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ON THE SEMILOCAL CONVERGENCE OF A

TWO-STEP NEWTON-LIKE PROJECTION METHOD

FOR ILL-POSED EQUATIONS

Abstract. We present new semilocal convergence conditions for a two-
step Newton-like projection method of Lavrentiev regularization for solving
ill-posed equations in a Hilbert space setting. The new convergence condi-
tions are weaker than in earlier studies. Examples are presented to show
that older convergence conditions are not satisfied but the new conditions
are satisfied.

1. Introduction. Let X be a real Hilbert space with inner product 〈·, ·〉
and norm ‖ · ‖. Let U(x,R) and U(x,R), stand respectively, for the open
and closed ball in X with center x and radius R > 0. Let also L(X) be the
space of all bounded linear operators from X into itself.

In this study we are concerned with the problem of approximately solving
the ill-posed equation

(1.1) F (x) = y,

where F : D(F ) ⊆ X → X is a nonlinear operator satisfying 〈F (v)− F (w),
v − w〉 ≥ 0 for all v, w ∈ D(F ), and y ∈ X.

It is assumed that (1.1) has a solution, say x̂, and F possesses a locally
uniformly bounded Fréchet derivative F ′(x) for all x ∈ D(F ) (cf. [18]) i.e.,

‖F ′(x)‖ ≤ CF , x ∈ D(F ),

for some constant CF .
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In applications, usually only noisy data yδ are available, such that

‖y − yδ‖ ≤ δ.

Then the problem of recovering x̂ from the noisy equation F (x) = yδ is
ill-posed, in the sense that a small perturbation in the data can cause a
large deviation in the solution. To solve (1.1) with monotone operators (see
[12, 17, 18, 19]) one usually uses the Lavrentiev regularization method. In
this method the regularized approximation xδα is obtained by solving the
operator equation

(1.2) F (x) + α(x− x0) = yδ.

It is known (cf. [19, Theorem 1.1]) that (1.2) has a unique solution xδα
for α > 0, provided F is Fréchet differentiable and monotone in the ball
U(x̂, r) ⊂ D(F ) with radius r = ‖x̂ − x0‖ + δ/α. However the regularized
equation (1.2) remains nonlinear and one may have difficulties in solving it
numerically.

In [6], George and Elmahdy considered an iterative regularization
method which converges linearly to xδα, and its finite-dimensional realization
in [7]. Later in [8] they considered an iterative regularization method which
converges quadratically to xδα, and its finite-dimensional realization in [9].

Recall that a sequence (xn) in X with limxn = x∗ is said to be convergent
of order p > 1 if there exist positive reals β, γ such that for all n ∈ N,
‖xn − x∗‖ ≤ βe−γp

n
. If the sequence (xn) has the property that ‖xn − x∗‖

≤ βqn with some 0 < q < 1 then (xn) is said to be linearly convergent. For
an extensive discussion of convergence rates see [13].

Note that the method of [6]–[9] uses a suitably constructed majorizing
sequence which heavily depends on the initial guess and hence is not suitable
for practical considerations.

Recently, George and Pareth [10] introduced a two-step Newton-like
projection method (TSNLPM) of convergence order four to solve (1.2).
(TSNLPM) was realized as follows:

Let {Ph}h>0 be a family of orthogonal projections on X. Our aim in this
section is to obtain an approximation for xδα in the finite-dimensional space
R(Ph), the range of Ph. For the results that follow, we impose the following
conditions.

Let

εh(x) := ‖F ′(x)(I − Ph)‖, ∀x ∈ D(F ),

and pick {bh : h > 0} such that limh→0 ‖(I − Ph)x0‖/bh = 0 and limh→0 bh
= 0. We assume that εh(x) → 0 as h → 0 for all x ∈ D(F ). The above as-
sumption is satisfied if Ph → I pointwise and if F ′(x) is a compact operator.
Further we assume that εh(x) ≤ ε0 for all x ∈ D(F ), bh ≤ b0 and δ ∈ (0, δ0].
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1.1. Projection method. We consider the sequences defined itera-
tively by

yh,δn,α = xh,δn,α −R−1α (xh,δn,α)Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)],(1.3)

xh,δn+1,α = yh,δn,α −R−1α (yh,δn,α)Ph[F (yh,δn,α)− f δ + α(yh,δn,α − x0)],(1.4)

where Rα(x) := PhF
′(x)Ph + αPh and xh,δ0,α := Phx0, to obtain an approx-

imation for xδα in the finite-dimensional subspace R(Ph) of X. Note that
the iterations (1.3) and (1.4) are the finite-dimensional realizations of the
iteration (1.3) and (1.4) in [16]. In [10], the parameter α = αi was chosen
from some finite set

