a sequence of random vectors Yy, taking values in R® satisfying the following
conditions:

(1) Y, converges pointwise almost surely to a random vector Y taking
values in R?,
(2) Y, (w) is a convergent subsequence of X, (w) for almost all w € (2.
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Proof. See e.g. |[KS, Lemma 2| or [KRS, Lemma 1|. =

REMARK 2.4. The above claim can be formulated as follows: there exists
an increasing sequence of integer-valued random variables o) such that X,
converges a.s.

LEMMA 2.5 (Kreps-Yan). Let K O —L% be a closed convex cone in L'

such that KNLY = {0}. Then there is a probability P ~ P withdP/dP € L*
such that Ep€ <0 for all § € K.

Proof. See e.g. |[KS, Lemma 3| or [KSaf, Theorem 2.1.4]. =
Proof of Theorem[2.1] (a)=>(b). Let

t+k t+k t+k
tt+k ZH iAS; —Z)\ AH j_l—ZM(AHj)fs_
=t
- MHt+k5t+k

where 1 < t <t+4+k<T, H is predictable and H > 0, H € LO(Ri,}}_l)
and AH; = — H. Define

R} t+k( A) = {xt t+k(H H) | H is predictable and H > 0}

and let A; H_k(H, A) = R:Hk(H, A) — LY (Fi4x). We will show that the set

A, t+,€(H,E) is closed for any e > \, any H € LO(R‘i,}}_l) and all ¢, k such
that 1 <t <t+k<T. We prove this by induction on k.

Let £ = 0. Fix t, HelLl +—1) and a vector € > A, i.e. g > \; for
alli=1,...,d. By Lemmas 1 1.3 and 1.4{ we have A (e, u) N LY (F) = {0}.
Suppose that vy — ¢ in probablhty where v}y € Aj t(H e). The sequence
vy contains a subsequence convergent to ¢ a.s. (see e.g. [JP, Theorem 17.3]).
Thus, possibly restricting to this subsequence we can assume that v;'; — C,
P-a.s. Assume that

’Ugt = thASt - E(Ath)Jrst_l - u(AHf)*St_l - /J/thSt — Tn

where AHP = H' — H and Hp € LO(RL, Fy_1), ry, € LY(F).

Consider first the situation on the set £2; := {liminf ||H}*|| < oo} € Fi—1.
By Lemma [2.3] there exists an increasing sequence of integer-valued, F;_-
measurable stopping times 7, such that H/™ is a.s. convergent on {21, and
for almost all w € (24 the sequence H, n() (w) is a convergent subsequence
of H'(w). Notice that H[" € L'(R%, F;_1) and 7, € LI (F;). Furthermore
ry, is convergent a.s. on (2;. Let H; = limy,_yo0 H™ and 7 := limy_y00 7, -
Then

C = lim (HZZASt — E(AHZL)JFSt_l — /,L(AH?)ist_l — IUH?St — Tn)
n—o0

= lim (HtT"ASt - E(AHZ—")+St_1 - M(AHZ—H)_St—l — /LHtT"St — 7’7—”)

n—oo
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where the last limit is equal to
.E[tASt — 6(]:{75 — ﬁ)+5t_1 — ,u(ﬁt — ﬁ)ist_l — LLI:ItSt —TrE .A?:t(ﬁ,E).
Consider now the set 2 := {liminf ||H{'|| = oo} € Fi—1. Suppose that
P(f25) > 0. Define G} := H}*/||H[||, hn := ro/||H{*|| and notice that G} €
LO(RY, Fy_1). We have
G?ASt—5<G?—ﬁ>+St 1 —M(G?—f{)_st 1—/LG?St—h —0
_ _ n .
IH | [H |
Just as on (2, by Lemma [2.3] there exists an increasing sequence of integer-
valued, F;_1-measurable stopping times o, such that G{" is convergent a.s.

n(w)(

on {25 and for almost all w € 2 the sequence Gtg

subsequence of G}'(w). Let Gy = limy oo G7™ and h = limy,_eo he,, . Taking

into account the absence of shortselling we get
GiAS; —e(G) TSy — 1u(Gy) ™ Si—1 — nGeSy = GyAS, — Gy Si—1 — uGySy = h
W}Eere h € Lg_(]—"t). From the absence of arbitrage, GyAS; — eGySy—1 —
1GeSe = 0 on (2. Notice that

