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STABILITY OF SCHEDULING WITH
RANDOM PROCESSING TIMES ON ONE MACHINE

Abstract. We consider a strong NP-hard single-machine scheduling prob-
lem with deadlines and minimizing the total weight of late jobs on a single
machine (1 ‖

∑
wiUi). Processing times are deterministic values or random

variables having Erlang distributions. For this problem we study the toler-
ance to random parameter changes for solutions constructed according to
tabu search metaheuristics. We also present a measure (called stability) that
allows an evaluation of the algorithm based on its resistance to random pa-
rameter changes. Our experiments prove that random model solutions are
more stable than the deterministic model ones.

1. Introduction. Many problems related to the process of making de-
cisions are indeed issues of some scheduling problems. The relevant research
concentrates on deterministic models, in which the main assumption is the
explicitness of all parameters. Many effective approximation algorithms have
been elaborated to solve this type of problem, mostly NP-hard. They are
principally based on local optimization methods: simulated annealing, tabu
search and genetic algorithms. Solutions indicated by those algorithms are
only slightly different from the optimal ones. However, in practice, while
the process is running (according to the new schedule) it occurs frequently
that some of the parameters (for example the times needed to complete the
operations) differ from the initially adopted ones. If no possible solution for
stability occurs, the determined schedule can be wrong and is not acceptable.

In many applications, serious difficulties occur while indicating parame-
ters or when the data comes from inaccurate measurement equipment. Due to
short realization terms, short series and production elasticity, there are no
comparative data and no possibility to conduct experimental studies that
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would enable one to determine explicit values of certain parameters. Fur-
thermore, in many economy branches like tourism, agriculture, commerce,
building industry, etc., the processes that occur have random character by
their nature (they depend on weather, market conditions, accidents, etc.).
Making decisions in the conditions of uncertainty (lack of exact values of
parameters) becomes quotidian.

Scheduling uncertain data problems can be solved by using methods of
probability theory (Shaked and Shanthikumar [21], Zhou and Cai [25], Van
den Akker and Hoogeveen [1], [2], Vondrák [23], Dean [3]) or fuzzy set theory
(Prade [19], Ishii [6], Ishibuchi et al. [5], Itoh and Ishii [7]). They allow one
to take the uncertainty into account at the stage of construction of a math-
ematical model and directly in the algorithms constructed. The exactness of
such an algorithm is not determined according to a certain problem instance
(as in the deterministic data case), but with a certain family of randomized
examples, according to a certain probability distribution. We call the exact-
ness determined in that way algorithm stability (or, more generally, problem
solving stability).

In this paper we examine a scheduling problem on a single machine
with the latest possible processing times and cost minimizing for the be-
lated tasks. The delays needed to accomplish the tasks are deterministic or
random variables with Erlang distribution. In this case we study the resis-
tance to random parameter changes on solutions constructed according to
the tabu search metaheuristics. We also present a certain measure (called
stability) that allows one to evaluate the resistance of solutions to random
data perturbations.

The paper is organized as follows: in Sect. 2 we review the problem of
minimizing the number of late jobs with deterministic processing times. The
main elements of the tabu search method are described in Sect. 3. The next
two sections are the principal part of the paper. In Sect. 4 we study the
scheduling problem with non-deterministic task deadline times, and in the
next section we present a method of examining the stability of the algorithms.
The description of the computational experiments conducted is presented in
Sect. 6. Finally, we draw some conclusions in Sect. 7.

2. Problem definition and preliminaries. In this paper we consider
the scheduling problem on a single machine. The machine can perform only
one task at a time. For task i (i = 1, . . . , n), let pi, wi, di be: the processing
time, a weight function of costs and the deadline expected. If for a given
sequencing the deadline of task i exceeds di, the delay Ui is 1, if not, Ui
is 0. The problem of minimizing the total weight of late jobs (TWLJ) on a
single machine consists in finding a job sequence that minimizes the sum of
delay costs, i.e.

∑n
i=1wiUi. The problem can be written as 1 ‖

∑
wiUi, and
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though its formula is so simple, it is NP-hard (Karp [8]). Such problems have
been studied for quite long together with many variations, especially with
polynomial computational complexity.