DN = {αi : 0 < α0 < α1 < · · · < αN}
using the adaptive method considered by Perverzev and Schock [17].

The convergence analysis in [10] was carried out using the following
assumptions.

Assumption 1 (cf. [18], Assumption 3). There exists a constant
k0 ≥ 0 such that for every x, u ∈ D(F ) and v ∈ X there exists an el-
ement Φ(x, u, v) ∈ X such that [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v) and
‖Φ(x, u, v)‖ ≤ k0‖v‖ ‖x− u‖.

Assumption 2. There exists a continuous, strictly increasing function
ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying:

(i) limλ→0 ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α ≤ cϕϕ(α) for all λ ∈ (0, a],

(iii) there exists v ∈ X with ‖v‖ ≤ 1 such that (cf. [14])

x0 − x̂ = ϕ(F ′(x̂))v.

In the present paper we extend the applicability of (TSNLPM) by weak-
ening Assumption 1 which is very difficult to verify (or does not hold) in
general. In particular, we replace Assumption 1 by the weaker and easier to
verify:

Assumption 3. Let x0 ∈X be fixed. There exists a constant K0 ≥ 0
such that for each x, u ∈ D(F ) and v ∈ X there exists an element
Φ(x, u, v) ∈ X depending on x0 such that [F ′(x)−F ′(u)]v = F ′(u)Φ(x, u, v)
and ‖Φ(x, u, v)‖ ≤ K0‖v‖(‖x− Phx0‖+ ‖u− Phx0‖).

Note that Assumption 1⇒ Assumption 3 but not necessarily vice versa:
at the end of the study we provide examples where Assumption 3 is satisfied
but not Assumption 1.

We also replace Assumption 2 by

Assumption 4. There exists a continuous, strictly increasing function
ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x0)‖ satisfying:
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(i) limλ→0 ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α ≤ ϕ(α) for all λ ∈ (0, a],

(iii) there exists v ∈ X with ‖v‖ ≤ 1 such that (cf. [14])

x0 − x̂ = ϕ(F ′(x0))v.

Remark 1.1. The hypotheses of Assumption 1 may not hold or may
be very expensive or impossible to verify in general. In particular, as is the
case for well-posed nonlinear equations, the computation of the Lipschitz
constant k0, even if this constant exists, is very difficult. Moreover, there are
classes of operators for which Assumption 1 is not satisfied but (TSNLPM)
converges.

In this paper, we extend the applicability of (TSNLPM) under smaller
computational cost. Let us explain how we achieve this goal.

(1) Assumption 3 is weaker than Assumption 1 (see Examples 5.1 and
5.2).

(2) The computational cost of the constant K0 is smaller than that of
the constant k0, even when K0 = k0.

(3) The sufficient convergence criteria are weaker.
(4) The computable error bounds on the distances involved (including

K0) are less costly.
(5) The convergence domain of (TSNLPM) with Assumption 3 can be

larger, since K0/k0 can be arbitrarily small (see Example 5.3).
(6) The information on the location of the solution is more precise.
(7) Note that Assumption 2 involves the Fréchet derivative at the exact

solution x̂ which is unknown in practice, while Assumption 4 depends
on the Fréchet derivative of F at x0.

The paper is organized as follows: In Section 2 we present the convergence
analysis of (TSNLPM). Section 3 contains the error analysis and parame-
ter choice strategy. The algorithm for implementing (TSNLPM) is given in
Section 4. Finally, examples are presented in the concluding Section 5.

