
APPLICATIONES MATHEMATICAE
39,2 (2012), pp. 137–142

Ryszard Zieliński (Warszawa)

OPTIMAL ESTIMATION OF HIGH QUANTILES
IN A LARGE NONPARAMETRIC MODEL

Abstract. “A high quantile is a quantile of order q with q close to one.”
A precise constructive definition of high quantiles is given and optimal esti-
mates are presented.

1. The problem. In practice one often has to assess the risk of large
but possibly rare losses and indicate thresholds for parameters in economic,
especially financial (e.g. value at risk), ecological (e.g. floods) or technological
(e.g. atomic power stations) systems. Due to insufficient real data it is rather
difficult to formulate an appropriate statistical model with a specified family
of heavy tailed probability distributions and a natural solution is to adopt
a suitable nonparametric approach. There are many nonparametric models
known in statistics and its applications. A simple and widespread example
is the statistical model with continuous distribution functions and finite first
and second moments. Another popular nonparametric model considered in
problems of estimating density functions is a model with distributions which
have densities satisfying some special conditions (e.g. bounded). We call
the statistical model with all continuous and strictly increasing (on their
supports) distribution functions the large nonparametric model. We denote
by F the family of all such distributions. Our problem consists in estimating
the quantile xq = F−1(q) of order q (with q close to one) of an unknown
distribution F ∈ F on the basis of a sample X1, . . . , Xn drawn from F .

The lack of information beyond the range of the sample makes it difficult
to estimate high quantiles. For an empirical distribution function Fn we have
Fn(x) = 0 for x < X1:n and Fn(x) = 1 for x ≥ Xn:n and it seems impossible
to estimate sufficiently low or sufficiently high quantiles. Typically different
tricks with extrapolation beyond the sample range are used, and different
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extrapolation ideas lead to a variety of estimates. See for example recent
results by Wang et al. (2010), Li et al. (2010) or an excellent short review in
Markovich (2007), chapt. 6, as well as the abundant references therein.

We shall restrict ourselves to estimating high quantiles in the large non-
parametric model without restrictions on tails of distributions. It is obvious
that what a high quantile is depends on the size n of the sample.

2. Basic facts on optimal estimates in the large statistical model.
The minimal complete sufficient statistic is the vector of order statistics
(X1:n, . . . , Xn:n) (Lehmann, 1983), hence we confine ourselves to estimates
of the form T (X1:n, . . . , Xn:n).

A specific property of the model is that if X is a random variable with
a distribution F ∈ F and g is any strictly monotone function then the dis-
tribution of the random variable g(X) also belongs to F , and if xq = xq(F )
is the quantile of order q of F then g(xq) is the quantile of order q of the
distribution of g(X). It follows that if T (X1:n, . . . , Xn:n) is an estimate of
the quantile xq of the distribution F of a random variable X, then, for every
monotone transformation g, T (g(X1:n), . . . , g(Xn:n)) should be a suitable es-
timate of the qth quantile of the distribution of g(X). Otherwise an estimate
that works well for quantiles of one distribution F ∈ F may be completely
unacceptable for another one. Formally, for any fixed x1 ≤ · · · ≤ xn, and for
every monotone transformation g, the estimate T should satisfy

T (g(x1), . . . , g(xn)) = g(T (x1, . . . , xn)).

The class T of estimates which satisfy this condition is identical with the
class of randomized order statistics:

T ∈ T iff T = XJ :n for a random variable J on {1, . . . , n}

(Uhlmann, 1963; Zieliński, 2009).
In the large nonparametric model F , a natural counterpart of the mini-

mum variance unbiased estimate is the maximum concentrated median-un-
biased estimate.

