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ESTIMATION OF A SMOOTHNESS PARAMETER
BY SPLINE WAVELETS

Abstract. We consider the smoothness parameter of a function f € L(R)
in terms of Besov spaces B3  (R),

$*(f) = sup{s > 0: f € Bj o (R)}.

The existing results on estimation of smoothness [K. Dziedziul, M. Kucharska
and B. Wolnik, J. Nonparametric Statist. 23 (2011)| employ the Haar basis
and are limited to the case 0 < s*(f) < 1/2. Using p-regular (p > 1) spline
wavelets with exponential decay we extend them to density functions with
0 < s*(f) < p+ 1/2. Applying the Franklin—-Stromberg wavelet p = 1,
we prove that the presented estimator of s*(f) is consistent for piecewise
constant functions. Furthermore, we show that the results for the Franklin—
Stromberg wavelet can be generalised to any spline wavelet (p > 1).

1. Introduction
DEFINITION 1.1. Let f € L?(R). Then

$(f) =sup{s > 0: f € By o (R)}
is called the smoothness parameter of f, where by convention sup{@} = 0
and supq{(0, 00)} = oo.

For the definition of B3 , (R) see [HW], [W]. From the continuous em-
bedding
B! (R) C B (R)  for s1 > s2,

it follows that for any f € L?(R), either f belongs to all B3 (R) spaces, or
to none, or there exists s* = s*(f) such that f € B3 (R) for all 0 < s < s*
and f ¢ B3 (R) for all s > s*.
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Note that the smoothness parameter based on the Hélder—Zygmund space
B3, o was considered in [GN], [HN], [J]. It is essential in adaptive inference
[HN] considering an estimation of a density function f to test a nonpara-
metric hypothesis: Hy : s*(f) < t versus H, : s*(f) > t. To achieve that, one
needs a consistent estimator. In our discussion we show that there exists a
consistent estimator for the class of piecewise-smooth density functions.

We fix a scaling function ¢ and a wavelet v associated with ¢ which
form an r-regular multiresolution analysis (further denoted by r~-RMA). For
the definition see [M) Definitions 1 and 2, p. 21|. By [Dl Proposition 5.5.2],
1) satisfies the zero oscillation condition, i.e. there exists d > r such that

|2*¥(z)dz=0 for0<k<d,

(1.1) "

S () dx # 0.

R

In our paper we consider a special case of ~-RMA, namely a spline mul-

tiresolution analysis of order p (p-SMA). For a construction see [HW| Chap-
ter 4.2] or [W]. The multiresolution analysis, the wavelet and, finally, the
scaling function are constructed using the spline space of order p > 1. For
the convenience of the reader we recall the construction of the Franklin—
Stromberg wavelet for p = 1, denoted by S (see [W]). Let us define the
following subsets of R :

Z+:{1,2,...}, Zfz—Z+,
AOZZJFU{O}U%Z,, A = {1/2} U Ay,

where A ={ax:x € A} anda+ A= {a+z:2 € A}. Let V be a discrete
subset of R. Then we denote by S(V) the space of all functions f € L?(R)
continuous on R and linear on every interval I C R such that TNV = (. A
function S € S(A;) such that ||S||2 = 1 and S is orthogonal to S(Ap) is called
the Franklin—-Stromberg wavelet (see Figure . One of the main properties of
this spline wavelet is that, although it is supported on the whole R, it decays
exponentially at infinity, i.e. there are constants a > 0 and 8 > 0 such

(1.2) 1S(z)] < e~ for all z € R.