2. Semilocal convergence. In order for us to present the semilocal
convergence of (TSNLPM) it is convenient to introduce some parameters:

Let

eh,δn,α := ‖yh,δn,α − xh,δn,α‖, ∀n ≥ 0.(2.1)

Suppose that

0 < K0 <
1

4(1 + ε0/α0)
,(2.2)

4δ0
α0

(1 + ε0/α0) < 1.(2.3)
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Define a polynomial P on (0,∞) by

(2.4) P (t) = (1 + ε0/α0)
K0

2
t2 + (1 + ε0/α0)t+

δ0
α0
− 1

4(1 + ε0/α0)
.

It follows from (2.3) that P has a unique positive root given in closed form
by the quadratic formula. Denote this root by p0.

Let

(2.5) b0 < p0, ‖x̂− x0‖ ≤ ρ,

where

ρ < p0 − b0,(2.6)

γρ := (1 + ε0/α0)

[
k0
2

(ρ+ b0)
2 + (ρ+ b0)

]
+
δ0
α0
,(2.7)

r :=
4γρ

1 +
√

1 + 32γρ(1 + ε0/α0)
,(2.8)

b := 4(1 + ε0/α0)K0r.(2.9)

Then by (2.2)–(2.9) we have

0 < γρ < 1/4,(2.10)

0 < r < 1,(2.11)

0 < b < 1.(2.12)

Indeed, by (2.4) and (2.12) we have γρ − 1/4 ≤ P (p0) = 0, so 0 < γρ < 1/4,
which is (2.10). Estimate (2.11) follows from (2.8) and (2.10). Moreover,
estimate (2.12) follows from (2.2) and (2.11). We also have

(2.13) γρ < r.

In view of (2.7) and (2.8), estimate (2.13) reduces to showing that 4γρ(1 +
ε0/α0) < 1, which is true by the choice of p0 and (2.4). Finally it follows
from (2.13) that

(2.14) 0 < γρ < 1.

Lemma 2.1 ([10, Lemma 1]). Let x ∈ D(F ). Then

‖R−1α (x)PhF
′(x)‖ ≤ 1 + ε0/α0.

Lemma 2.2 ([10, Lemma 2]). Let e0 = eh,δ0,α and γρ be as in (2.7). Then
e0 ≤ γρ.

The proofs below follow along the lines of the corresponding ones in [10].
However, they differ when the weaker Assumption 3 is used in place of
Assumption 1.
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Lemma 2.3. Suppose that (2.2), (2.3) and δ ∈ (0, δ0] hold and let As-
sumption 3 be satisfied. Then the following estimates hold for (TSNLPM ):

(a) ‖xh,δn,α − y
h,δ
n−1,α‖

≤ K0

2
(1 + ε0/α0)[3‖xh,δn−1,α − x

h,δ
0,α‖+ 5‖yh,δn−1,α − x

h,δ
0,α‖]e

h,δ
n−1,α,

(b) ‖xh,δn,α − x
h,δ
n−1,α‖

≤
{

1 +
K0

2
(1 + ε0/α0)[3‖xh,δn−1,α − x

h,δ
0,α‖+ 5‖yh,δn−1,α − x

h,δ
0,α‖]

}
eh,δn−1,α.

Proof. Observe that

(2.15) xh,δn,α − y
h,δ
n−1,α

= yh,δn−1,α − x
h,δ
n−1,α −R

−1
α (yh,δn−1,α)Ph[F (yh,δn−1,α)− f δ + α(yh,δn−1,α − x0)]

+R−1α (xh,δn−1,α)Ph[F (xh,δn−1,α)− f δ + α(xh,δn−1,α − x0)]

= yh,δn−1,α − x
h,δ
n−1,α

−R−1α (yh,δn−1,α)Ph[F (yh,δn−1,α)− F (xh,δn−1,α) + α(yh,δn−1,α − x
h,δ
n−1,α)]

+ [R−1α (xh,δn−1,α)−R−1α (yh,δn−1,α)]Ph[F (xh,δn−1,α)− f δ + α(xh,δn−1,α − x0)]

= R−1α (yh,δn−1,α)Ph[F ′(yh,δn−1,α)(yh,δn−1,α − x
h,δ
n−1,α)− (F (yh,δn−1,α)− F (xh,δn−1,α))]

+R−1α (yh,δn−1,α)Ph(F ′(yh,δn−1,α)− F ′(xh,δn−1,α))(xh,δn−1,α − y
h,δ
n−1,α)

=: Γ1 + Γ2.

