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THE KENDALL THEOREM AND ITS APPLICATION TO
THE GEOMETRIC ERGODICITY OF MARKOV CHAINS

Abstract. We give an improved quantitative version of the Kendall the-
orem. The Kendall theorem states that under mild conditions imposed on a
probability distribution on the positive integers (i.e. a probability sequence)
one can prove convergence of its renewal sequence. Due to the well-known
property (the first entrance last exit decomposition) such results are of inter-
est in the stability theory of time-homogeneous Markov chains. In particular
this approach may be used to measure rates of convergence of geometrically
ergodic Markov chains and consequently implies estimates on convergence
of MCMC estimators.

1. Introduction. Let (Xn)n≥0 be a time-homogeneous Markov chain
on a measurable space (S,B), with transition probabilities Pn(x, ·), n ≥ 0,
and a unique stationary measure π. Let P be the transition operator given
on the Banach space of bounded measurable functions on (S,B) by Pf(x)
=

	
f(y)P(x, dy). Under mild conditions imposed on (Xn)n≥0 the chain is

ergodic, i.e.

(1.1) ‖Pn(x, ·)− π(·)‖TV → 0 as n→∞
for all starting points x ∈ S in the usual total variation norm

‖µ‖TV = sup
|f |≤1

∣∣∣ � f dµ∣∣∣,
where µ is a real measure on (S,B). It is known that the aperiodicity, the
Harris recurrence property and the finiteness of π are equivalent to (1.1) (see
[10, Theorem 13.0.1]). Consequently, the recurrence property is necessary to
prove the convergence of Xn distributions to the invariant measure in the
total variation norm regardless of the starting point X0 = x. Whenever one
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needs to apply the ergodicity for MCMC estimators, a stronger form of the
result is required, namely one expects the exponential rate of convergence
and a reasonable method to estimate this rate (cf. [13]).

One of the possible generalizations of the total variation convergence
is to consider functions controlled from above by V : S → R with V ≥ 1,
π(V ) <∞. Therefore we define BV to be the Banach space of all measurable
functions on (S,B) such that supx∈S |f(x)|/V (x) <∞ with the norm

‖f‖V := sup
x∈S

|f(x)|
V (x)

.

Then instead of the total variation distance one applies

‖µ‖V := sup
|f |≤V

∣∣∣ � f dµ∣∣∣.
Geometric convergence of Pn(x, ·) to a unique stationary measure π means
there exists ρV < r ≤ 1 such that

(1.2)
∥∥∥(Png)(x)−

�
g dπ

∥∥∥
V
≤MV (r)rn‖g‖V , g ∈ BV ,

where ρV is the spectral radius of P−1⊗π acting on (BV , ‖·‖B), andMV (r)
is the optimal constant. In applications one often works with test functions
g from a smaller space BW , where W : S → R and 1 ≤W ≤ V . In this case
we expect ∥∥∥(Png)(x)−

�
g dπ

∥∥∥
V
≤MW (r)rn‖g‖W , g ∈ BW ,

which is valid at least for ρV ≤ r ≤ 1, and MW (r) is the optimal constant.
The most important case is when W ≡ 1, i.e. non-uniform (with respect to
x ∈ S) geometric convergence in the total variation norm. More precisely,

‖Pn(x, ·)− π(·)‖TV ≤M1(r)V (x)rn

for all x ∈ S, r > ρV .
Whenever it exists, we call ρV the convergence rate of geometric ergodicity

for the chain (Xn)n≥0. For a class of examples one can prove geometric
convergence (see [10, Chapter 15]) and it is closely related to the existence
of the exponential moment of the return time for a set C ∈ B of positive
π-measure.

The main tool to measure the convergence rate of geometric ergodicity
is the drift condition, i.e. the existence of Lyapunov function V : S → R,
V ≥ 1, which is contracted outside a small set C. The standard formulation
of the required properties is the following:

(1) Minorization condition. There exist C ∈ B, b̄ > 0 and a probability
measure ν on (S,B) such that

P(x,A) ≥ b̄ν(A) for all x ∈ C and A ∈ B.
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(2) Drift condition. There exist a measurable function V : S → [1,∞)
and constants λ < 1 and K <∞ satisfying

PV (x) ≤
{
λV (x) if x 6∈ C,
K if x ∈ C.

(3) Strong aperiodicity. There exists b > 0 such that b̄ν(C) ≥ b > 0.

The first property means there exists a small set C on which the re-
generation of (Xn)n≥0 takes place (see [10, Chapter 5]). The assumption
is relatively weak since each Harris recurrent chain admits the existence of
such a small set at least for some of its m-skeletons (i.e. processes (Xnm)n≥0,
m ≥ 1)—see [10, Theorem 5.3.2]. The existence of the small set is used in
the split chain construction (see Section 3 and [12] for details) to extend
(Xn)n≥0 to a new Markov chain on a larger probability space S × {0, 1}, so
that (C, 1) is a true atom of the new chain and its marginal distribution on
S equals the distribution of (Xn)n≥0.

The second condition is the existence of a Lyapunov function V which
is contracted by the semigroup related operator P with rate λ < 1, for
all points outside the small set. Finally, strong aperiodicity means that the
regeneration set C is of positive measure for the basic transition probability
for all starting points in C. Therefore the regeneration can occur in one step
assuming the chain is in the set C.

Our main result concerns convergence rates of ergodic Markov chains.
Since our approach is based on reduction to renewal sequences, we first prove
an abstract theorem that treats renewal sequences and which strengthens
previous forms of the result (known as the Kendall theorem). Only then do
we analyze the atomic case and show how to apply the idea to the case
when a true atom exists and what is the natural setting for our approach.
However, the idea is valid for general Harris chains. It requires additional
work, the split chain construction. Results of this type are used whenever
exact estimates on the ergodicity matter (cf. [1], [8] and [7]).

The organization of the paper is as follows: the history of the abstract
Kendall theorem as well as our main improvement are contained in Section 2;
in Section 3 we compare our extensions with what was previously known;
then in Section 4 we discuss how the abstract Kendall theorem affects esti-
mation of convergence rates for atomic Markov chains; using the method of
chain split, in Section 5 we extend the results to general Harris chains; we
leave the tedious estimates of constants (improving previous results of this
type) to Appendix A; finally, in Appendix B we analyze the result for basic
toy examples.

2. The abstract Kendall theorem. Let (τk)k≥0 be a random walk on
N starting from zero, i.e. τ0 = 0, τk−τk−1, k ≥ 1, are independent distributed
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like τ , that is,

P(τk − τk−1 = n) = P(τ = n) = bn, n ≥ 1.