For the problem 1 | pi = 1 |
∑
wiUi (all the processing times are identi-

cal) Monma [13] has presented an algorithm with O(n) complexity. Similarly,
for the problem 1 |wi = c |

∑
Ui (where the cost function factors are iden-

tical) there is the Moore algorithm [14] with O(n lnn) complexity. Lawler
[10] has adapted the Moore algorithm to solve the problem 1 | pi < pj ⇒
wi ≥ wj |

∑
wiUi. Problems with the earliest starting times compose another

group ri. Kise et al. [9] have proven that even the problem of late tasks mini-
mization (1 | ri |

∑
Ui without the cost function weight) is strongly NP-hard.

They have also presented a polynomial algorithm that has computational
complexity O(n2) for a particular example, the 1 | ri < rj ⇒ di ≤ dj |

∑
Ui

problem.
If a partial order relation is given on a set of tasks, the TWLJ problem

is strongly NP-hard even when the task realization times are unities (Garey
and Johnson [4]). Lenstra and Rinnooy Kan [12] have proven that if a partial
order relation is a union of independent chains, the problem is also strongly
NP-hard.

Only a few exact algorithms solving the TWLJ problem have been pub-
lished. They are based on the dynamic programming method (Lawler and
Moore [11] with O(nmin{

∑
pi,max{di}}) complexity, and Sahni [20] with

O(nmin{
∑
pi,
∑
wi, max{di}}) complexity) and on a limitation and divi-

sion method (Villarreal and Bulfin [22], Potts and Van Wassenhowe [17], [18]
and Wodecki [24]). The last one is a parallel algorithm.

The scheduling problem on a single machine can be formulated as follows:

The Problem. There is a set J = {1, . . . , n} of tasks that have to be
processed without interruptions on a machine that can work on one task at a
time. The task can start at time zero. For task i ∈ J let pi be the processing
time, di the expected deadline, and wi a cost function weight. We want to
determine a task sequence that minimizes the weight of late tasks.

For a given sequence let Ci be the date of accomplishing of task i ∈ J .
Then fi(Ci) = wiUi is the cost (penalty) of a late task, where

Ui =

{
0 if Ci ≤ di,
1 otherwise.

We have to determine a task sequence that minimizes

(2.1)
n∑
i=1

wiUi

Let Φn be the set of permutations of J . The cost of the permutation π ∈ Φn
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is defined as follows:

W (π) =
n∑
i=1

wπ(i)Uπ(i),

where Cπ(i) =
∑i

j=1 pπ(i) is the processing time of the task π(i) ∈ J . The
problem of minimizing the total weight of late jobs (TWLJ) boils down to
finding an optimal permutation π∗ ∈ Φn which satisfies

W (π∗) = min
π∈Φn

( n∑
k=1

wπ(i)Uπ(i)

)
.

Exact efficient algorithms to solve the TWLJ problem only exist when the
number of tasks does not exceed 50 (or 80 in a multiprocessor environment
[24]). That is why in practice we use approximate algorithms (essentially the
correction type).

3. The tabu search method. In solving NP-hard problems of discrete
optimization we almost always use approximate algorithms. The solutions
given by these algorithms are satisfactory applications (they often differ from
the best known solutions by less than 1%). Most of them use local search
methods. These consist in viewing a subset of acceptable solutions in se-
quence, and pointing out the best one according to a given criterion. One of
these methods is the tabu search, whose basic criterions are:

(i) neighborhood : a subset of acceptable solutions, whose elements are
rigorously analyzed;

(ii) move: a function that converts one solution into another one;
(iii) tabu list : a list containing the attributes of a certain number of

solutions analyzed recently;
(iv) ending condition: most of the time fixed by the number of algorithm

iterations.

Let π ∈ Φn be any (starting) permutation, LTS a tabu list, and π∗ the
best solution found up to the present time (the starting solution and π∗ can
be any permutation).

Tabu Search Algorithm

1 repeat
2 Define the neighborhood N (π) of the permutation π;
3 Remove from N (π) the permutations forbidden by the LTS list;
4 Determine the permutation δ ∈ N (π) for which
5 W (δ) = min{W (β) : β ∈ N (π)};
6 if (W (δ) < W (π∗)) then
7 π∗ := δ;
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8 Include the parameters of δ on the LTS list;
9 π := δ
10 until (ending_condition).

The computational complexity of the algorithm depends mostly on the way
the neighborhood is generated and viewed. Below we detail the basic ele-
ments of the algorithm.

3.1. The move and the neighborhood. Let π = (π(1), . . . , π(n)) be
any permutation from Φn, and

L(π) = {π(i) : Cπ(i) > dπ(i)}
be the set of late tasks in π.