Note that

‖Γ1‖ =
∥∥∥R−1α (yh,δn−1,α)Ph

1�

0

[F ′(yh,δn−1,α)− F ′(xh,δn−1,α + t(yh,δn−1,α − x
h,δ
n−1,α))]

× (yh,δn−1,α − x
h,δ
n−1,α) dt

∥∥∥..

Using now Assumption 3 for x = xh,δn−1,α + t(yh,δn−1,α − x
h,δ
n−1,α), u = yh,δn−1,α,

v = xh,δn−1,α − y
h,δ
n−1,α, x0 = xh,δ0,α we get

(2.16) ‖Γ1‖ ≤
K0

2
(1 + ε0/α0)[‖xh,δn−1,α − x

h,δ
0,α‖+ 3‖yh,δn−1,α − x

h,δ
0,α‖]e

h,δ
n−1,α

the last step follows from Assumption 3 and Lemma 2.1. Similarly,

(2.17) ‖Γ2‖ ≤ K0(1 + ε0/α0)[‖yh,δn−1,α − x
h,δ
0,α‖+ ‖xh,δ0,α − x

h,δ
n−1,α‖]e

h,δ
n−1,α.

So, (a) follows from (2.15)–(2.17). And (b) follows from (a) and the triangle
inequality

‖xh,δn,α − x
h,δ
n−1,α‖ ≤ ‖x

h,δ
n,α − y

h,δ
n−1,α‖+ ‖yh,δn−1,α − x

h,δ
n−1,α‖.
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Theorem 2.4. Under the hypotheses of Lemma 2.3 the following esti-
mates hold for (TSNLPM ):

eh,δn,α ≤
K0

2
(1 + ε0/α0)[5‖xh,δn,α − x

h,δ
0,α‖+ 3‖yh,δn−1,α − x

h,δ
0,α‖]‖y

h,δ
n−1,α − x

h,δ
n,α‖

≤ b2eh,δn−1,α ≤ b
2neh,δ0,α ≤ b

2nγρ.

Proof. We have

yh,δn,α − xh,δn,α
= xh,δn,α − y

h,δ
n−1,α −R

−1
α (xh,δn,α)Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)]

+R−1α (yh,δn−1,α)Ph[F (yh,δn−1,α)− f δ + α(yh,δn−1,α − x0)]

= xh,δn,α − y
h,δ
n−1,α −R

−1
α (xh,δn,α)Ph[F (xh,δn,α)− F (yh,δn−1,α) + α(xh,δn,α − y

h,δ
n−1,α)]

+ [R−1α (yh,δn−1,α)−R−1α (xh,δn,α)]Ph[F (yh,δn−1,α)− f δ + α(yh,δn−1,α − x0)]

= R−1α (xh,δn,α)Ph[F ′(xh,δn,α)(xh,δn,α − y
h,δ
n−1,α)− (F (xh,δn,α)− F (yh,δn−1,α))]

+R−1α (xh,δn,α)Ph[F ′(xh,δn,α)− F ′(yh,δn−1,α)](yh,δn−1,α − x
h,δ
n,α)

=: Γ3 + Γ4.

Analogously to the proof of (2.16) and (2.17) one can prove that

‖Γ3‖ ≤
K0

2
(1 + ε0/α0)[3‖xh,δn,α − x

h,δ
0,α‖+ ‖yh,δn−1,α − x

h,δ
0,α‖]‖x

h,δ
n,α − y

h,δ
n−1,α‖,

‖Γ4‖ ≤ K0(1 + ε0/α0)[‖xh,δn,α − x
h,δ
0,α‖+ ‖yh,δn−1,α − x

h,δ
0,α‖]‖x

h,δ
n,α − y

h,δ
n−1,α‖.