By the definition, the sequence (bn)n≥1 is stochastic, which means bn ≥ 0
and

∑∞
n=1 bn = 1. From the applications’ point of view such a random walk

is generated by consecutive visits of an atomic Markov chain to a given
true atom. The renewal process for the sequence (τk≥0) is defined by Vm =
inf{τn −m : τn ≥ m}, m ≥ 0. In the language of Markov chains the process
measures how long it is before the next visit to the true atom. Let un =
P(Vn = 0), n ≥ 0, i.e. the probability that the process (Vm)m≥0 renews (goes
to zero) in the nth time step. The sequence (un)n≥0 is of importance for the
study of ergodic properties of Markov chains, which will be the main issue of
the next sections. In particular, un equals the probability that the suitable
atomic Markov chain stays in the given atom in the nth time step. Observe
that u0 = 1 and un =

∑n
k=1 un−kbk, hence denoting b(z) =

∑∞
n=1 bnz

n and
u(z) =

∑∞
n=0 unz

n for z ∈ C, one can state the renewal equation as follows:

(2.1) u(z) = 1/(1− b(z)) for |z| < 1.

The equation means that to study the properties of (un)n≥0 it suffices to
concentrate on the properties of (bn)n≥1. In particular one can ask when the
sequence (un)n≥0 is ergodic, that is, when limn→∞ un exists. Historically, the
first result that matches these properties with geometric ergodicity was due
to Kendall [6], who proved

Theorem 2.1. Assume that b1 > 0 and
∑∞

n=1 bnr
n <∞ for some r > 1.

Then the limit u∞ = limn→∞ un exists and equals u∞ = (
∑∞

n=1 nbn)−1;
moreover, the radius of convergence of

∑∞
n=0(un − u∞)zn is strictly greater

than 1.

The Kendall theorem states that the sequence (un)n≥0 is ergodic when-
ever b(z) is bounded on the disc of radius strictly greater than 1 and we have
slight control over b1. However, the question is: does Theorem 2.1 imply any
rates of convergence? This obviously requires basic information about the
upper bound on b(z), i.e. b(R) ≤ L for a given R > 1, and the lower bound
b1 ≥ b > 0. The data b, R, L come from conditions 1–3 of the introduc-
tion, and are easy to compute in the atomic case. Consequently, the main
question we treat in this section is what one can say about the rate of conver-
gence of un, n ≥ 0, to u∞ having information on b, R, L. This is an abstract
Kendall-type question on renewal processes, where we search for r0, a lower
bound on the radius of convergence for

∑∞
n=0(un − u∞)zn, and K0(r), a

computable upper bound on sup|z|=r |
∑∞

n=0(un − u∞)zn| for 1 ≤ r < r0.
The Kendall theorem was improved first in [11] and then in [2, Theorem

3.2]. There are also several results where some additional assumptions on the
distribution of τ are made. For example, [3] elaborates on how to provide an
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optimal bound on the rate of convergence, but under additional conditions
on the τ distribution. Whenever the general Kendall question is considered,
the bounds obtained up to now are still far from being optimal or easy to
use.

The goal of this paper is to give a more accurate estimate on the rate
of convergence which significantly improves upon the previous results. Our
approach is based on introducing u∞ as a parameter, namely we prove that
the following result holds:

Theorem 2.2. Suppose that (bn)∞n≥1 satisfies b1 ≥ b > 0 and b(r) =∑∞
n=1 bnr

n <∞ for some r > 1. Then u∞ = (
∑∞

n=1 nbn)−1 and

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ c(r)− c(1)

c(1)(r − 1)
(
[(1− b)D(α)− c(r) + c(1)]+

) ,
where c(r) = b(r)−1

r−1 , c(1) = u−1
∞ and

D(α) =

∣∣1 + b
1−b(1− e

iπ
1+α )

∣∣− 1

|1− e
iπ

1+α |
, where α =

c(1)− 1

1− b
,

Proof. Let b(z) and u(z) be the complex generating functions for bi,
i ≥ 1, and ui, i ≥ 0, respectively. The main tool we use is the renewal
equation (2.1), i.e.

1− b(z) =
1

u(z)
, |z| < 1.

Note that the equation remains valid on the disc |z| ≤ R in the sense of
analytic functions. By Theorem 2.1 we know that u∞ <∞ and the renewal
generating function

∑∞
n=0(un − u∞)zn is convergent on some disc of radius

greater than 1. Denote c(z) = (b(z) − 1)/(z − 1) (cf. [2, proof of Theorem
3.2]) and observe that c(z) is well defined on |z| ≤ R, because

c(R) =
b(R)− 1

R− 1
=
L− 1

R− 1
<∞.

Since u∞ = c(1)−1 we have
∞∑
n=0

(un − u∞)zn = u(z)− 1

c(1)(1− z)
=

1

1− b(z)
− 1

c(1)(z − 1)
(2.2)

=
1

1− z

(
1

c(z)
− 1

c(1)

)
=
c(z)− c(1)

z − 1

1

c(1)c(z)
.

The main problem is to estimate |c(z)| from below, for which we use the
simple trick

(2.3) |c(reiθ)| = |c(eiθ)| − |c(reiθ)− c(eiθ)| = |c(eiθ)| − c(r) + c(1).
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Consequently, the problem is reduced to finding a lower bound on |c(eiθ)|.
We recall that by definition ci =

∑
j>i bj and c(1) =

∑∞
i=0 ci. To provide a

sharp estimate of (2.3) we use the fact that for π/(l + 1) < |θ| ≤ π/l, l ≥ 1,
there is a better control on the first l summands in c(eiθ) =

∑∞
j=1 cje

ijθ.
First we note that

|c(eiθ)| =
|1−

∑∞
j=1 bje

ijθ|
|1− eiθ|

≥
|1−

∑l
j=1 bje

ijθ| −
∑

j>l bj

|1− eiθ|
,

which is equivalent to

|c(eiθ)| ≥
|cl +

∑l
j=1 bj(1− eijθ)| − cl
|1− eiθ|

.

A geometrical observation gives, for π/(l + 1) < |θ| ≤ π/l,∣∣∣cl +
l∑

j=1

bj(1− eijθ)
∣∣∣ ≥ ∣∣∣cl +

( l∑
j=1

bj

)
(1− eiθ)

∣∣∣ = |cl + (1− cl)(1− eiθ)|,

hence we conclude that

|c(eiθ)| ≥ cl|1− eiθ|−1
(
|1 + (1− cl)c−1

l (1− eiθ)| − 1
)
.