GiASy — AGSi—1 — pGSy > GiAS; — eGSi—1 — nGeSy = 0.
Using once again the fact that A;7 (A, u) N LY (F;) = {0} we can replace the
inequality by an equality. Hence Z?:l()‘i — ei)éﬁsz_l = 0. Because S;_1 is

w) is a convergent

strictly positive we obtain G, = 0, P-a.s. on {29, which contradicts the fact
that |Gy = 1. It follows that P({25) = 0.

Assume now that the claim is true for £ — 1 where &k > 1. We show that
it is true for k. Fix t such that 1 <t <t+k<T, H € LO(Ri,}}_l) and a
vector € > \. By Lemmas andwe have A/, (e, 1) N LY (Fipx) = {0}
Let v, ., — ( in probability where v}, , € Az’r ok (IEI ,€). The sequence Uik
contains a subsequence convergent to ¢ a.s. (see e.g. [JP, Theorem 17.3|).
Thus, possibly restricting to this subsequence we can assume that U?,t G
P-a.s. Assume that

tk t+k tk
Viak =Y HFAS; =Y e(AHP)TS; 1= w(AH}) S 1—pHy Sipk—rn
j=t Jj=t Jj=t

where AH' = Hl' — H, H!" € L°(R%, F;_1), ry € LY (Fipx). The argument
will be similar to the case k = 0.

Consider first the situation on 27 := {liminf | H}'| < oo} € Fi_1.
By Lemma [2.3] there exists an increasing sequence of integer-valued, F;_1-
measurable stopping times 7, such that H;™ is convergent a.s. on f2; and

for almost all w € 21 the sequence H,’ n() (w) is a convergent subsequence
of H'(w). Notice that H[* € LY(R%,F,_1) and r,, € LY (F;sx). Define
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H; = lim,, 0o H/™. Then ( is equal to

t+k t+k t+k
nhﬁrgo(z H"AS Z AH" +S] 1—Zu AH Sj_l—uH{L+kSt+k—rn>
Jj=t j=t
i i tk
= lim (Hgmst —e(H" — H)*Spoq — p(H]* — H)"Sp1+ Y H'AS;
j=t+1
t+k t+k
30 SAHP)S = S WAH]) Sy — St )
Jj=t+1 j=t+1
t+k
T _ 7 _ 7\t _ 7 _ 7\~ : Tn .
= HAS, — e(Hy — HY*S, 1 — p(Hy — H)™Sy1 + lim ( 3 HI"AS;
j=t+1
t+k t+k
= 3 AHPYS = Y WA S~ S~ )
j=t+1 j=t-+1
and by continuity this equals
ﬁtASt — E(_E[t — E[)+St_1 — M(ﬁt — f[)*St_l
t+k ~ ~
+ lim ( N HPAS; - e(H — H)'S, — u(H]p, — H) ™S,
J=t+1
t+k t+k
= 3 SAHPYS = Y p(AHT) TS~ pHSek — T )
Jj=t+2 Jj=t+2

Notice that Hy € LO(Ri,ft,l) and by the induction hypothesis the above
limit belongs to ‘At—i-l t+k(Htv ¢). Consequently, ¢ € A;Hk(fl, e).

As previously, consider now the case 2 := {liminf | H}|| = oo} € F_1.
Suppose that P({2) > 0. For j =t¢,...,t + k define G} := H}'/||H}|| and
hp, == 1o /|| H{'||. Notice that G} € LO(RE, F;_1) and

t+k t+k t+k

Vg pig e, :ZG;'ASJ’* Z S(AGj)Jrijl - Z M(AGJ') Sj—1
j=t

A = o

H \* H \~
£ Gn—in Sl—M(Gn—n) S,l—‘an S, k—hn—)o
< toH H> : CoEe) e

Just as on (27, by Lemma there exists an increasing sequence of integer-
valued, F;_j-measurable stopping times o, such that G7" is convergent a.s.