For the estimate T = XJ :n of the qth quantile xq(F ), with

P{J = j} = λj , λj ≥ 0,
n∑

j=1

λj = 1,

we have

PF {T ≤ xq(F )} = PF {Xj:n ≤ xq(F )} = PF {F (XJ :n) ≤ q)}

= P{UJ :n ≤ q} =
n∑

j=1

λjP{Uj:n ≤ q},
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where Uj:n is the jth order statistic from a sample of size n from the uniform
distribution on (0, 1).

Denote

πj(q) = P{Uj:n ≤ q} =
n∑

k=j

(
n

k

)
qk(1− q)n−k.

It follows that T is a median-unbiased estimate of the qth quantile xq(F ),
i.e. PF {T ≤ xq(F )} = 1/2 for all F ∈ F , iff λj , j = 1, . . . , n, satisfy

n∑
j=1

λjπj(q) =
1

2
, where πj(q) =

n∑
k=j

(
n

k

)
qk(1− q)n−k.

Note that a median-unbiased estimate exists iff π1(q) ≥ 1/2 ≥ πn(q).
Given q, the smallest n = n(q) for which a median-unbiased estimate exists
is n(q) = min{n : n ≥ − log 2/log(max{q, 1 − q})}. On the other hand,
given n, the order q of a quantile to be estimated without bias should satisfy
1− (1/2)1/n ≤ q ≤ (1/2)1/n.

A median-unbiased estimate T ∗ of the qth quantile xq(F ) is said to be
the most concentrated at xq(F ) if for all F ∈ F ,

PF {T ∗ ≤ t}
{≤ PF {T ≤ t} for t ≤ xq(F ),
≥ PF {T ≤ t} for t ≥ xq(F ),

for any other median-unbiased estimate T .

............
...
........
.......
........
.......
.......
.......
.
.......
.......
.
.......
.......
.
........
.......
........
.......
........
.......
........
.......

.........
......

............
...

...............
............... ............... ........

...................................................................
........
........
........
.......
........
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
........
.......
........
........
........
............
................................................................................................................................................................................CDF

xq

0.5

x
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xq

...............
.............
..
.........
......
........
.......
.........
......

...............
...............

...............
...............

............... ..............
........
........
.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
........
.......
....................................................................................................................................................................................................................................................................................................................

PDF

Estimate of xq with solid cdf and pdf is more concentrated than those with dashed ones.

Given q and n ≥ n(q), let k be an integer such that πk(q) > 1/2 >
πk+1(q). Let

λ∗k =
1/2− πk+1(q)

πk(q)− πk+1(q)
, λ∗k+1 = 1− λ∗k, λ∗i = 0 for i /∈ {k, k + 1}.

If πk(q) = 1/2 for some k = 1, . . . , n, put λ∗k = 1.
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Theorem 1. In the class of all median-unbiased estimates of the qth
quantile, XJ∗:n, where J∗ has the distribution (λ∗1, . . . , λ

∗
n), is the most con-

centrated one.
A proof is given in Zieliński (1988).

3. High quantile: definitions. We shall restrict ourselves to high quan-
tiles; it is easy to see that the theory may be easily applied to estimation of
low quantiles, i.e. quantiles of order q with q close to zero.

Definition 1. Given n, we say that xq is a high quantile if no me-
dian-unbiased estimate of xq exists, i.e. if q > q(n) = (1/2)1/n.

Definition 2. Given q, we say that xq is a high quantile if no median-un-
biased estimate of xq exists, i.e. n < n(q) = − log 2/log q.

Observe that if a median-unbiased estimate of xq exists then also the
maximally concentrated median-unbiased estimate exists so that the quantile
can be optimally estimated.

By the definitions above, for the order of a high quantile xq we have
q ≥ q(n) = (1/2)1/n (see Table 1).

Table 1

n 5 10 20 50 100
q(n) 0.8706 0.9331 0.9660 0.9863 0.9931
n 200 500 1000 2000 5000

q(n) 0.9966 0.9987 0.9993 0.9997 0.9999

On the other hand, for a given q, to construct a median-unbiased estimate
of the quantile xq a sample of size n ≥ n(q) is needed (see Table 2).