Since 1− cl ≥ b, for l ≥ 1 we see that

|1 + (1− cl)c−1
l (1− eiθ)| ≥

√
1 + bc−2

l |1− eiθ|2.

It remains to verify that f(x) = x−1[
√

1 + bx2 − 1] is increasing, which is
ensured by

(2.4) f ′(x) = −x−2(
√

1 + bx2 − 1) + x−2 bx2

√
1 + 4bx2

≥ 0.

Therefore we finally obtain, for π/(l + 1) < |θ| ≤ π/l,

(2.5) |c(eiθ)| ≥ cl|1− e
iπ
l+1 |
(√

1 + bc−2
l |1− e

iπ
l+1 |2 − 1

)
.

Due to (2.4) and (2.5), when estimating the global minimum of |c(eiθ)| it
suffices to find a bound from above on cl|1− e

iπ
l+1 |−1. We will show that

(2.6) cl|1− e
iπ
l+1 |−1 ≤ (1− b)|1− e

iπ
1+α |−1,

where we recall that α = (c(1)−1)/(1− b). First observe that (2.6) is trivial
for l ≤ α, since cl ≤ 1 − b and |1 − e

iπ
l+1 | ≥ |1 − e

iπ
1+α |. On the other hand,

for l > α,

(2.7) cl|1− e
iπ
l+1 |−1 ≥ (cll)(l|1− e

iπ
l+1 |)−1 ≥ (cll)(α|1− e

iπ
1+α |)−1.
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Using that c(1) =
∑∞

j=0 cj we deduce

(2.8) cll ≤
l∑

j=1

cj ≤ c(1)− 1 = α(1− b),

and combining (2.7) and (2.8) we obtain

cl|1− e
iπ
l+1 |−1 ≤ (1− b)|1− e

iπ
1+α |−1,

which is (2.6).
As already noted, (2.4) implies that

|c(eiθ)| ≥ (1− b)|1− e
πi

1+α |−1
(√

1 + b(1− b)−2|1− e
πi

1+α |2 − 1
)
,

which is equivalent to

(2.9) |c(eiθ)| ≥ |1− e
πi

1+α |−1
(
|(1− b) + b(1− e

πi
1+α )| − (1− b)

)
.

Plugging (2.9) into (2.3) we derive

|c(reiθ)| ≥ |(1− b) + b(1− e
πi

1+α )| − (1− b)
|1− e

πi
1+α |

− c(r) + c(1).

Finally, using (2.2) we conclude that

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ c(r)− c(1)

c(1)(r − 1)
(
(1− b)D(α)− c(r) + c(1)

) ,
where D(α) = |1 − e

πi
1+α |−1

(∣∣1 + b
1−b(1 − e

πi
1+α )

∣∣ − 1
)
, which completes the

proof of Theorem 2.2.

Consequently, whenever one can control c(r) = (b(r) − 1)/(r − 1) from
above, there is a bound on the rate of convergence for the renewal process.
The simplest case is when c(1) = u−1

∞ is known and we can control c(r)
at a certain point, i.e. c(R) ≤ N < ∞ for some R > 1. Observe that if
b(R) ≤ L, then due to c(R) = (b(R) − 1)/(R − 1) one derives that c(R) ≤
N = (L−1)/(R−1), which will be our basic setting. Note that by the Hölder
inequality, for all 1 ≤ r ≤ R,

c(r)− c(1) = (c(1)− 1)

(
c(r)− 1

c(1)− 1
− 1

)
≤ (1− b)α(rκ(α) − 1),

where

κ(α) =
log
(
N−1
c(1)−1

)
logR

=
log
(
N−1

(1−b)α
)

logR
, α =

c(1)− 1

1− b
.

We summarize this in the following assertion:
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Corollary 2.3. Suppose that c(1) = u−1
∞ is known, b1 ≥ b and b(R)

≤ L. Then
∑∞

n=0(un − u∞)zn is convergent for |z| < r0, where

(2.10) r0 = min{R, (1 +D(α)/α)1/κ(α)}.
Moreover, for r < r0,

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K0(r) =

u∞(rκ(α) − 1)

(r − 1)(α−1D(α)− rκ(α) + 1)
.

Remark 2.4. Observe that the bound (1+D(α)/α)1/κ(α) increases with
b assuming that L,R, c(1) are fixed.

In applications we have to treat c(1) = u−1
∞ as a parameter. The advan-

tage of this approach is that there is a sharp upper bound on c(1) or rather
α = (c(1)− 1)/(1− b). Using the inequality

Rα = R
∑∞
n=1(n−1)bn/(1−b) ≤

∑∞
n=2 bnR

n−1

1− b
≤ b(R)− bR

(1− b)R
(2.11)

≤ L− bR
(1− b)R

,

we deduce that α ≤ α0, where α0 = log
(
L−bR

(1−b)R
)
/logR. On the other hand,

if b = b1, then c(1)− 1 ≥ 1− b and therefore by Remark 2.4 we can always
require that c(1) − 1 ≥ 1 − b or equivalently α ≥ 1. Therefore to find an
estimate on the rate of convergence we search for the possible minimum of
(1 +D(α)/α)1/κ(α), α ∈ [1, α0].

Corollary 2.5. Suppose that b1 ≥ b and b(R) ≤ L. Then the series∑∞
n=0(un − u∞)zn is convergent for |z| < r0, where

(2.12) r0 = min
{
R, min

1≤α≤α0

(1 +D(α)/α)1/κ(α)
}
.

Moreover, for r < r0,
(2.13)

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K0(r) = max

1≤α≤α0

rκ(α) − 1

(r − 1)(α−1D(α)− rκ(α) + 1)
.

The above corollary should be compared with [2, Theorem 3.2]; we defer
the discussion to the following section.

3. Comparing with the previous bounds. Recall that our bound on
the radius of convergence is of the form

r0 = min{R, r̂0}, r̂0 = min
1≤α≤α0

(1 +D(α)/α)1/κ(α).

This estimate will be shown to be always better than the main bound in
[2, Theorem 3.2]. Then we will investigate the reason for this improvement.
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Using the limit case with b, L fixed and R→ 1, we check that the minimum
of α 7→ (1 +D(α)/α)1/κ(α) can be attained in the interval [1, α0] and that it
is a data depending problem one cannot avoid. On the other hand, we stress
that in the usual setting the minimum of α 7→ (1 + D(α)/α)1/κ(α) should
be attained at α0. The intuition behind this phenomenon is that the smaller
c(1) = u−1

∞ , the worse rate of convergence one should expect. The intuition
fails only when L is chosen to be close to 1 with respect to the other data:
b, R.