In the general case we denote by ¢” the scaling function and by P the
spline wavelet, where p > 2, which both have exponential decay with first
p — 1 derivatives at infinity [HW] Theorem 2.18|:

(1.3) 3 3 VD) <Ce M m=0,1,...,p— 1L
C>0 v>0 zeR

Note that, by (1.3), every p-SMA is a (p—1)-RMA. We treat p-SMA sep-
arately, because p-SMA has better approximation properties: we can char-
acterise the Besov space B3  (R) for 0 < s < p+ 1/2 [C, Theorem 9.3,
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N

Fig. 1. The Franklin-Stromberg wavelet

instead of 0 < s < p—1 (in the case of (p — 1)-RMA). The characterisation
with the use of p-SMA is done on the interval [0, 1], but it holds on R too.
Denote by Pj,f, where h > 0, the orthogonal projection of f € L?(R)
given by
Pyf(z) =\ Kn(z,y)f(y) dy
R
with the kernel K}, defined as follows:
1 T Y
K =— ~—k Z kK
kEZ
where ¢ is a scaling function. One can easily obtain the following proposition.
PROPOSITION 1.2. Let a p-SMA be given, where p > 1. Then
3 3 Vv |K1(z,y)] < Ce MY with ¢ = ¢P.
C>0 >0 z,yeR
Define
Qn = Pnjo — Ph.
By [M, Proposition 4, Section 2.9] we have the following characterisation
of Besov spaces with h = 277 j € Z. Let an r-RMA be given. Then a
function f belongs to B3  (R) for 0 < s <1 if and only if f € L?(R) and

(1.4) sup 27°|| Py f — Py-i fll2 = sup 27°[| Qg f |2 < oo.
70 §>0

Similarly, in view of the result of Ciesielski [C|, Theorem 9.2], we have
the characterisation of Besov spaces for a p-SMA: a function f belongs to
B3 (R) for some 0 < s <p+1/2if and only if f € L?*(R) and holds.

One can observe that the above characterisations are also true for any
0 < h <1, ie. a function f belongs to B3 ,,(R) for some 0 < s < r, resp.
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0 < s <p+1/2,if and only if f € L?(R) and
(1.5) sup h™°||Pyof — Pufllz = sup h™°||Qnfll2 < oo.
0<h<1 0<h<1

This is a consequence of the simple observation that
J 3 h=c-277
0<h<l 320 1/2<e<1
and

Qe2-i =0c0Q9-j 0 O1/cs where O-cf(x) = f(IL'/C)

2. Main results. Using the above characterisations one can obtain the
proposition given below. It is an extension of Theorem 1.1 from [DKW],
where all results are obtained only in the case of the Haar basis and for the
sequence h = 277,

All proofs of our results are postponed to Section

We set Py :={0 < h <1:|Qnfll2# 0}; we will write {hy € Pr}p2, — 0
to mean that hy € Py for k > 1 and limg_,o by = 0.

PROPOSITION 2.1. Let f € L*(R) and an r-RMA be given such that
0<s*(f) <r, or ap-SMA such that 0 < s*(f) < p+1/2. Then there exists
a sequence {7, € Pr}pe, — 0 such that

(21) (1) = Tim o, [Qn 2
and whenever {hy € Ps}e, — 0 then

2.2 * < liminf1 .
(2:2) s°(f) < liminflogy,, [|Qn, f]l2

Let X1, Xs,... be a sequence of independent identically distributed ran-
dom variables with density function f € L?(R). For every h > 0 and sample
size n(h) we define a density estimator by

Jrnny (@ ZKhl‘X

Let
Pr = {{hl €EPriZy = 0:hy < A2~ for some A > 0,

Jim tog, [Qu fl = 5°(£).

Note that by Proposition P7 is not empty.
The following theorem 1s an extension of Theorem 2.1 from [DKW]| and
proposes an estimator of the smoothness parameter.

THEOREM 2.2. Let a p-SMA or an r-RMA be given where the scaling
function ¢ has exponential decay. Let X1, Xo,... be a sequence of i.i.d. ran-
dom wvariables with density function f € L*(R) and 0 < s*(f) < p +1/2,



Estimation of a smoothness parameter by spline wavelets 313

resp. 0 < s*(f) <r. Then for {hi}32, € P},
(2.3) hlkigologhk | fh/2m(h/2) = Framn)ll2 = 8°(f)  a.s,

where n(hy) < h,;z(erl) for the p-SMA, while n(hy) =< h,;Q(TJrl/?) for the
r-RMA.