on (w)(

on (25, and for almost all w € 2, the sequence G, w) is a convergent sub-
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sequence of G}'(w). Define Gy = limy_o0 G7" and notice that the sequence
t+k t+k t+k
Y GTAS =) e(AGT)TS =Y WAGT) TS 1 —pG Stk —ha,
j=t+1 j=t+1 j=t+1
is convergent and its limit equals

t+k
Tim. ( 3" GInAS; — (G — G TSy — (G — G 7S
j=t+1
t+k t+k
— 3 EAGT) S~ Y W(AGT) TS 1 — pGYESien —han>.
J=t+2 Jj=t+2

By the induction hypothesis the above limit belongs to ‘At++1 t+k(ét’ ¢) and fi-

nally limp, 00 0, € A::t+k (0,e). Moreover lim,,_, Op g = limp oo @Z?+k
= 0. We can assume that this limit is of the form

t+k ~ t+k ~ t+k ~ ~ _
Y GAS; =Y e(AGH TS =Y w(AG) St — pGrakSiar —h =0
= j=t J=t
where AG; = G;. We get the equality
t+k t+k t+k

ZGAS Z (AG;)TS;- 1—ZMAG Sj—1 = 1GyikSen = h

where h € L +(-7:t+k)~ From the absence of arbitrage we have

t+k t+k ) t+k ) }
Y GAS; =Y e(AG) TS =D AG)) T Sj1 = pGrirSik =0
' j=t j=t
on {25. Notice that
t+k t+k ) t+k ) i
D GiAS =Y MAG)TSj1 = u(AG))”Sjo1 = pGriSit,
= j=t j=t
t+k t+k . t+k . 3
> G;AS; — ZE(AGj)JrSj_l - Z/QL(AGj)fsj_l — UGk Si4r = 0.
j=t j=t j=t

Using once again the fact that A7 (X, ) N LY (Fipx) = {0} we can replace
the inequality by an equality. Hence Et+k ZZ 1 (A = EZ)(AG’)JFS; ., =0.
Because S;_1 has strictly positive components we obtain (AG;)“‘ =0, P-a.s.,

on {2 forall j =t,...,t +kand ¢ =1,...,d. Hence in particular Gy =0,
which contradicts the fact that ||G¢|| = 1. It follows that P({22) = 0.
As Aft(O, e) = A/ (g, 1), this ends the proof of closedness.
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(b)=(c). Notice that Af (e, u) N LY = {0} for any e > X by Lemma

(¢c)=(d). Fix any ¢ > A. Notice that for any random variable 7 there
exists a probability measure P’ ~ P such that dP’/dP € L> and n € L*(P’).
Property (c) is invariant under equivalent change of probability. This allows
us to assume without loss of generality that all S; are integrable. Define A¢ :=
.A; (g,p) N L', which is a closed, convex cone in L. Since A°N LY = {0}, by
Lemma there exists a probability measure Q ~ P such that dQ/dP € L
and Eg& < 0 for any £ € A%, in particular for

&= Z+1(ST S) &i t+1S /Lng—i—lS%“a t=0,....,7 -1,
where Hyyp = (0,...,14,...,0), P-as.,, A € F; and the value 14 is in the
ith position. This means that at time ¢ if the event A holds we buy the ith
share at the price S} and liquidate the portfolio at time 7'. Hence

Eo[(Sh — S} — S} — 1iS%)1.4] < 0.
Since (1—p;)Eg(S514) < (1+€;)Eq(Sila) fori=1,...,dand any A € F,
we have
(1—pi)Eg(Sh | Fr) < (1+e)Eo(S; | Fi) = (14¢;)S; fort=0,...,T—1.
Define S = (S;)_, by S; := (1 — u)Eg(Sr | Fi) and notice that (S,Q) is a
right-sided e-consistent price system (e-CPS™).
(d)=(e). Trivial. =

3. Further theorems and examples

COROLLARY 3.1. The implications (a)=(b)=(c)=(d)=-(e) are true
where:

(a) Az(A p) VLY = {0}; o
b) AL\, ) N LY = {0} and AL (N, e) = A% (N, €) for any e > p;

iy
T
(b) Aj

(c) Af(\,e)N LY = {0} for any e > p;
(

(e

d) for any e > u there exists a A\-CPS™ (S,Q) with dQ/dP € L*;
) for any € > u there exists a A\-supCPS™ (S, Q) with dQ/dP € L™.