Observe that the minimum of the function (1+D(α)/α)1/κ(α) is attained
at the unique point α that satisfies

(3.1) log

(
N − 1

1− b

)
= logα+ log

(
1 +

D(α)

α

)
D(α) + α

D(α)− αD′(α)
.

Obviously, to find the minimum on the interval [1, α0], the solution α of
(3.1) must be compared with 1 and α0. Consequently, r̂0 = (1 +D(1))1/κ(1)

when such α is smaller than 1, and r̂0 = (1 + D(α0)/α0)1/κ(α0) when it is
greater than α0, otherwise the solution of (3.1) is the worst possible α that
minimizes our bound on the radius of convergence. The same discussion
concerns maximization of K0(r). Clearly the problem reduces to finding the
maximum of the function α(D(α))−1(rκ(α) − 1) which is attained at the
unique point α that satisfies the equation

(3.2)
(

1 +
D′(α)α

D(α)

)
(rκ(α) − 1) =

log r

logR
rκ(α).

To find the maximum of α(D(α))−1(rκ(α) − 1) on [1, α0] we compare the
solution α of (3.2) with 1 and α0. If α > α0 then

α0(D(α0))−1(rκ(α)0 − 1)

is the optimal bound on max1≤α≤α0 α(D(α))−1(rκ(α)−1). Similarly if α ≤ 1
then (D(1))−1(rκ(1) − 1) is the bound and otherwise the solution of (3.2) is
the maximum point for max1≤α≤α0 α(D(α))−1(rκ(α) − 1).

Remark 3.1. It is possible that the bound L is so good that R is the
optimal lower bound on the radius of convergence of

∑∞
n=0(un− u∞)zn, i.e.

r0 = R. This is the case when the solution of (3.1) is smaller than 1, i.e.
when (

1 +
D′(1)

D(1)

)
(Rκ(1) − 1) ≥ Rκ(1).

We now look for computable bounds on K0(r) in the case when u∞ is
unknown. Note that the function D(α) is decreasing and therefore D(α) ≥
D(α0). Consequently, one can rewrite Corollary 2.5 with D(α) replaced by
D(α0) and in this way obtain new bounds: K1(r) ≥ K0(r) and r1 ≤ r0,
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where r1 = min{R, r̂1}, r̂1 = min1≤α≤α0(1 +D(α0)/α)1/κ(α) and

K1(r) = max
1≤α≤α0

rκ(α) − 1

(r − 1)(D(α0)α−1 − rκ(α)+1)
.

Consequently, to findK1(r) it suffices to compute the maximum of α(rκ(α)−1)
on [1, α0]. The maximum of α(rκ(α) − 1) is attained at α that satisfies

(3.3) rκ(α) − 1 =
log r

logR
rκ(α).

The solution of (3.3) is

(3.4) α =
N − 1

1− b

(
1− log r

logR

) logR
log r

.

Again the solution must be compared with 1 and α0, which finally provides
the direct form of K1(r). We have proved the following result:

Corollary 3.2. Suppose that b1 ≥ b and b(R) ≤ L.

(i) If 1 ≥ N−1
1−b

(
1− log r

logR

) logR
log r , then

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K1(r) = (r − 1)−1

([
D(α0)

(rκ(1)−1)
− 1

]
+

)−1

.

(ii) If 1 ≤ N−1
1−b

(
1− log r

logR

) logR
log r ≤ α0, then

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K1(r)

= (r − 1)−1

([
(1− b)D(α0)

N − 1

logR

log r

(
1− log r

logR

)− logR
log r

+1

− 1

]
+

)−1

.

(iii) If α0 ≤ N−1
1−b

(
1− log r

logR

) logR
log r , then

sup
|z|=r

∣∣∣ ∞∑
n=0

(un−u∞)zn
∣∣∣ ≤ K1(r) = (r−1)−1

([
D(α0)

α0(rκ(α0)−1)
−1

]
+

)−1

.

Corollary 3.2 implies some interpretation of r̂1 as a solution of an equation
which we need to compare our bound with the previous results. Let xα = r,
α ≥ 1, be the unique solution of

(3.5) α =
N − 1

1− b

(
1− log r

logR

) logR
log r

if N−1
(1−b)α ≥ e, and xα = 1 otherwise. From Corollary 3.2 we deduce
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Corollary 3.3. Suppose that b1 ≥ b and b(R) ≤ L. Let r̄ be the unique
r satisfying

(1− b)D(α0)

N − 1
=

log r

logR

(
1− log r

logR

) logR
log r
−1

.

If r̄ ≤ x1 then r̂1 = (1 + D(α0))1/κ(1); if x1 ≤ r̄ ≤ xα0 then r̂1 = r̄; and if
r̄ ≥ xα0 then r̂1 = (1 +D(α0)/α0)1/κ(α0).

Clearly r1 ≤ r0; we now turn to showing that r1 is better than the main
bound in [2, Theorem 3.2], which we denote by r2. Again r2 = min{R, r̂2}
and r̂2 is the unique r satisfying

(3.6)
r − 1

r

1

log2(R/r)
=

b

2N
.

Our aim is to show that r2 ≤ r1. First observe that by definition

r̂
κ(α)
1 − 1 =

D(α0)

α

for some α ∈ [1, α0]. Again by definition Rκ(α) = (N − 1)/((1− b)α), which
yields

(3.7) κ(α)r̂
κ(α)
1

r̂1 − 1

r̂1
≥ r̂κ(α)

1 − 1 ≥ (1− b)Rκ(α)D(α0)

N − 1
.

By (3.7) and the inequality

D(α0) =

√
(1− b)2 + 4b sin2

(
π

2(1+α0)

)
− (1− b)

2(1− b) sin
(

π
2(1+α0)

) ≥ b

(1− b)(1 + α0)
,

we obtain

(3.8) κ(α)
r̂
κ(α)
1

Rκ(α)

r̂1 − 1

r̂1
≥ b

(1 + α0)(N − 1)
.

It suffices to note that 1 + α0 ≤ 2κ(α0) ≤ 2κ(α), which is a consequence of
κ(α0) ≤ κ(α) and the fact that

Rκ(α0) = R
Rα0 − 1

R− 1
,

which can be used to show that for a given R, the function κ(α0)/(1 +α0) is
increasing with α0. Thus since κ(α0)/(1 + α0) = 1/2 for α0 = 1 we deduce
that 1 + α0 ≤ 2κ(α0). Plugging the estimate 2κ(α) ≥ 1 + α0 into (3.8) we
derive

κ(α)2 r̂
κ(α)
1

Rκ(α)

r̂1 − 1

r̂1
≥ b

2(N − 1)
.
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It remains to check that κ(α) = 2/log(R/r̂1) is the maximum point of
κ(α)2(r̂1/R)κ(α), which implies that

r̂1

r̂1 − 1

1

log2(R/r̂1)
≥ be2

8(N − 1)
.