Now

eh,δn,α ≤
K0

2
(1 + ε0/α0)[5‖xh,δn,α − x

h,δ
0,α‖+ 3‖yh,δn−1,α − x

h,δ
0,α‖]‖x

h,δ
n,α − y

h,δ
n−1,α‖

≤ K0

2
(1 + ε0/α0)(8r)

K0

2
(1 + ε0/α0)(8r)‖xh,δn−1,α − y

h,δ
n−1,α‖

≤ b2‖xh,δn−1,α − y
h,δ
n−1,α‖ ≤ b

2neh,δ0,α ≤ b
2nγρ.

This completes the proof of the theorem.

Theorem 2.5. Suppose that the hypotheses of Theorem 2.4 hold. Then
the sequences {xh,δn,α}, {yh,δn,α} generated by (TSNLPM ) are well defined and
remain in U(Phx0, r) for all n ≥ 0.

Proof. Note that by Lemma 2.3(b) we have

‖xh,δ1,α − Phx0‖ = ‖xh,δ1,α − x
h,δ
0,α‖ ≤ [1 + (1 + ε0/α0)(K0/2)(8r)]γρ(2.18)

≤ (1 + b)γρ ≤
1− b2

1− b
γρ < r,
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i.e., xh,δ1,α ∈ U(Phx0, r). Again note that from (2) and Theorem 2.4 we get

‖yh,δ1,α − Phx0‖ ≤ ‖y
h,δ
1,α − x

h,δ
1,α‖+ ‖xh,δ1,α − Phx0‖

≤ [1 + (1 + ε0/α0)4K0r + ((1 + ε0/α0)4K0r)
2]γρ

≤ (1 + b+ b2)γρ ≤
1− b2

1− b
γρ < r,

i.e., yh,δ1,α ∈ U(Phx0, r). Further by (2) and Lemma 2.3(b) we have

‖xh,δ2,α − Phx0‖ ≤ ‖x
h,δ
2,α − x

h,δ
1,α‖+ ‖xh,δ1,α − Phx0‖

≤ (1 + b)γρ + (1 + b)γρ = 2(1 + b)γρ < r

and

‖yh,δ2,α − Phx0‖ ≤ ‖y
h,δ
2,α − x

h,δ
2,α‖+ ‖xh,δ2,α − Phx0‖

≤ b4γρ + 2(1 + b)γρ

≤ b2γρ + 2(1 + b)γρ

≤
[

1− b3

1− b
+

1− b2

1− b

]
γρ

(since b < 1)

<
2γρ

1− b
< r

by the choice of r, i.e., xh,δ2,α, y
h,δ
2,α ∈ U(Phx0, r). Continuing this way one can

prove that xh,δn,α, y
h,δ
n,α ∈ U(Phx0, r) for all n ≥ 0. This completes the proof.

Theorem 2.6. Suppose that the hypotheses of Theorem 2.5 hold. Then:

(a) {xh,δn,α} is a Cauchy sequence in U(Phx0, r) and converges to xh,δα ∈
U(Phx0, r).

(b) Ph[F (xh,δα ) + α(xh,δα − x0)] = Phy
δ.

(c) We have

‖xh,δn,α − xh,δα ‖ ≤
(1 + b)b2nγρ

1− b2

where γρ and b are defined by (2.7) and (2.9), respectively.

Proof. We have

‖xh,δn+i+1,α − x
h,δ
n+i,α‖ ≤ (1 + b)b0‖xh,δn+i,α − y

h,δ
n+i,α‖

≤ (1 + b)b‖xh,δn+i,α − y
h,δ
n+i−1,α‖

≤ (1 + b)b2‖xh,δn+i−1,α − y
h,δ
n+i,α‖

≤ (1 + b)b2(n+i)eh,δ0,α ≤ (1 + b)b2(n+i)γρ.
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So,

‖xh,δn+m,α − xh,δn,α‖ ≤
m−1∑
i=0

‖xh,δn+i+1,α − x
h,δ
n+i,α‖ ≤ (1 + b)b2n

m−1∑
i=0

b2i

= (1 + b)b2n
1− b2m

1− b2
γρ →

(1 + b)b2n

1− b2
γρ

as m → ∞. Thus xh,δn,α is a Cauchy sequence in U(Phx0, r) and hence it

converges, say to xh,δα ∈ U(Phx0, r). Observe that

‖Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)]‖ = ‖Rα(x0)(x
h,δ
n,α − yh,δn,α)‖

≤ ‖Rα(x0)‖ ‖xh,δn,α − yh,δn,α‖
= ‖(PhF ′(xh,δn,α)Ph + αPh)‖eh,δn,α
≤ (CF + α)eh,δn,α.