In [CD], Qnf is estimated with the help of empirical wavelet coefficients
with h = 277.

Note that the conditions of Proposition [2.1] and Theorem [2.2] hold for
the Franklin—Stromberg wavelet. We will prove that for that wavelet and
any piecewise constant function f the formula holds for every sequence
{hk S Pf}zozl — 0.

LEMMA 2.3. Let S be the Franklin-Stromberg wavelet (p = 1). Then
(2.4) v ] | S() dx) > M,
z€[0,1/2)U[3/2,2)

where
S(1)
24

LEMMA 2.4. With the same constants a, 5 as in the exponential decay
property of the Franklin-Stromberg wavelet (1.2 ,

B ozl

M:

(3 - 2\/5)‘ ~ 0.01415608.

v ‘OSOS du‘ <
z€eR >

We can immediately obtain the following corollary from Lemma [2.4]

COROLLARY 2.5. For any real numbers a1 < -+ < an and vi,...,0, €
R\ {0} and for each h > 0 and k € Z,

2.5 ’sz du‘ < Be=on,
i=1  a;/h—k
where
a;
5_7, U—Z\Uz’ 77—77]’]{@2)_1I<nzlgnh_k‘

A similar theorem for T—RMA with ¢ and v having compact support was
proved in [CD| with h =277,

THEOREM 2.6. Define the following functions on R:

(2.6) gol) = { 0 frsa,

1 otherwise,
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where a € R, and
(2.7) H = v1gq, +v29ay + -+ UnGa,,
where a; € R and v; € R\ {0}, i =1,...,n, satisfy
a<---<a, and vi+---4+v, =0.
Then H € L*(R) and s*(H) = 1/2. Furthermore, if we consider the Franklin—
Strémberg wavelet S, for the function H we have

(23) Jim logy, [Qn, ()2 = 1/2 = " (H)

for any {hy, € Pr}e, — 0.

Using the same techniques as in the proof of Theorems [2.2] and we
can obtain the following corollary.

COROLLARY 2.7. Let an SMA of order 1 be given and let X1, Xo,... be
a sequence of i.i.d. random variables with density function f € L*(R), given
by . Whenever {hy, € Pg}p2, — 0 is such that there exists A > 0 with
hi, < X27F for any k, then

(2.9) hlgglo logp, 1fn/2.n(he/2) = frpmnollz = 1/2=5"(f) a.s,

where n(hy) < hi*.

From Corollary [2.7]it follows that the above estimator of s*(f) is consis-
tent.

3. Extensions. Having the analogue of for spline wavelets 9P of
order p > 1, we can obtain Theorem and Corollary We consider the
Battle-Lemarié¢ wavelet of order p as an example of 1P (for the definition
see |Dl Subsection 5.4]). Using MATHEMATICA for every p > 1 we find
intervals Iy, I3, and a constant M, > 0 such that

3 (T1p — k1p) U (Izp — kop) = [0, 1)

k1p,kop€EZ

and
o0

’ S PP () da:‘ > M,,.

z€l1pUl2p o

Let Fp(z) = {7 ¢P(x) du.
We choose, for odd p =1, 3,5,
I, =[-1,-0.5), Iy =[1.5,2),
and for even p = 2,4, 6,

L, =[-0.5,-1), Iy =13,3.5),
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Fig. 2. The functions F},, p = 1,3, 5, obtained using MATHEMATICA

F,

—03F

Fig. 3. The functions Fy, p = 2,4, 6, obtained using MATHEMATICA

because the function F}, has nonzero values on Iy, Iz,. Furthermore, we ob-
serve that |Fp| is concave on those intervals. Thus, to find M), it is sufficient
to consider the values of |F,| at the ends of Iy, Iy, (see Table[l]).