This shows that r̂1 ≥ r̂2 and in fact r̂2 can be treated as the lower bound in
the worst possible case of our result. We stress that using α0 instead of the
minimization over all α0 usually gives a major numerical improvement.

To provide a convincing numerical argument for exploiting the param-
eter α0 let us consider the simplest renewal model where there are only
two possible states 1 and α0 (for simplicity assume that α0 ∈ N). Then
the optimal rate of convergence is closely related to a specific solution of
bz+(1−b)zα0−1

z−1 = 0, namely it is the inverse of the smallest absolute value of
solutions of this equation. Denoting the root by z0 one can show that

(3.9) |zα0 | = 1 +
2bπ2

(1− b)2α3
0

+ o(α−3
0 )

(see discussion after [2, Theorem 3.2]) and α0 is exactly our parameter.
Therefore whenever the estimate (1+D(α0)/α0)1/κ(α0) is applied, one cannot
improve it up to a numerical constant.

We turn to studying this phenomenon in the limit case where b, L are
fixed and R→ 1.

Corollary 3.4. Suppose that R→ 1 and b1 ≥ b, b(R) ≤ L.

(i) If
(
L−1
1−b
)
/log

(
L−b
1−b
)
≥ e1/2, then

r0(R) = 1 +
bπ(R− 1)3

2(1− b)2
log−2

(
L− b
1− b

)
log−1

(
(L− 1)/log

L− b
1− b

)
+ o((R− 1)3).

(ii) If
(
L−1
1−b
)
/log

(
L−b
1−b
)
≤ e1/2, then

r0(R) = 1 +
beπ(R− 1)3

(L− 1)2
+ o((R− 1)3).

Proof. Observe that

(3.10) lim
α→∞

αD(α) =
bπ

2(1− b)2
,

thus we can treat πb(2(1−b)2α)−1 as the right approximation of D(α) when
α tends to infinity. As stated in Corollary 2.5, to find

(3.11) r̂0(R) = inf
1≤α≤α0(R)

(1 +D(α)/α)1/κ(α)
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one should solve the equation (3.1), i.e. find α(R) that satisfies

(3.12) log

(
N(R)− 1

1− b

)
= logα+ log

(
1 +

D(α)

α

)
D(α) + α

D(α)− αD′(α)
,

where N(R) = (L−1)/(R−1), and compare the outcome with 1 and α0(R).
In particular we deduce from (3.12) that α(R) necessarily tends to infinity
as R→ 1, hence using

lim
α→∞

(
1 +

α

D(α)

)
log

(
1 +

D(α)

α

)
= 1 and lim

α→∞

(
1− αD′(α)

D(α)

)
= 2,

we obtain
logα(R) = −1

2
+ log

(
N(R)− 1

1− b

)
+ o(1).

The solution must be compared with α0(R), so if

lim
R→∞

N(R)− 1

α0(R)R− 1
=
L− 1

1− b
log−1

(
L− b
1− b

)
< e1/2

we have to use α(R) (at least for small R) to minimize (1 + D(α)/α)1/κ(α)

over [1, α0(R)], otherwise α0(R) is the minimum point. In the first case we
have
α(R) = e−1/2 L− 1

(1− b)(R− 1)
+ o(1) and κ(α(R)) =

1

2(R− 1)
+ o(1),

thus using (3.10) and (3.11) we obtain

r̂0(R) =

(
1 +

D(α(R))

α(R)

)1/κ(α(R))

= 1 +
D(α(R))

α(R)κ(α(R))
+ o((R− 1)3)

= 1 +
πb

2(1− b)2α2(R)κ(α(R))
+ o((R− 1)3)

= 1 +
πeb(R− 1)3

(L− 1)2
+ o((R− 1)3).

In the same way if L−1
1−b log−1

(
L−b
1−b
)
≥ e1/2, then

α0(R) =
log
(
L−b
1−b
)

R− 1
+ o(1), κ(α0(R)) =

L−1
1−b

(R− 1) log
(
L−b
1−b
) + o(1),

and hence

r̂0(R) =

(
1 +

D(α0(R))

α0(R)

)1/κ(α0(R))

= 1 +
D(α0(R))

α0(R)κ(α0(R))
+ o((R− 1)3)

= 1 +
πb

2(1− b)2α2
0(R)κ(α0(R))

+ o((R− 1)3)

= 1 +
πb(R− 1)3

2(1− b)2
log−2

(
L− b
1− b

)
log−1

(
(L− 1)/log

(
L− b
1− b

))
+ o((R− 1)3).
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It is clear that r̂0(R) ≤ R for R small enough, so the asymptotic for r̂0(R)
is the same as for r0(R). This completes the proof of the corollary.

In particular Corollary 3.4 shows that whenever L−1
1−b log−1

(
L−b
1−b
)
≥ e1/2

then
r0(R) = 1 +

πb

2(1− b)2α2
0(R)κ(α0(R))

+ o(α0(R)−3),

which when compared with (3.9) proves that our result cannot be improved
up to a numerical constant (recall that (1 + α0)/2 ≤ κ(α0) ≤ α0). On the
other hand, Corollary 3.4 makes it possible to compare our result with [2,
Theorem 3.2]. The following estimate holds for r2(R) in the same setting
(see [2, Section 3]):

r2(R) = 1 +
e2b(R− 1)3

8(L− 1)
+ o((R− 1)3).

Therefore if L− 1 is much larger than 1− b our answer is better by a factor
of (L− 1)/(1− b)2 and if L− 1 is close to 1− b then by a factor of L− 1.

We stress that there are indeed two data-depending cases: either L is far
from 1 with respect to b, L, and then the minimum of (1 +D(α)/α)1/κ(α) is
attained at α0(R); or L is close to 1 (again with respect to b and L) and then
we have to use minimization inside [1, α0(R)] even for R→ 1. This explains
that one cannot avoid minimization over α ∈ [1, α0] from the discussion of
r0 estimates.

4. The atomic case. In this section we follow the classic idea of the first
entrance last exit decomposition to obtain rates of convergence for ergodic
Markov chains under the assumption that a true atom exists.