Let πkl (l = 1, . . . , k − 1, k + 1, . . . , n) be the permutation obtained from
π by interchanging π(k) and π(l). We can say that πkl is generated from π
by a swap move (s-move) skl (i.e. πkl = skl (π)). Let M(π(k)) be the set of
s-moves of the element π(k). Define

M(π) =
⋃

π(k)∈L(π)

M(π(k)),

the set of s-moves of all late elements π in the permutation. The cardinality
of M(π) is bounded above by n(n− 1)/2.

The neighborhood of π ∈ Φn is the set of permutations

N (π) = {skl (π) : skl ∈M(π)}.
While implementing the algorithm, we remove from the neighborhood

the permutations whose attributes are on the list LTS.

3.2. The tabu list. In order to avoid generating a cycle (by returning
to the same permutation after a small number of algorithm iterations), some
attributes of every move are saved in a tabu list. It is operated according to
the FIFO queue rule. We put the move’s attribute, the tuple (π(r), j,W (πrj )),
on the tabu list LTS when making the srj ∈ M(π) move (generating from
π ∈ Φn the permutation πrj ).

Suppose that we analyze the move skl ∈M(β) that generates from β ∈ Φn
the permutation βkl . If the tuple (r, j, Ψ) such that β(k) = r, l = j and
W (βkl ) ≥ Ψ is on the LTS list, such a move is forbidden and removed from
the set M(β). The only parameter of this list is its length, the number of
elements it contains. There are many realizations of the tabu list presented
in the given references.

4. Stochastic processing times. In this section we study the problem
of minimizing the delay cost sum, when the processing times are random
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variables with Erlang distribution. In the literature, scheduling problems
with random processing times have been analyzed, principally with normal
or uniform distribution (van den Akker and Hoogeveen [2]) or with expo-
nential distribution (Pinedo [16]). The Erlang distribution E(α, λ) is much
more efficient compared with the other distributions in modeling realistic
events (for example queues, financial operations analysis, agriculture, ser-
vices, transport, construction, etc.) with uncertain parameters. It is even
more important, because in practice processing times tend to get longer,
and not shorter.

Because the starting point for our study is a deterministic instance of the
problem (pi, wi, di), i = 1, . . . , n, we present a method of its randomization.
In order to simplify the notation we suppose that the analyzed solution (the
task permutation) π is the identity permutation.

The randomization consists in finding random variables with Erlang dis-
tribution p̃i ∼ E(αi, λ) (i = 1, . . . , n) such that the expected value E(p̃i)
is pi. Define

λ = max

{
2

min1≤i≤n pi
, 1

}
and αi = piλ (i = 1, . . . , n).

The random version of the problem is described by n tuples (p̃i, wi, di), where
p̃i is a random variable representing the processing time, and wi and di are
respectively the cost function weight and the deadline.

As in the case of the deterministic problem, the completion time for task i
(according to its place in the permutation π) is C̃i =

∑i
j=1 p̃i. Then the delay

Ũi is 0 if C̃i ≤ di, and Ũi is 1 if C̃i > di. The processing times as well as the
delays are random variables. The target function is also a random variable:

(4.1) W̃ (π) =
n∑
i=1

wiŨi.

In the tabu search method the target function is used to determine the
best element (the task permutation) from the neighborhood. In order to com-
pare permutations (their target function values (4.1)) we have to attribute
some numerical values to them. Because the expression (4.1) is a random
variable, we can replace it by a particular moment or a combination of mo-
ments. Experiments have shown that the best results were obtained when
the first and the second central moments (the mean and the variance) were
used to compare solutions. Finally, we study two functions:

1. W1(π) = c · E(W̃ (π)) + (1− c) ·D(W̃ (π)) (c ∈ [0, 1]),

2. W2(π) =
n∑
i=1

wiE(Ũi) +
n∑
i=1

wiD
2(Ũi).
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The first one is a convex combination (depending on the parameter c) of
the mean and the standard deviation of the target function (4.1). The other
is a weighted sum of the means and the variances. We now present methods
that allow one to calculate the values of both these functions.

4.1. Calculating W1. Since the processing time has the Erlang distri-
bution p̃i ∼ E(αi, λ), i = 1, . . . , n, the completion time of the task (for the
identity sequence π) is

C̃i =

i∑
j=1

p̃j ∼ E(α1 + · · ·+ αi, λ).

The target function studied in this subsection is of the form

(4.2) W1(π) = c · E(W̃ (π)) + (1− c) ·D(W̃ (π)).

Therefore we have to calculate its expected value E(W̃ (π)) and standard
deviation D(W̃ (π)).