Now by letting n→∞ we obtain

Ph[F (xh,δα ) + α(xh,δα − x0)] = Phy
δ.(2.19)

This completes the proof.

Remark 2.7. (a) The convergence order of (TSNLPM) is four [10], un-
der Assumption 1. In Theorem 2.6 the error bounds are too pessimistic.
That is why in practice we shall use the computational order of convergence
(COC) (see e.g. [4]) defined by

% ≈ ln

(
‖xn+1 − xδα‖
‖xn − xδα‖

)/
ln

(
‖xn − xδα‖
‖xn−1 − xδα‖

)
.

The (COC) % will then be close to 4, which is the order of convergence of
(TSNLPM).

(b) Note that from the proof of Theorem 2.5 a larger r can be obtained
from solving the equation

[b4t+ 2(1 + bt)]γρ − rt = 0.

Note that this equation has a minimal root r∗ > r. Then r∗ can replace r
in Theorem 2.5. However, we have decided to use r which is given in closed
form. Using Mathematica or Maple we found r∗ in closed form. But it has a
complicated and long form. That is why we decided not to include r in this
paper.

3. Error bounds under source conditions. The objective of this
section is to obtain an error estimate for ‖xh,δn,α− x̂‖ under a source condition
on x0 − x̂.
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Proposition 3.1. Let F : D(F ) ⊆ X → X be a monotone operator

in X. Let xh,δα be the solution of (2.19) and xhα := xh,0α . Then

‖xh,δα − xhα‖ ≤ δ/α.

Proof. The result follows from the monotonicity of F and the relation

Ph[F (xh,δα )− F (xhα) + α(xh,δα − xhα)] = Ph(yδ − y).

Theorem 3.2. Let ρ < 2
K0(1+ε0/α0)

and x̂ ∈ D(F ) be a solution of

(1.1). Suppose Assumption 3, Assumption 4 and the assumptions in Propo-
sition 3.1 are satisfied. Then

‖xhα − x̂‖ ≤ C̃(ϕ(α) + εh/α)

where

C̃ :=
max{1 + (1 + ε0/α0)K0(2b0 + ρ), ρ+ ‖x̂‖}

1− (1 + ε0/α0)
K0
2 ρ

.

Proof. Let M :=
	1
0 F
′(x̂+ t(xhα − x̂)) dt. Then from the relation

Ph[F (xhα)− F (x̂) + α(xhα − x0)] = 0

we have

(PhMPh + αPh)(xhα − x̂) = Phα(x0 − x̂) + PhM(I − Ph)x̂.

Hence,

(3.1) xhα − x̂
= [(PhMPh + αPh)−1Ph − (F ′(x0) + αI)−1]α(x0 − x̂)

+ (F ′(x0) + αI)−1α(x0 − x̂) + (PhMPh + αPh)−1PhM(I − Ph)x̂

= (PhMPh +αPh)−1Ph[F ′(x0)−M +M(I −Ph)](F ′(x0) +αI)−1α(x0− x̂)

+ [(F ′(x0) + αI)−1α(x0 − x̂) + (PhMPh + αPh)−1PhM(I − Ph)x̂]

=: ζ1 + ζ2.

Observe that

(3.2) ‖ζ1‖ ≤
∥∥∥(PhMPh + αPh)−1Ph

·
1�

0

[F ′(x0)− F ′(x̂+ t(xhα − x̂))] dt (F ′(x0) + αI)−1α(x0 − x̂)
∥∥∥

+ ‖(PhMPh + αPh)−1PhM(I − Ph)(F ′(x0) + αI)−1α(x0 − x̂)‖

≤
∥∥∥(PhMPh + αPh)−1Ph

1�

0

[
F ′(x̂+ t(xhα − x̂))(Ph + I − Ph)

· φ
(
x0, x̂+ t(xhα − x̂), (F ′(x0) + αI)−1α(x0 − x̂)

)]
dt
∥∥∥+

εh
α
ρ;
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here and below εh := εh(x̂+ t(xhα − x̂)). So