For this section we assume that b̄ = 1. Note that in this setting one can
rewrite the minorization condition (1) (from the introduction) as

P(x,A) = ν(A) for all x ∈ C,
which implies that C is an atom and ν = P(a, ·) for any a ∈ C. It remains
to translate conditions (2)–(3) (from the introduction) into a simpler form
which can be used later to prove geometric ergodicity. Let τ = τ(C) =
inf{n ≥ 1 : Xn ∈ C} and then define τk, k ≥ 1, as the successive visits
to C. For simplicity let also τ0 = σ(C) = inf{n ≥ 0 : Xn ∈ C}, which
means τ0 = 0 whenever we start the chain from a ∈ C. In this way we
construct a random walk of the form stated in the previous section such
that bn = Pa(τ = n). Moreover denoting un = Pa(Xn ∈ C) for n ≥ 0, we
obtain the renewal sequence for (τk)k≥0.

As already mentioned, the behavior of (un)n≥0 is closely related to the er-
godicity of the Markov chain. In particular, assuming ergodicity, limn→∞ un
exists and equals u∞ = π(C). Following [2] we define G(r, x) = Exr

τ for all
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x ∈ S and 0 < r ≤ λ−1. The main property of G(r, x) is that it is a lower
bound for V (x) on S \ C, namely we have

Proposition 4.1 (see [2, Proposition 4.1]). Assume only the drift con-
dition (2).

(i) For all x ∈ S, Px(τ <∞) = 1.
(ii) For 1 ≤ r ≤ λ−1,

G(r, x) ≤
{
V (x) if x 6∈ C,
rK if x ∈ C.

The renewal approach is based on the first entrance last exit property.
To state it we need the notation HW (r, x) = Ex(

∑τ
n=1 r

nW (Xn)), for all
r > 0 for which the definition makes sense. The following result holds:

Proposition 4.2 (see [2, Proposition 4.2]). Assume only that the Markov
chain is geometrically ergodic with a (unique) invariant probability measure
π, that C is an atom, and that W : S → R is such that W ≥ 1. Suppose
g : S → R satisfies ‖g‖W ≤ 1. Then for all r ≥ 1 for which the right-hand
sides below are finite we have:

sup
|z|=r

∣∣∣ ∞∑
n=1

(
Png(a)−

�
g dπ

)
zn
∣∣∣

≤ HW (r, a) sup
|z|≤r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣+ π(C)

HW (r, a)− rHW (1, a)

r − 1

for all a ∈ C, and

sup
|z|=r

∣∣∣ ∞∑
n=1

(
Png(x)−

�
g dπ

)
zn
∣∣∣

≤ HW (r, x) +G(r, x)HW (r, a)
∣∣∣ sup
|z|≤r

∞∑
n=0

(un − u∞)zn
∣∣∣

+ π(C)
HW (r, a)− rHW (1, a)

r − 1
G(r, x) + π(C)HW (1, a)

r(G(r, x)− 1)

r − 1

for all x 6∈ C.
Now the problem of proving geometric convergence splits into two parts:

in the first one we have to provide some estimate on HW (r, x), x ∈ S, on
the interval 1 ≤ r ≤ λ−1, and this is of importance when we want to obtain
reasonable bounds onMW (r), whereas in the second part we search for r0, a
lower bound for the inverse of the radius of convergence of

∑∞
n=0(un−u∞)zn,

and then for some upper bound K0(r) on sup|z|=r |
∑∞

n=0(un − u∞)zn| for
r < r0. The second question is exactly the Kendall theorem in the setting
when R = λ−1, L = λ−1K (note that b(r) = G(r, a) and thus b(λ−1) ≤
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λ−1K by Proposition 4.1) and b is the bound for strong aperiodicity (i.e.
b1 ≥ b). The additional parameter is u∞ = π(C); the better our knowledge
of π(C), the better the bound that comes from Theorem 2.2. If one knows
the exact value of π(C) one can use Corollary 2.3; in general, in the absence
of information on π(C), one can apply Corollary 2.5.

As for the first issue, we consider two cases. The simplest setting is when
W ≡ 1, which implies that H1(r, x) = r(G(r, x) − 1)/(r − 1), H1(1, a) =
Eaτ = π(C)−1. The following estimate slightly improves upon what is known
for general V (cf. [2, Proposition 4.1]):

Proposition 4.3. Assume only the drift condition (2).

(i) For 1 ≤ r ≤ λ−1,

H1(r, x) ≤


rλ(V (x)− 1)

1− λ
if x 6∈ C,

r(K − λ)

1− λ
if x ∈ C.

(ii) For 1 ≤ r ≤ λ−1,
H1(r, a)− rH1(1, a)

r − 1
≤ rλ(K − 1)

(1− λ)2
.

Proof. To show (i) it suffices to observe that r−1H1(r, x) attains its max-
imum on [1, λ−1] at λ−1. Using Proposition 4.1 we obtain

r−1H1(r, x) ≤ λH1(λ−1, x) =
G(λ−1, x)− 1

λ−1 − 1
≤ V (x)− 1

λ−1 − 1
.

Consequently, H1(r, x) ≤ rλ(V (x)−1)
1−λ for x 6∈ C and in the same way we show

that H1(r, x) ≤ r(K−λ)
1−λ if x ∈ C. (ii) can be derived in a similar way: first we

note that r−1(r − 1)−1(H1(r, a) − rH1(1, a)) is increasing and then we use
the bound

λ
H1(λ−1, a)− λ−1H1(1, a)

λ−1 − 1
≤

K−λ
1−λ − 1

1− λ
=

K − 1

(1− λ)2
.

Combining the estimates from Propositions 4.1 and 4.3 with Proposition
4.2 and Corollaries 2.3, 2.5 we obtain our first result on atomic chains.

Theorem 4.4. Suppose (Xn)n≥0 satisfies conditions (1)–(3) with b̄ = 1.
Then (Xn)n≥0 is geometrically ergodic—it satisfies (1.2) and we have the
bounds

ρV ≤ r−1
0 , M1(r) ≤ 2rλ

1− λ
+
rλ(K − 1)

(1− λ)2
+
r(K − λ)

1− λ
K0(r),

where r0 = r0(b, λ−1, λ−1K) and K0(r) = K0(r, b, λ−1, λ−1K) are defined in
Corollaries 2.3 and 2.5.
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On the other hand, when W ≡ V there are weaker bounds on HV (r),
which are stated in [2, Proposition 4.2]:

Proposition 4.5. Assume only the drift condition (2).

(i) For 1 ≤ r ≤ λ−1,

HV (r, x) ≤


rλ(V (x)− 1)

1− rλ
if x 6∈ C,

r(K − rλ)

1− rλ
if x ∈ C.

in particular HV (1, x) ≤ K−λ
1−λ for all x ∈ C.