Let Fi(x) = Fp̃1+···+p̃i(x) be the cumulative distribution function (CDF)
of the ith job processing time. Then

E(Ũi) = 0 · P (C̃i ≤ di) + 1 · P (C̃i > di) = 1− Fi(di)
and

(4.3) E(W̃ (π)) = E
( n∑
i=1

wiŨi

)
=

n∑
i=1

wiE(Ũi) =
n∑
i=1

wi(1− Fi(di)).

In order to calculate the variation D2(W̃ (π)) we use the formula

D2(W̃ (π)) = D2
( n∑
i=1

wiŨi

)
.

Since E(Ũi
2
) = 1− Fi(di), we see that

D2(Ũi) = E(Ũi
2
)− (E(Ũi))

2 = Fi(di)(1− Fi(di)).
Therefore

D2(W̃ (π)) =

n∑
i=1

wi (Fi(di)(1− Fi(di))) + 2
∑
i<j

wiwj cov(Ũi, Ũj),

where the covariance cov(Ũi, Ũj) is calculated from the formula

cov(Ũi, Ũj) = E(ŨiŨj)− E(Ũi)E(Ũj).

We notice that the random variables Ũi and Ũj are not independent. In
order to calculate E(ŨiŨj) we study the two-dimensional random variable
(C̃i, C̃j − C̃i), where C̃i = p̃1 + · · · + p̃i and C̃j − C̃i = p̃i+1 + · · · + p̃j . The
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variables C̃i and C̃j − C̃i are independent. To fix ideas suppose that di < dj
(otherwise interchange di and dj). We have

E(ŨiŨj) = E(Ũi(Ũi + (Ũj − Ũi))) = P (C̃i > di, C̃i + (C̃j − C̃i) > dj)

=
� �

{(x,y) : x>di, x+y>dj}

fi(x)fj(y) dx dy

=

dj�

di

∞�

dj−x
fi(x)fj(y) dy dx+

∞�

dj

∞�

0

fi(x)fj(y) dy dx,

where fi(x) and fj(y) are the density functions of the distributions
E(α1 + · · ·+ αi, λ) and E(αi+1 + · · ·+ αj , λ).

We set

FI =
dj�

di

∞�

dj−x
fi(x)fj(y) dy dx, SI =

∞�

dj

∞�

0

fi(x)fj(y) dy dx.

To calculate FI and SI we make use of the fact that the CDF of the Erlang
distribution has the form

Fc,λ(x) = 1− e−λx
c−1∑
m=1

(λx)m

m!
.

In order to simplify the formula, let β1 = α1+· · ·+αi and β2 = αi+1+· · ·+αj .
Then

FI =
dj�

di

∞�

dj−x
fβ1,λ(x)fβ2,λ(y) dy dx =

dj�

di

fβ1,λ(x)
[ ∞�
dj−x

fβ2,λ(y) dy
]
dx

=

dj�

di

fβ1,λ(x)(1− Fβ2,λ(dj − x)) dx

=

dj�

di

λβ1xβ1−1e−λx

(β1 − 1)!
e−λ(dj−x)

β2−1∑
k=1

λk(dj − x)k

k!
dx

=

β2−1∑
k=1

λβ1

(β1 − 1)!

λk

k!
e−λdj

dj�

di

xβ1−1(dj − x)k dx

=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

λk

k!

dj�

di

xβ1−1
k∑

m=0

(
k

m

)
(−1)mxmdk−mj dx
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=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

λk

k!

k∑
m=0

(
k

m

)
(−1)mdk−mj

dj�

di

xβ1+m−1 dx

=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

λk

k!

k∑
m=0

(
k

m

)
(−1)mdk−mj

(
dβ1+mj

β1 +m
−

dβ1+mi

β1 +m

)

=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

λk
1

k!

k!

m!(k −m)!
(−1)m

dk−mj

β1 +m
(dβ1+mj − dβ1+mi )

=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

k∑
m=0

(−1)m

m!(k −m)!

dkj
β1 +m

[
dβ1j − d

β1
i

(
di
dj

)m]

=
λβ1

(β1 − 1)!
e−λdj

β2−1∑
k=1

(λdj)
k

k∑
m=0

(−1)m

m!(k −m)!(β1 +m)

[
dβ1j −d

β1
i

(
di
dj

)m]
,

SI =
∞�

dj

fβ1,λ(x) dx ·
∞�

0

fβ2,λ dy = 1− Fβ1,λ(dj) = e−λdj
β1−1∑
m=1

(λdj)
m

m!
.