Proof. Notice that in our model when we buy some shares we must sell
them up to time T, so using analogous arguments to the proof of Theorem
we get the theorem for transaction costs € > . =

REMARK 3.2. Notice that the conditions (d), (e) of Corollary mean
that there exists a A-CPS™ (A-supCPS™) in the model with transaction cost
vectors A for buying and € € (u, 1) for selling.

By Theorem [2.I] and Corollary [3.I] we obtain a straightforward corollary.
COROLLARY 3.3. ({NA.]) = IA-CPST.
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The theorem below gives a sufficient condition for the absence of arbi-
trage.

THEOREM 3.4. Let (S,Q) be a (A p)-supCPS and define Rf =
{(H-S)r | H€ Py} Then Rj N LY = {0} and we have the absence of
arbitrage in our model, i.e. AL.(\, u) N LY. = {0}.

LEMMA 3.5. Let R;’b = {(H-S)r | H € Py and H is bounded}. The
condition R}, N LY = {0} is equivalent to R;’b N LY = {0}.

Proof. Notice that the condition R N LY = {0} is equivalent to the

absence of arbitrage for any one-step model, i.e. {nAS; | n € L% (F—1)} N
L ={0}foranyt=1,...,T (see e.g. [KSaf, Chapter 2.1.1]). Hence assume
that there exists Hy € L9 (F;—1) satisfying

(Ay) HiAS; >0, P-as., and P(H;AS; > 0) > 0.

It is enough to show that there exists Hy € LY (F;—1) which is bounded and
satisfies (A4)). One can take

2 {Ht/IHtII, Hy #0,
Ht =
0, H, = 0.

It is also possible to use the arguments from [KSaf, Chapter 2.1.1]. Define
Hi" = Hil{g, <n)- Then there exists a sufficiently large n € N such that
H]' satisfies (A4)). =

Proof of Theorem . By Lemma it is enough to prove that RJT“b N
L% = {0}. Let z = (H-S)r € RF* N LY. Then (H - S)7 > 0 and in
particular H is a bounded strategy. We show that Eg(H - S)r < 0. Us-
ing the assumption that S is a Q-supermartingale and taking into account
shortsale restrictions we get EQ(HtAS't | Fi—1) = HtE@(AS't | Fiz1) < 0.
Consequently, Eg(H - S)p < 0. Hence z = (H - S)7 = 0, Q-a.s., and from
the equivalence of measures x = 0, P-a.s.

We now show that AL (X, 1) N LY = {0}. Take any & € AL (A, pu) N LY.
Then

T T
0<E<—Y AHS 1+ (1— p)HpSy — > AAH) TS
t=1 t=1
T

- Z ,UJ(AHt)_Stfl.

t=1

Notice that —p; S} < 5’; — S8 < N\SE Pas., for any t = 0,...,T and
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i=1,...,d. Hence

T T T
§< =Y AHS, 1+ (1— pw)HrSr =Y MAH) TS 1 =) u(AH) ™S4
t=1 t=1 t=1

T T T
< =) AHS o+ HpSr+ > MAH) S+ ) p(AH) ™S

t=1 t=1 t=1

T T

— Y MAH)TSi1 = > w(AH;) " S;—1 = (H - S)r.
t=1 t=1

Due to the condition R N LY = {0} we get (H - S)r = 0, P-a.s., and hence

£E=0,P-as. =

LEMMA 3.6. Assume that the process (xi"“):{:l 1s a Q-supermartingale
with respect to a measure Q ~ P. Then there exists a stochastic process
S = (Sp)E, such that (S,Q) is a \-CPS*. Moreover, there is no arbitrage
in the model, i.e. AL(\, ) N LY = {0}.