(ii) For 1 ≤ r ≤ λ−1,
HV (r, a)− rHV (1, a)

r − 1
≤ rλ(K − 1)

(1− λ)(1− rλ)
.

Using Proposition 4.5 instead of 4.3 in the proof of Theorem 4.4 we obtain
a similar result, yet with a worse control on MW (r) (that necessarily goes
to infinity near r = λ−1).

Theorem 4.6. Suppose that (Xn)n≥0 satisfies conditions (1)–(3) with
b̄ = 1. Then (Xn)n≥0 is geometrically ergodic—it satisfies (1.2) and we have
the bounds

ρV ≤ r−1
0 ,

MV (r) ≤ rλ

1− rλ
+
rλ(K − λ)

(1− λ)2
+

rλ(K − 1)

(1− λ)(1− rλ)
+
r(K − rλ)

1− rλ
K0(r),

where r0 = r0(b, λ−1, λ−1K) and K0(r) = K0(r, b, λ−1, λ−1K) are defined in
Corollaries 2.3 and 2.5.

5. Non-atomic case. For general Markov chains we have to assume
that b̄ ≤ 1, which means that a true atom may not exist. However, there is a
simple trick (cf. Meyn–Tweedie [10], Numellin [12]) which reduces this case
to the atomic one. Consider the split chain (Xn, Yn)n≥0 defined on the state
space S̄ = S × {0, 1} with the σ-field B̄ generated by B × {0} and B × {1}.
We define transition probabilities as follows:

P(Yn = 1 | FXn ,FYn−1) = b̄1C(Xn),

P(Xn+1 ∈ A | FXn ,FYn ) =


ν(A) if Yn = 1,
P(Xn, A)− b̄1C(Xn)ν(A)

1− b̄1C(Xn)
if Yn = 0,

where FXn = σ(Xk : 0 ≤ k ≤ n) and FYn = σ(Yk : 0 ≤ k ≤ n). Thus the
chain evolves in such a way that whenever Xn is in C we pick Yn = 1 with
probability b̄. Then if Yn = 1 we chooseXn+1 from the ν distribution whereas
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if Yn = 0 then we just apply the normalized probability measure version of
P(Xn, ·)− b̄1Cν. The split chain is designed so that it has an atom S × {1}
and so that its first component (Xn)n≥0 is a copy of the original Markov
chain. Therefore we can apply the approach from the previous section to the
split chain (Xn, Yn) and the stopping time

T = min{n ≥ 1 : Yn = 1}.

Let Px,i, Ex,i denote the probability and the expectation for the split chain
started with X0 = x and Y0 = i. Observe that for a fixed point a ∈ C we
have Px,1 = Pa,1 and Ex,1 = Ea,1 for all x ∈ C. Following the method used
in the atomic case we define the renewal sequence ūn = Pa,1(Yn = 1) and
the corresponding increment sequence b̄n = Pa,1(T = n) for n ≥ 1. Clearly
ūn = Pa,1(Xn ∈ C, Yn = 1) = b̄Pν(Xn−1 ∈ C) for n ≥ 1, so

(5.1) b̄1 = b̄ν(C) ≥ b and ū∞ = b̄π(C).

We define

Ḡ(r, x, i) := Ex,i(r
T ), H̄W (r, x, i) := Ex,i

( T∑
n=1

rnW (Xn)
)
,

for all x ∈ S, i = 0, 1 and all r > 0 for which the right hand sides are well
defined. We also need the following expectation:

Ex := (1− b̄1C(x))Ex,0 + b̄1C(x)Ex,1,

which agrees with the usual Ex on FX . There exists a unique stationary
measure π̄ on (S̄, B̄) so that

	
ḡ dπ̄ =

	
g dπ (where g(x) = ḡ(x, 0) = ḡ(x, 1)

for all x ∈ S). In particular, π̄(S ×{1}) = b̄π(C). The first entrance last exit
decomposition leads to the following result:

Proposition 5.1 ([2, Proposition 4.2]). For all a ∈ C × {1},

(5.2) sup
|z|=r

∣∣∣ ∞∑
n=1

(
Pnḡ(a)−

�
g dπ

)
zn
∣∣∣ ≤ H̄W (r, a, 1) sup

|z|=r

∣∣∣ ∞∑
n=0

(ūn − ū∞)zn
∣∣∣

+ b̄π(C)
H̄W (r, a, 1)− rH̄W (1, a, 1)

r − 1
,

and for all x ∈ S × {0},

(5.3) sup
|z|=r

∣∣∣ ∞∑
n=1

(
Pnḡ(x)−

�
g dπ

)
zn
∣∣∣

≤ H̄W (r, x, 0) + Ḡ(r, x, 0)H̄W (r, a, 1) sup
|z|=r

∣∣∣ ∞∑
n=0

(ūn − ū∞)zn
∣∣∣
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+ b̄π(C)
H̄W (r, a, 1)− rH̄W (1, a, 1)

r − 1
Ḡ(r, x, 0)

+ b̄π(C)H̄W (1, a, 1)
r(Ḡ(r, x, 0)− 1)

r − 1
.

Proof. The proof mimics the proof of Proposition 4.3 in [2], the only
difference being that one has to control which part of the space the point x
comes from: S × {0} or the atom C × {1}.

As in the atomic case, now the problem splits into two parts. The first is
to derive bounds on all the quantities H̄ and Ḡ in Proposition 5.1. Generally
it is a very tedious task, yet we detail the bounds in Appendix A improving
what was known especially in the case of W ≡ 1. The second problem is to
find bounds on r0, the radius of convergence of

∑∞
n=0(ūn − ū∞)zn, as well

as on K̄0(r), the bounding constant for sup|z|=r |
∑∞

n=0(ūn − ū∞)zn|. Here
the problem is that we have some information on the basic sequence yet we
need control on the sequence (b̄n)n≥0.

We sketch briefly what can be done about the ergodicity of (ūn)n≥0.
Recall that (ūn)n≥0 is the renewal sequence for (b̄n)n≥1. As in the atomic
case, let b̄(z), ū(z), z ∈ C, be the corresponding generating functions and
c̄(z) = (b̄(z)− 1)/(z − 1). Clearly b̄1 = b̄ν(C) ≥ b and c̄(1) = b̄−1π(C) so as
in the atomic case we have control on the limiting behavior of c̄(z) − c̄(1),
namely Theorem 2.2 implies that whenever c̄(r) <∞, then

(5.4) sup
|z|=r

∣∣∣ ∞∑
n=0

(ūn − ū∞)zn
∣∣∣ ≤ c̄(r)− c̄(1)

c̄(1)(r − 1)
(
[(1− b)D(ᾱ)− c̄(r) + c̄(1)]+

) ,
where c̄(r) = b̄(r)−1

r−1 , c̄(1) = ū−1
∞ = b̄−1π(C)−1 and

D(ᾱ) =

∣∣1 + b
1−b(1− e

iπ
1+ᾱ )

∣∣− 1

|1− e
iπ

1+ᾱ |
, where ᾱ =

c̄(1)− 1

1− b
.