Just as SI, the factor FI can be easily transformed into a form involving CDF
functions, which may simplify the implementation:

FI =

β2−1∑
k=1

P (X = β1 + k)(1− FB(β1,k+1)(di/dj)),

where X has the Poisson distribution P(λdj), which is of the form

P (X = m) =
e−λdj (λdj)

m

m!
(m = 0, 1, . . .).

Eventually

D2(W̃ (π)) =

n∑
i=1

wi(Fi(di)(1− Fi(di)))(4.4)

+ 2
∑
i<j

wiwj(FI + SI− (1− Fi(di))(1− Fj(dj))).

So, to calculate W1(π) for π ∈ Φn, we use formulas (4.3) and (4.4).

4.2. Calculating W2. The other function analyzed is of the form

(4.5) W2(π) =
n∑
i=1

wiE(Ũi) +
n∑
i=1

wiD
2(Ũi).
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Using the above considerations on W1 we can easily prove that

W2(π) =
n∑
i=1

wi(1− Fi(di)) +
n∑
i=1

wiFi(di)(1− Fi(di)),

where Fi is the CDF of the processing time of task i in the permutation π.
Both functions W1 and W2 can be used in the tabu search algorithm in

order to determine the best element in the neighborhood.
To obtain the probabilistic version of the tabu search algorithm presented

in Section 3 we have to replace the target function W (lines 5 and 6) respec-
tively by the functions W1 and W2.

5. Algorithm stability. In this section we introduce a certain measure
which allows us to examine the impact of a change in task parameters on
the target function value.

Let δ = ((p1, w1, d1), . . . , (pn, wn, dn)) be an example of (deterministic)
data for the TWLJ problem. Denote byD(δ) the set of data generated from δ
by perturbing processing times. The perturbation consists in substituting
random values for the original times. The perturbed data γ ∈ D(δ) have the
form γ = ((p′1, w1, d1), . . . , (p

′
n, wn, dn)), where the processing time p′i (i =

1, . . . , n) is the realization of a random variable p̃i with Erlang distribution
E(αi, λ) (both distribution parameters have been determined in Section 4),
while the expectetd value E(p̃i) is pi.

Let A and Ã be the respective deterministic and probabilistic algorithms,
based on the tabu search method (see Section 3) for the TWLJ problem. We
introduce the following:

(i) πδ: the best solution (permutation) determined for data δ by the
algorithm A,

(ii) π̃δ: the best solution determined for randomized data δ by the algo-
rithm Ã,

(iii) πϕ: the best solution determined for data ϕ ∈ D(δ) by the algo-
rithm A.

LetW (A, π, δ) be the processing cost (2.1) incurred when using an algorithm
A ∈ {A, Ã}. Then we call

∆(A, δ,D(δ)) =
1

|D(δ)|
∑

ϕ∈D(δ)

W (A, πδ, ϕ)−W (A, πϕ, ϕ)
W (A, πϕ, ϕ)

the stability of A on the perturbed data set D(δ). Because in our studies on
the determination of πϕ we have adopted πδ as the starting solution in the
algorithm A (tabu search), we have W (A, πδ, ϕ)−W (A, πϕ, ϕ) > 0.
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Let Ω be a deterministic instances set for the scheduling problem. We
define the stability of the algorithm A on Ω as follows:

(5.1) S(A, Ω) =
1

Ω

∑
δ∈Ω

∆(A, δ,D(δ)).

In the following section we will present numerical experiments that allow
comparisons of the deterministic stability coefficient S(A, Ω) with the prob-
abilistic stability coefficient S(Ã, Ω).

6. Numerical experiments. The algorithms presented in this paper
have been tested on many examples. Deterministic data for one machine
problem with delay cost minimization 1 ‖

∑
wiTi were generated in a ran-

domized way (see [24]), and are available on the OR Library website [15].
For a given number of n tasks (n = 40, 50, 100) we have determined n tuples
(pi, wi, di), 1, . . . , n, where the processing time pi and the cost wi are the
realization of a random variable with a uniform distribution, respectively
from the range [1,100] and [1,10]. Similarly, the critical lines are drawn from
the range [P (1 − TF − RDD/2), P (1 − TF + RDD/2)] depending on the
parameters RDD,TF = 0.2, 0.4, 0.6, 0.8, 1.0, while P =

∑n
i=1 pi. For every

couple of parameters RDD, TF (there are 25 such couples), 5 examples have
been generated. The whole deterministic data set Ω contains 375 examples
(125 for every n).