Table 2

q 0.9 0.95 0.99 0.999 0.9999 0.99999
n(q) 7 14 69 693 6932 69315

If q is close to one but n ≥ n(q), then the maximum concentrated median-
unbiased estimator for the quantile xq can be easily constructed as above and
xq is not a high quantile.

4. Optimal estimation of high quantiles. F transformation. If T
is an estimate of the qth quantile xq = xq(F ) of an unknown distribution
F ∈ F , then F (T ) may be considered as an estimate of the known value q.
The distribution of F (T ) is concentrated in the interval (0, 1) so that for
every F ∈ F the expectations EFF (T ) as well as the F -mean-square errors
EF (F (T )− q)2 exist.
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We say that T is an F -unbiased estimate of the qth quantile xq(F ) if
EFF (T ) = q for all F ∈ F . If T ∈ T then F (T ) is a pivot. For T ∈ T we
have

EFF (XJ :n) =
n∑

j=1

λjEUj:n =
1

n+ 1

n∑
j=1

jλj .

It follows that an F -unbiased estimate of the quantile of order q ∈ (0, 1)
exists in T iff for some λ1, . . . , λn,

1

n+ 1

n∑
j=1

jλj = q,

i.e. iff 1/(n+ 1) ≤ q ≤ n/(n+ 1). For the order q of high quantiles we have
q > q(n) > n/(n+ 1) so that no F -unbiased estimate exists.

Theorem 2. The high quantile estimate Xn:n is an estimate with uni-
formly minimum F -mean-square error EF (F (T )− q)2.

Proof. For the F -mean-square error of an estimate T ∈ T of the qth
quantile we have

FMSEn(q) = EF (F (XJ :n)− q)2 = E(UJ :n − q)2 =
n∑

j=1

λjE(Uj:n − q)2

=
n∑

j=1

λjΓ (n+ 1)

Γ (j)Γ (n− j + 1)

1�

0

(x− q)2xj−1(1− x)n−j dx

=
1

(n+ 1)(n+ 2)

n∑
j=1

j
(
j + 1− 2(n+ 2)q

)
λj + q2.

It follows that the optimal (λ∗1, . . . , λ
∗
n) is that for λj∗ = 1, λj = 0, j 6= j∗,

with j∗ that minimizes j(j + 1 − 2(n + 2)q). Observe that for q ≥
(n + 1/2)/(n + 2) we have j∗ = n so that for high quantiles with q ≥
q(n) = (1/2)1/n > (n+ 1/2)/(n+ 2), Xn:n is the optimal estimate.

The uniformly minimum mean square error estimate is Xn:n, with
FMSEn(q) given by the formula

FMSEn(q) =
n(n+ 1− 2(n+ 2)q)

(n+ 1)(n+ 2)
+ q2, q ≥ q(n).

Observe that, given n, FMSEn ↗ 1−n(n+3)/[(n+1)(n+2)] as q ↗ 1,
and FMSEn ↘ 0 as n↗∞, uniformly in q ≥ q(n).

5. A comment. For high quantiles in the large nonparametric model the
error of estimation is measured in terms of F (T )− q rather than T − xq(F ).
To assess the error in terms of T −xq(F ), for example the bias EFT −xq(F )
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or the mean square error EF (T − xq(F ))2, precise assumptions concerning
the tail of model distributions are needed; the problem is that for F ∈ F no
moments may exist. It seems that instead of imposing artificial conditions
on tails one could consider smaller nonparametric models, for example the
first order nonparametric model F1 = F ∩ {F :

	1
0 |F

−1(t)| dt < ∞} or the
second order nonparametric model F2 = F ∩ {F :

	1
0(F

−1(t))2 dt <∞}, i.e.
the models with all continuous and strictly increasing distribution functions
for which the first or the first and second moments exist.
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