Moreover, we can replace the function by a truncated power function
of order m < p, ie. (x —a)7, and by a linear combination of truncated
power functions g such that g € L“(R). Then, in the case of any spline
wavelet, the conclusion of Theorem holds with m + 1/2 instead of 1/2.
Analogously, we can convert Corollary 2.7] to the case of p-SMA and the
density function f being a linear combination of truncated power functions
of order m. Then in the conclusion we have m + 1/2 instead of 1/2.
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Table 1. Values of |F,| at the ends of Ip, I2p, p=1,2,...,6

o p 1 2 3 4 5 6

~15 — Joows6| - Joo02120] — [0.02311

—1 0.02918 | 0.02608 | 0.02347 | 0.03811 | 0.01559 | 0.04741
—0.5 004976 | — |0.10620| — [012602] -
15 004184 | — |0.09862| — |0.11281| -
002111 — [o001589| — [ooo148| -

— Joo0999 | — Joo2rs2| — [0.03363

35 — Joooraz| = Joowsro| —  [o0.01285

M, | 0.02111 | 0.00743 [ 0.01589 | 0.01579 | 0.00148 | 0.01285 |

4. Simulations. In this section we present the behaviour of the smooth-
ness parameter estimator . Following the conclusions of the previous
section, we use the scaling function ¢! associated with the Battle-Lemarié
wavelet of order 1 to construct the estimator. To obtain values of ¢! we use
linear interpolation between dyadic discretization points.

2.0

0.5

0.2 0.4 0.6 0.8 1.0

Fig. 4. The density function f (4.1)

o o
0.6 M .
0.4r ) ) ) ) ) )
0 I 2 3 4 s 6
Fig. 5. Simulation results for the estimator of s*(f) for K =1,...,6 (the experiment was

repeated seven times)
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We focus on the case where hy = 27% and n(hg) = 2%, k > 1. Data
samples are generated from the following piecewise constant density function:
(4.1)  f=0510.9 + 1.51(0.2,04 + 0.751(0.4,0.6] + 2L(0.6,0.8] T 0-251(0.8,1]

where 14 is the characteristic function of the set A. The true value of the
smoothness parameter for f is s*(f) =1/2.

To better illustrate the behaviour of the proposed estimator we repeated
the simulation experiment seven times. The results are shown in Figure
The simulations were limited to & < 6, because of excessive time needed to
perform computations for k = 7.

5. Proofs

5.1. Proof of Proposition For all 0 < s < s*(f) by (1.5 we have

3 v hQnfll2 < D.
D>0 h>0

Hence
(5.1) logy, [|@Qnfll2 > log, D +s  for h € Py.
Then for every {h; € Pr}p2, — 0,

liminflogy, [|Qn, fll2 >s for s < s*(f).
hk—>0

SO
h]gn%floghk 1Qn, fll2 = s*(f)

For all s*(f) < s < r there exists h = h(s) € Py such that

R Qnfll2 > 1.
Then

(52) log 12n 2 < 5.
Hence for s; \, s*(f) we have

}Ll(rsfjl)lgg logp(s;) [|@n(s;) fll2 < s*(f). =

5.2. Proof of Lemma We can see that the function S is decreasing
on Iy = [0,1/2) and on I, = [3/2,2). For F(z) = {°S(x)dx we have
F'(z) = —S(z). Since F’ is increasing on I; and on Iz, F is convex on [
and on 5. From the definition it follows that

sup F(z) = max{F(0), F(1/2), F(3/2), F(2)}
xel1Ul>
5(1)

= F(1/2) = = (3~ 2V/3) < 0.
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Thus, |F| is concave on I; and on Iy and achieves its infimum at the point
1/2. Moreover,

(5.3) v ‘ | S() dm) > M,
z€[0,1/2)U[3/2,2)

where
S(1)

M =
24

(3 — 2%5)’ ~ 0.01415608.
The constant M is calculated with the aid of a computer. m

5.3. Proof of Theorem First, we need to estimate the quantity

oy~ PUHIE = § -5 (D1, X)) — B, X)) do
R =1

I
3| =
WE

V[Kn(z, X)) — EKy (2, X)) da
i=1R

| o

+ 5 (Kn(w, X)) = EKy (2, X)) (Kp (2, Xpn) — EKy (2, X)) da

m<IR

3

= Ih,n,2 + Ih,n,3‘

LEMMA 5.1. With the above notation:

16C*
2n3h2’

3204
’}/2712 h2 ’

3. Varlp o <
4. Varlp 3 <

where the constant C' is from the exponential decay condition and n = n(h).