For every deterministic data example (pi, wi, di), i = 1, . . . , n, we have
defined a probabilistic data example (p̃i, wi, di), i = 1, . . . , n, where p̃i is a
random variable with Erlang distribution representing the processing time
(the exact description is in Section 4). We denote the set of examples by Ω̃.

The deterministic AD and probabilistic ÃP algorithms were started from
the identity permutation. Moreover, we have adopted the following para-
meters:

(i) the tabu list length: n,
(ii) the maximum number of algorithm iterations (ending_condition):

n/2 or n.

The deterministic algorithm (AD) has been performed on Ω, and the prob-
abilistic algorithm on Ω̃. In order to evaluate the stability coefficient (5.1)
of both algorithms, 100 examples of perturbed data have been generated
for every deterministic data example from Ω (we have presented the way of
generating these examples in Section 5). Then all these examples have been
solved by the AD algorithm. Based on these calculations, we have deter-
mined the stability coefficient of both algorithms. The results are presented
in Tables 1 and 2.
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Table 1. Stability coefficient (relative average error S(A,Ω)) for n/2 iterations

n Algorithm
deterministic AD random ÃP

40 0.775739356 0.053583636
50 0.520483832 0.053137101

100 0.596875969 0.032746328
avg 0.631033052 0.046489022

Table 1 contains the results obtained for n/2 iterations. The average sta-
bility coefficient for the deterministic algorithm is S(AD, Ω) = 0.631, and for
the random algorithm S(ÃP, Ω) = 0.046. This means that the perturbation
of the solution determined by the AD algorithm causes a target function
value deterioration of about 63%. In the ÃP algorithm the deterioration is
only about 5%. So the medium error for the deterministic algorithm is more
than 12 times that for the probabilistic algorithm.

Table 2 contains the results of twice as many iterations. The fact that
the stability of both algorithms has slightly deteriorated is a little surprising.
The stability difference is more advantageous for the random algorithm in
n/2 iterations, even if this algorithm is still significantly more stable than the
deterministic one. In this case the medium error of the AD algorithm is more
than 10 times that for the ÃP algorithm. Moreover, the data perturbation
causes (for the solution determined by the probabilistic algorithm) a target
function value deterioration of around 7.4%.

Table 2. Stability coefficient for n iterations

n Algorithm
deterministic AD random ÃP

40 0.852279479 0.085561408
50 0.674076051 0.070146136

100 0.805104581 0.066410047
avg 0.77715337 0.074039197

We have also made calculations for more iterations (n log n, n2). The
stability coefficient for both algorithms has slightly deteriorated, as well as
the stability difference between the deterministic and the probabilistic algo-
rithm (even if the random algorithm maintains its superiority). The number
of n/2 iterations in the tabu search method is very small (usually we make
n2 iterations). Based on the results obtained, we can say that in this case it
is not only sufficient, but even optimal. For this reason the medium calcula-
tion time for one example, on a personal computer with a 2,6 GHz Pentium
processor, is very short and does not exceed one second.
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Fig. 1. Solution stability graphs for the algorithms AD and ÃP for the examples with
n = 50 jobs and n iterations

The effect of the number of iterations on the solution stability is also
presented in Figure 1. For simplicity we only give results for the example
numbers 1, 6, 11, . . . , 121. Figure 1 contains stability graphs for both algo-
rithms for n iterations (and number of tasks n = 50). It is important to
notice that for the major part the random algorithm is significantly more
stable, and for the deterministic algorithm there are two dominant “peaks”
(examples 76 and 101) that are not reflected by the random algorithm. The
maximum error for the probabilistic algorithm does not exceed 49%, while
for the deterministic algorithm it is over 600%.

The experiments conducted have shown without doubt that solutions
determined by the probabilistic algorithm are very stable. The perturba-
tion (change) of the processing time causes a medium deterioration of a few
percent (maximum about a 12%). From the point of view of its utility in
practice, this is completely satisfactory.

7. Concluding remarks. In this paper we have presented a method
of modeling uncertain data by using random variables with Erlang distribu-
tion. This distribution represents, in a significantly better way than other
distributions, the processing times that can vary during the process. We
have presented an algorithm based on the tabu search method in order to
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solve a certain scheduling problem on a single machine. For this problem, we
have evaluated the solution stability, which means its resistance to random
changes in task parameters. The experiments have shown that the algorithm
in which the processing times are random variables with Erlang distribution
is very stable. The medium relative error for perturbed data does not exceed
6% when the iteration number is small, and the calculation time is short.
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