‖ζ1‖ ≤ (1 + εh/α)K0

1�

0

[‖x0−Phx0‖+ ‖x̂+ t(xhα− x̂)−Phx0‖]

· ‖F ′(x0) +αI)−1α(x0− x̂))‖+
εh
α
ρ

≤ (1 + εh/α)K0[(b0 + ‖x̂−x0 +x0−Phx0‖)ϕ(α) +
1

2
‖xhα− x̂‖ρ] +

εh
α
ρ

≤ (1 + εh/α)K0[(2b0 + ρ)ϕ(α) +
1

2
‖xhα− x̂‖ρ] +

εh
α
ρ

and

(3.3) ‖ζ2‖ ≤ ϕ(α) +
εh
α
‖x̂‖.

The result now follows from (3.1)–(3.3).

Theorem 3.3. Let xh,δn,α be as in (1.4), and suppose the assumptions in
Theorems 2.6 and 3.2 hold. Then

‖xh,δn,α − x̂‖ ≤
1 + b

1− b2
γρb

2n + max{1, C̃}
(
ϕ(α) +

δ + εh
α

)
.

Proof. Observe that

‖xh,δn,α − x̂‖ ≤ ‖xh,δn,α − xh,δα ‖+ ‖xh,δα − xhα‖+ ‖xhα − x̂‖
so, by Proposition 3.1, Theorem 2.6 and Theorem 3.2 we obtain

‖xh,δn,α − x̂‖ ≤
1 + b

1− b2
γρb

2n +
δ

α
+ C̃(ϕ(α) + εh/α)

≤ 1 + b

1− b2
γρb

2n + max{1, C̃}
(
ϕ(α) +

δ + εh
α

)
.

Let

nδ := min

{
n : b2n ≤ δ + εh

α

}
,(3.4)

C0 :=
1 + b

1− b2
γρ + max{1, C̃}.(3.5)

Theorem 3.4. Let nδ and C0 be as in (3.4) and (3.5) respectively. More-

over, let xh,δnδ,α be as in (1.4) and suppose the assumptions in Theorem 3.3
are satisfied. Then

(3.6) ‖xh,δnδ,α − x̂‖ ≤ C0

(
ϕ(α) +

δ + εh
α

)
.

3.1. A priori choice of the parameter. Let ψ(λ) := λϕ−1(λ), 0 <
λ ≤ a. Then the choice

αδ = ϕ−1(ψ−1(δ + εh))
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gives the optimal order error estimate (see [10]) for ϕ(α) + (δ + εh)/α. So
the relation (3.6) leads to the following.

Theorem 3.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and suppose the
assumptions in Theorem 3.4 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ+ εh)) and
let nδ be as in (3.4). Then

‖xh,δnδ,α − x̂‖ = O(ψ−1(δ + εh)).

3.2. An adaptive choice of the parameter. As in [10], the parameter
α is chosen according to the balancing principle studied in [15], [17], i.e., it
is selected from some finite set

DN (α) := {αi = µiα0 : i = 0, 1, . . . , N}
where µ > 1, α0 > 0. Moreover, let

ni := min

{
n : b2n ≤ δ + εh

αi

}
.

Then for i = 0, 1, . . . , N, we have

‖xh,δni,αi − x
h,δ
αi ‖ ≤ C

δ + εh
αi

, ∀i = 0, 1, . . . , N.

Let xi := xh,δni,αi . In this paper we select α = αi from DN (α) for computing
xi, for each i = 0, 1, . . . , N.

Theorem 3.6 (cf. [18, Theorem 3.1]). Assume that there exists i ∈
{0, 1, . . . , N} such that ϕ(αi) ≤ (δ + εh)/αi. Let the assumptions of The-
orems 3.4 and 3.5 hold and let

l := max

{
i : ϕ(αi) ≤

δ + εh
αi

}
< N,

k := max

{
i : ‖xi − xj‖ ≤ 4C0

δ + εh
αj

, j = 0, 1, . . . , i

}
.

Then l ≤ k and ‖x̂− xk‖ ≤ cψ−1(δ + εh) where c = 6C0µ.