Proof. Set Y, ; = Ky(z, X)) — EKy(z, X;). We can see that EY,; = 0.
1. We have

Elypo = E<nl2 > VKn(x, Xi) — EE (2, X)) dm)
i=1R
= B( {[Kn(e. X))~ BEy (e, X)) d)
R

n
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IN

%E( | K7 (2, x1) dx)
R

= % S S K (2, u) f(u) du dx

RR
Cr2
< e S S e~ le/h=u/hl ¢ () du da
" RR
Cc? 9 C? Cc?
= —27[t—u/h]| - =
nhISMS{e dtf(u)du ynhéf(u)du e

2. From the independence of X,,, and X;, m # [, one obtains

2
Elnns = = B(Y [ YoiYomdz)
m<IR

2
== >V EY, EY, pmdz = 0.
m<lR

3. Using (a + b)? < 2(a? + b%) and Jensen’s inequality, we have

Var(Ipn2) = ZVar(SY%id:U)

= E Var (é{YxJ da:)

IN

IN

IN

1 2 2 1 2 2
$E< S Y$71 d(L‘) = ﬁE( S S YLI:,IYy,l d.’L‘ dy)
R RR

% V\ B[K (2, X1) — EEy (2, X1)*[Kn(, X1) — EKp (2, X1)]* do dy
RR

% |V Bl (2, X1) + (BEy(z, X0))?][K7 (2, X1) + (EKy (2, X1))?] do dy
RR

% J § BIEG (2, X1) K (y, X0)] + EKG (2, X1) (EEa(y, X1))?

RR
+ (EKh(x,Xl))QEK}QL(y,Xl) + (EKh(anl))2(EKh(y7X1))2 dr dy
% S S E[Kj(z, X1)Kj (y, X1)] da dy

RR

12
+ \\ ER (2, X1)EK} (y, X1) dudy = Ay + As.

RR
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Observe that As can be evaluated using item

12
Ar = < |V EKG(2, X)) EKG(y, X1) da dy
" RR
12
-3 S EK}(z,X1)dr S EK}(y,X1)dy
R R

12 C% (2 1204

R Y T

IN

Furthermore

A= 5 VB (@, X0 KR (v, X)) de dy
RR

= S VS B ) K ) () ey
n RRR

4
45 [ | [ ete/hmushi o/ b ) du di dy
n°h RRR
404
~2n3h2’

IN

which leads to
16C*
Val"lh,n,Q <A+ A< W

4. Recall that 5
Ih,n,3 = ﬁ Z S Ym,le,m dx,

m<IR
where
Yyi = Kin(z, X)) — EKp(z, X).
Hence
Var I = E(Inn3)* = (Elnng)” = E(Inn3)°
4
- E(ﬁ Z Z S S Yx>iYw7jYy,me7l dz dy)
i<j m<IRR
4
== > E( V) YeiYe Yy m Yy da dy) _
i<j m<l RR
Since the variables X,..., X,, are independent, it follows that if i # m or
j # 1 then

RR
So it is sufficient to consider the case where i = m and j = [.
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Using Jensen’s inequality and (a — b)? < 2(a? + b?), we obtain

E ( V) YoiYe Yy, da dy)
RR

= S SE((Kh(x X;) — EKp (%, X;))(Kn(y, Xi) — EKp(y, Xi)))

E(( n(e, Xj) — EKp(x, X;))(Kn(z, X;) — EKy (2, X;))) de dy

( (K (e, X1) —~ EE (e, X)) (i (9. X:) ~ EE(y. X)) f () du) dir dy
|
R

IN

=]
RR
<]
RR
<a | | (R, u) + (B R, X0)2) (KR (y,u) + (EKn(y, X0))*)f (w) du de dy
RRR