Proof. Let Sy := (1 — u)Eg(Sy | Fi) for t =0,...,T. We show first that
the process S = (S’t);‘rzo is a \-CPS™. It is enough to take a strategy where
at time t < T we buy one share S} and sell it at time 7. Then for any
1 =1,...,d taking into account that (xt)tT:l is a Q-supermartingale we have

Eg(vr | Fi) = Eo(St — 8t — \iS; — it | Fi) = (S; = S;) = MiS; < 0.
Clearly Sis a Q-martingale.
Now we show the absence of arbitrage by induction on 7. Notice that

there exists a A-CPS™ of the form constructed above. Let T'= 1 and ¢ €
AT (A, 1) N LY (F1). Then
0 < f < xIr] = Hl(Sl - SO) - )\Hlso —qusl = Hl(l - ,u)Sl - Hl(l +)\)So.
From the form of A-CPS* we have S} < (14 \)S§ and Si = (1 — y;)S} for
i=1,...,d. Hence
EQ(J}l) S E@(HlAgl) S 0.

Finally £ = 0, Q-a.s., and from the equivalence of measures £ = 0, P-a.s.

Now let T > 1 and AL _ (A, p) N LY (Fr_1) = {0}. We show that
AL\ ) N LY (Fr) = {0}. Take any & € AL(A\ p) N LY (Fr). We have
0 < ¢ <z and hence

0 < Eg(&|Fr-1) < Eg(ar | Fr-1) < xr-1.

Notice that x7_1 > 0, P-a.s. From the absence of arbitrage in the model
with time horizon T' — 1 we get zp_; = 0, P-a.s., and Eg(§|Fr-1) = 0,
P-a.s. Hence from the equivalence of measures Eg(¢ | Fr—1) =0, Q-a.s., and
consequently Fg{ = 0. Finally { =0, P-a.s. =
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EXAMPLE 3.7. Notice that the existence of a \-CPS™T is not a sufficient
condition for the absence of arbitrage. Consider the following market. Let
T:2,d:1,)\:,u<1/3and50:1, S1 =1+ 14, 52:(1+)\>/(1—)\)
where A € F; and 0 < P(A) < 1. Furthermore, assume that Fy = {0, 2},
F1={0,A,02\ A, 2}. Notice that there exists a A-CPS™ in this model. We
construct it as in the proof of Theorem i.e. define Sy := (1—p)Eq(S2 | Fy)
where Q is a probability measure equivalent to P and ¢ € {0,1,2}. Here
Q can be any probability measure equivalent to P due to the fact that
(1 = NEg(S2|F1) = (1 — XN)Eg(S2|Fo) = 1+ A and the inequalities for
A-CPST are satisfied. On the other hand notice that there exists arbitrage
in the model. Define a strategy as follows: AH; = Hy =1 and AHy = —1 4.
Then

1 1
A +A>mﬂAza—3M1A

1—X 1—A
Finally Aj (A, p) N LY (F2) # {0} despite the existence of a A-CPST.

mé\’“:—l—)\+(2—2)\)]lA+<

REMARK 3.8. Actually due to Theorem [3.4] and the above example the
existence of a A-CPS™ does not imply the existence of a (A, u)-supCPS.

EXAMPLE 3.9. Letd=1,T=1,A=pand Sy =1,51 = (1+XN)/(1 = N)
+ 14 where A € F; and 0 < P(A) < 1. Let Fy = {0, 2}. Then a strategy in
the model is of the form H; = a, P-a.s., where a € R, by shortsale restric-
tions. Notice that for any transaction costs for buying shares € > A we have
the absence of arbitrage. Indeed,

14+ A
1—A

xi’A:H1A51—€H150—)\H151:(l< —1+]1A> — &a

=a((1—N\14+A—e).

On the other hand Af (X, u) N LY # {0}. It is enough to take a = 1. Then
AN
z7”" = (1= MN)14.

4. Super-replication problem. Since we do not have equivalent condi-
tions for the absence of arbitrage in our model, we only have some necessary
and sufficient conditions, and we cannot give an exact formula for the super-
replication price. In particular under the assumption of robust no-arbitrage
we have only an upper bound for this price.