4. Implementation of the adaptive choice rule. The balancing
algorithm associated with the choice of the parameter specified in Theorem
3.6 involves the following steps:

• Choose α0 > 0 such that δ0 < α0 and µ > 1.
• Choose αi := µiα0, i = 0, 1, . . . , N.

4.1. Algorithm

1. Set i = 0.
2. Choose ni := min{n : b2n ≤ (δ + εh)/αi}.
3. Solve xi := xh,δni,αi by using the iteration (1.3) and (1.4).
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4. If ‖xi−xj‖ > 4C0(δ + εh)/αj , j < i, then take k = i−1 and return xk.
5. Else set i = i+ 1 and go to 2.

5. Example

Example 5.1. Let X = Y = R, D = [0,∞), x0 = 1 and define a
function F on D by

(5.1) F (x) =
x1+1/i

1 + 1/i
+ c1x+ c2,

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i+c1
is not Lipschitz on D. However Assumption 3 holds for K0 = 1.

Using the identity

(5.2) µi − µi0 = (µ− µ0)(µi−1 + µi−2µ0 + · · ·+ µi−10 )

for µ = x1/i, µ0 = x
1/i
0 and (5.1) we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 | =
|x− x0|

x
(i−1)/i
0 + · · ·+ x(i−1)/i

≤ |x− x0| for x ∈ [0,∞) and x0 = 1.

Hence, we get ‖F ′(x)− F ′(x0)‖ ≤ K0|x− x0|.

Example 5.2. We consider the integral equations

(5.3) u(s) = f(s) + λ

b�

a

G(s, t)u(t)1+1/n dt, n ∈ N.

Here, f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a
real number, and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = λu1+1/n,

u(a) = f(a), u(b) = f(b).

Problems of this type have been considered in [1]–[4].

Equations of the form (5.3) generalize equations of the form

(5.4) u(s) =

b�

a

G(s, t)u(t)n dt

studied in [1]–[4]. Instead of (5.3) we can try to solve the equation F (u) = 0
where

F : Ω → C[a, b], Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},
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and

F (u)(s) = u(s)− f(s)− λ
b�

a

G(s, t)u(t)1+1/n dt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ(1 + 1/n)

b�

a

G(s, t)u(t)1/nv(t) dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition
in Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0.
Then F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |λ|(1 + 1/n)

b�

a

x(t)1/n dt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,
or, equivalently, the inequality

(5.5)

1�

0

x(t)1/n dt ≤ L2 max
s∈[0,1]

x(s),

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider,
for example, the functions

xj(t) = t/j, j ≥ 1, t ∈ [0, 1].

If these are substituted into (5.5) then

1

j1/n(1 + 1/n)
≤ L2

j
, i.e. j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (5.5) is not satisfied in this case. However, Assump-

tion 3 holds. To show this, let x0(t) = f(t) and γ = mins∈[a,b] f(s), α > 0.
Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ ≤ |λ|(1 + 1/n) max
s∈[a,b]

∣∣∣ b�
a

G(s, t)(x(t)1/n − f(t)1/n)v(t) dt
∣∣∣

≤ |λ|(1 + 1/n) max
s∈[a,b]

∣∣∣ b�
a

Gn(s, t) dt
∣∣∣

where

Gn(s, t) =
G(s, t)|x(t)− f(t)|

|x(t)(n−1)/n + x(t)(n−2)/nf(t)1/n + · · ·+ f(t)(n−1)/n|
‖v‖
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and we used (5.2) for i = n, µ = x(t)1/n and µ0 = x0(t)
1/n. Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

b�

a

G(s, t) dt ‖x− x0‖

≤ K0‖x− x0‖,
where

K0 =
|λ|(1 + 1/n)

γ(n−1)/n
N and N = max

s∈[a,b]

b�

a

G(s, t) dt.

Thus Assumption 3 holds for sufficiently small λ.

Example 5.3. Let X = D(F ) = R, x0 = 0, and define a function F on
D(F ) by

F (x) = d0x+ d1 + d2 sin ed3x,

where d0, d1, d2 and d3 are given parameters. Then it can easily be seen that
for d3 sufficiently large and d1 sufficiently small, K0/k0 can be arbitrarily
small.
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