(Kh — EKp(z, X)) (Kn(y,u) — EKp(y, X)) f (u) dudax dy

= 4| | V(K2 (@, W KR (y,0) + KRy, w)(EE (2, X,))?
RRR

+ Kj (2, u) (BK(y, X:))? + (EKn (2, X;))* (KR (y, X:))?)f (u) du dz dy

=4\ \[EK} (2, w)K}(y, u) + EKj (y, u)(EKp(z, X))
RR

+ BKG (2,u)(BER(y, X:))? + (EKp (2, X;))2(EKp(y, Xi))?] de dy

< 4\ \[EE} (2, u) K} (y,u) + BEK} (2, X;) EK} (y, X;)] da dy
RR

=4\ | K} (2, 0) K} (y,u) do dy + 12| | EK} (2, Xi) EK} (y, X;) dz dy.
RR RR

Using the results of items [I] and [3] we obtain

B(§ | V2i¥VyiYy dudy)
RR

< 48 (S S K2 (z,u)K?(y, u) d:vdy)f(u) du
R RR

+12| ( |\ EE} (2, X)) ER}(y, X:) doe dy)f(u) du
R RR

1604
< 2 n2
which leads to
4 n?-n 160* - 324
n4 2 2h2 T A2p2p2°
Having obtained the inequalities from Lemma we can finish the proof
of Theorem We present it in the case of »-RMA, because the proof for

Var Ih,n,3 <
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p-SMA is similar. Note also that the proof is analogous to that of [DKW]
Theorem 2.1].

To shorten notation, in the following we write fj, for fj (). We show
that there exists L > 0 such that for every € > 0, there are a natural number
N and subset Ay C Q with P(Ay) > 1 — ¢ such that

(5.4) V¥V |Ifae — Pu fl3(w) < 3LAZ.
k>N weAn

We recall that

e = P 113 = Tng n(h).2 + Tnn(ie) 3
= Tngn(h),2 = Elpgn(ng)2) T Elpyn(ng)2 + Thyn(hy) 3
We know that there exist constants M7, My > 0 such that
Mlh (2r+1) < n(hk) < Mgh (2T+1)

Using Lemma [5.1] we obtain

16C* 1 1 b1
Var[hk,n(hk)Q < Mig72 h2 h 3@ = LhkT 7
32C* 1 1 4
Var I, m(hy,)3 < M12’72 h2 h, 2(2r+1) < Lh;,
c* 2
T ’f‘
Elhk,n(hk),Q < leyh < Lh

From Chebyshev’s inequality, for every 0 < s < r,
P( Ty nhi)2 = Elngn(ig) 2] = Lh25) < L—1h4(rfs)+2r+1
P Iy .sl = Lh) < LU
So,

(0.9]
> P\ Iy ()2 = Elngn(g) 2l = LhE) < o0,
k=1

ZP(‘Ihk,n(hk),3| > Lhi¥®) < o0
k=1

Thus by the Borel-Cantelli lemma, for N large enough, P(Ay) is at least
1 — &, where

An={w: ¥ Unngu2 = Elunnzl < LA nynney ol < L'}

Therefore, the statement (5.4)) is true.
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For s < s*(f) < r take N large enough such that ||Qp, fll2 < h; for
k > N. Thus using the triangle inequality, we get, for w € Ay,

I fh 2 = frlle < A fnj2 — Prgj2fll2 + 1 fne — Pry fll2 + 1Qn, fll2
< (14 VBL(1+27%))h;.
Therefore,
hk@)gf logp, |1 fn./2 = frill2(w) > s.