DEFINITION 4.1. We say that C'is a contingent claim when C'is a random
variable, i.e. C € LY(Fr).
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Let us define the set of initial endowments which hedge the payoff of the
contingent claim C"

I'* =r+(C):={zeR|3H € Py: z+ )" (H) > C, P-as.}

and the sets
t={Q~P|3S:(5,Q)isa \-CPST},

Dt =D (C):={zr eR|VQe Q": ExC < z}.
Using similar arguments to those [KRS| we will prove the theorem below.
THEOREM 4.2. Assume that the model satisfies ({NA)). Then DT C ',

Proof. Notice that QT # () by Corollary Suppose that the inclusion
DT C I't fails, so there exists # € DT such that x ¢ I'*. Then C' — x
¢ AL(A\ p). The set AL (A, p) is a convex cone closed in probability (by
Theorem [2 u and Corollary . Notice that for any random variable n there
exists a probability measure P ~ P such that dP/dP € L* and 1 € L'(P).
Hence we can assume that C' is integrable with respect to P. The set AL\ )
is also closed in probability P. Set A} := A+()\ 1) N LY (P), which is a closed
convex cone in L' (P). Notice that A} N L1 (P) = {0} and C — 2 ¢ A since
by the Hahn-Banach separation theorem (see [Ru] for more details) there
exists 2z € L(P) such that

VE e AL Epzpé < Epzp(C — ).
As /1JTr is a cone we have Ez,£{ < 0 for any § € AJTF. Furthermore, for £ =0
we get Bz, (C' —x) > 0.
_ Now we show that 2z, > 0, P-a.s. Define A := {2z < 0} and suppose that
P(A) > 0. Taking the sequence &, := =\, 14 € A;F where \,, — 0o we obtain
E32,&, — oo, which contradicts the inequality Egz,&, < 0.
Normalizing we can assume that z; < 1 and ||z;|| = 1. Notice that

Q := z,P is a probability measure equivalent to P such that dQ/dP € L™
and Eg& <0 for any & € A}, in particular for

gi = Z—&—I(S'}_Sg) —)\1HZ+IS;—M@HZ+1S%~, t:O>7T_ 17
where Hy1 = (0,...,14,...,0), P-ass.,, A € Fy and 14 is in the ith position.
This means that at time ¢, if the event A holds we buy the ith share at the
price S} and liquidate the portfolio at time 7". Hence

Eq[(S7 — St = XiSt — piSp) 1) < 0.
Since (1 — w;)Eg(SH14) < (1 + N\)Eg(S{14) for i = 1,...,d and for any
A € F, all in all we have

(1— 1) Eg(Si | Fo) < (1+ M) Eg(Si | F) = (1+M\)Si  fort=0,...,T—1.
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Define S = (S;)_, by S; := (1 — u)Eq(Sr | Fi) and notice that (S,Q) is a
A-CPS*. Moreover Eg(C — ) = Ep(2,(C — x)) > 0, which contradicts the
fact that x € D", m

Let us now define the super-replication price
ps:=inf ' =inf{z eR|3IH € Py:x+ a:%“(H) > (C, P-as.}.
By Theorem we immediately get the following corollary.
COROLLARY 4.3. Assume that the model satisfies . Then

ps < sup EgC.
Qe+t

Proof. Notice that by Corollary [3.3| we have QT # () and DT C I'". u
As previously we can also define

QT :={Q~P|35:(S,Q) is a (\, u)-supCPS},

Dt ={zeR|VQe Q": EgC < z}.
LEMMA 4.4. Assume that there exists a (A, u)-supCPS. Then I't C Dt

Proof. Take any x € I'". Let (S,Q) be a (A, u)-supCPS. Then by the
definition of I'T and using the same arguments as in the proof of Theorem
[3.4] there exists a strategy H € P, such that

C<z+ay(H)<z+(H-9)r.
Notice that Eg(H - S)7 < 0. Hence for any Q € O we have EgC < z. =

Let us define @ := {Q ~ P | 35 : (5,Q) is (A, u)-CPS}. The following
corollary is straightforward.

COROLLARY 4.5. Assume that there exists a (A, p)-supCPS in the model.
Then SUPge &+ EqgC < ps. Moreover, if we assume that there exists a (X, p)-
CPS then

sup FgC < sup EgC <ps < sup EgC.
QeQ Qeo+ Qeot

Proof. Notice that I't € D*. In addition any (X, y2)-CPS is in particular

a (X, u)-supCPS and also a A-CPS™.
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