For s* < s < r take N so large that ||Qp, f|l2 > hj for k> N. Let 6 > 0
be such that s* < s+ § < r. Then, from the triangle inequality for w € Ay,

| fry2 = full2 = =N fnps2 = P2 fllz = 1 fne — Py fll2 + 1@y fll2
> (1—V3BLhY(1+27+))hs,
which means that

limsuplogy, [|fn,/2 = faell2(w) < 5. m
k—o00

5.4. Proof of Lemma Let > 0. Using the exponential decay of
the Franklin-Stromberg wavelet ((1.2]), we obtain

’OSOS(u) du’ < O§)|S(u)\ du < ,Boxoe*a““du = ge*am.

If z <0, then by the zero oscillation condition (|1.1]),

[SOS(U) du‘ = ’jioS(u) du‘ < j}o |S(u)| du < B_gg;e_o‘“' du = ge‘”.

So finally,

IZR )OSS(U) du‘ < gg_a‘ﬂ‘ .

5.5. Proof of Corollary Using Lemma [2.4] we have
n o0 n oo /8 n
A ) — = |p—a(ai/h—k)
‘sz S S(u)du‘ SZ\M S S(u)du‘ azm\e
=1 a;/h—k =1 a;/h—k =1

< —wve )
«

where v =37 | |v;| and 7 = mini<j<p, |a;/h — k|. =
5.6. Proof of Theorem 2.6l Our aim is to show that

(5.5) 3 3 v hA<|QuH)|3 < hB.
A>0,B>0 ho>0 h<hg
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Let us choose an index [ such that v; = max;<;<p, |v;|. Then

Qu(E)IE = SUH. Sis)? = 3 (D {vit 5140

keZ keZ =1
n oo
<TLZZ Uzgamshk <”UZZZ(SS”’“ >2
keZ i=1 kEZ i=1 a;

:hm} ZZ( )2

i=1 k€Z a;/h—k

Using Lemma [2.4] we get

—2ala c? —2a
|Qn(H ||2<hm)l ZZ 2aai/h— k‘<2hnvl—z 2ak

1=1 k€Z k>0
C? 1 2(nv,C)?
_ 2,2 _
= 2hn”u a2 1—e2a h(l — e 20)q2’

Let us calculate the lower bound of ||Qp(H)||3. We have

1Qu(H)IZ =) _(H, Snx)*

kEZ
:hz< OSO viS(u)du+---+ OSO vnS(u)du)2
k€Z ay1/h—k an/hfk
:hz< OSO vS(u du+§:vz S du) .
k€Z a;/h—k i#Al a;/h—k

Let us now define § = a;/h — [a;/h]. Clearly, § € [0,1). If § € [0,1/2), then
for k = [a;/h] we have

lmB=a( | wS@du+u | S’
aj/h—k i#l a;/h—k
Zh(‘ OSO UZS(u)du‘—’Zvi OSO S(u)du’)g.
ar/h—k i#l a;/h—k

By (2.4) and Corollary

2
IQUDIE > (s — Fveetmmatls/nok) )
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where v = 3, |v;|. Note that

A ) I A e N O A . A )
h | h hil |k h h h
o _al |a_fal]| | _al
“|h h h hi|l = 1|h h ’
So,
5 - ’
IQuEDIB = (e — Soemettinslo/icaui-)
o)
2
- h<le _ éveae*a/hmin#z aial>
o)
_ h(UlM o ﬁle—a/hGZ)Q’
where
(5.6) B = éveo‘ 0; = min |a; — a;l.
a il
Similarly, for § € [1/2,1) and k = [a;/h] — 1 we obtain
oo n (o.0] 2
1Qn(H) |2 > h( | wsS@du+> v | S du) ,
ar/h—k i#l a;/h—k
and
a; a; @
A ] Y
h ’ ~|h h
Thus

2
lQu(H)]3 > h<v1M - ﬁve2aea/hminm<lwl>>
«

> h(oM — e w%)2,
where B = ave%‘. Finally,
1Qn(H)|13 > h(viM — Bae=/M)2,
So, by there exists hgy such that for h < hg,
QI3 = n 2L
We take

Thus, for h < hg we get
1 1 1 1
5 T 5 logn B <log, [Qn(H)l2 < 5 + 5 log, A. =
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