In this way the problem reduces to estimating b̄(r). The main difficulty is
that in the non-atomic case condition (2) from the introduction together
with Proposition 4.1 provides only that for R = λ−1 > 1,

(5.5) bx(R) = ExR
τ ≤ L = KR for all x ∈ C,

whereas one needs a bound on the generating function of (b̄n)n≥1. We discuss
this question in the Appendix, showing in Proposition A.2 that for all 1 ≤
r ≤ min{R, (1− b)−1/(1+α1)},

(5.6) b̄(r) ≤ L(r) = max

{
b̄r

1− (1− b̄)r1+α1
,
br + (b̄− b)r1+α2

1− (1− b̄)r

}
,

where α1 = log
(
L−b̄R

(1−b̄)R
)
/logR and α2 = log

(L−(1−b̄+b)R
(b̄−b)R

)
/logR. Moreover if
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1 + b ≥ 2b̄ then simply

L(r) =
b̄r

1− (1− b̄)r1+α1
.

Using (5.6) is the best what the renewal approach can offer to bound b̄(r).
The meaning of the result is that there are only two generating functions
that are important to bound b̄(r). If b̄ is close to 1 then we are in a similar
setting to the atomic case and surely one can expect a bound on b̄(r) of the
form br+(b̄−b)r1+α2

1−(1−b̄)r , whereas if b̄ is far from 1 only the split chain construction

matters and the bound on b̄(r) should be like b̄r
1−(1−b̄)r1+α1

.

As in the atomic case, we will need a bound on ᾱ = c̄(1)−1
1−b . We show in

Corollary A.3 that

(5.7) ᾱ ≤ b̄−1 max

{
1− b̄
1− b

(1 + α1),
1− b̄
1− b

+
b̄− b
1− b

α2

}
.

In fact the maximum equals b̄−1 1−b̄
1−b(1+α1) if 1+b ≥ 2b̄, and b̄−1 1−b̄

1−b + b̄−b
1−bα2

otherwise.
Now we turn to the basic idea for all the approach presented in the paper,

i.e. a certain convexity property of the function r 7→ c(r). Observe that c̄(r)−1
c̄(1)−1

satisfies the Hölder inequality, i.e. for p+ q = 1, p, q > 0,(
c̄(r1)− 1

c̄(1)− 1

)p( c̄(r2)− 1

c̄(1)− 1

)q
≥ c̄(rp1r

q
2)− 1

c̄(1)− 1
,

which means that F0(x) = log
( c̄(ex)−1
c̄(1)−1

)
is convex and F0(0) = 0. By (5.6)

we have c̄(ex) ≤ L(ex) and hence

(5.8) F0(x) ≤ F1(x) = log

(
L(ex)− ex

(1− b)ᾱ(ex − 1)

)
.

Therefore we can easily compute the largest possible function F̄ (x) that
satisfies the conditions:

1. F̄ (x) ≤ F1(x) for 0 ≤ x ≤ min
{

logR,− 1
1+α1

log(1− b̄)
}
;

2. F̄ (0) = 0 and F̄ is convex;
3. F̄ is maximal of all the functions with properties 1–2, namely if there

exists F that satisfies the above conditions then F (x) ≤ F̄ (x) for all
0 ≤ x ≤ min

{
logR,− 1

1+α1
log(1− b̄)

}
.

The role of F̄ is to answer the question: how to find a suitable value of
ex ∈ [1, R] and a suitable bound on b̄(ex) to apply our main Kendall theorem.
Under the basic data contained in conditions 1–3 of the introduction one can
propose an upper bound F1 on F0. On the other hand we may benefit from
the fact that F0 is convex and starts from zero. Consequently, we consider
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all the possible functions that have these properties. It occurs that there
is a maximizer F̄ in this class and this function should be considered as a
generator of the optimal bound on b̄(ex) one should apply in Theorem 2.2.
Namely

b̄(ex) ≤ (1− b)ᾱ(ex − 1) exp(F̄ (x)) + ex

for all 0 ≤ x ≤ min
{

logR,− 1
1+α1

log(1− b̄)
}
.

Let x0 be the unique solution of the equation

(5.9) F ′1(x)x = F1(x).

Note that x0 ≤ − 1
1+α1

log(1− b̄). If additionally x0 ≤ logR then the optimal
F̄ (x) is of the form

(5.10) F̄ (x) =

{
F ′1(x0)x for all 0 ≤ x ≤ x0,
F1(x) for all x0 ≤ x ≤ min

{
logR,− 1

1+α1
log(1− b̄)

}
;

otherwise if x0 > logR then

(5.11) F̄ (x) =
F1(logR)

logR
x for all 0 ≤ x ≤ logR.

To make the notation similar to the atomic case let κ̄(ᾱ, r) = F̄ (log r)/log r.
In particular if log r < x0 ≤ logR then κ̄(ᾱ, r) = F ′1(x0) and similarly
κ̄(α, r) = F̄ (logR)/logR if logR < x0. The above discussion leads to the
following conclusion:

(5.12) c̄(r)−c̄(1) ≤ (1−b)ᾱrκ(ᾱ,r) for all 1 ≤ r ≤ min{R, (1−b̄)−1/(1+α1)},
furthermore κ̄(ᾱ, r) as a function of r is constant at least on part of the
interval [1,min{R, (1 − b̄)−1/(1+α1)}]. Consequently, applying (5.4) for the
case where π(C) is known, we obtain our main estimate in the non-atomic
case.

Theorem 5.2. Suppose that b̄1 ≥ b and b̄(r) satisfies (5.6), and ū∞ =
b̄π(C) is known. Then

∑∞
n=0(ūn − ū∞)zn is convergent for |z| < r0, where

r̄0 = min{R, (1− b̄)−1/(1+α1), r̄0(ᾱ)},
where r̄0(ᾱ) is the unique solution of the equation

r = (1 +D(ᾱ)/ᾱ)1/κ̄(ᾱ,r).

Moreover, for r < r̄0,

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K̄0(r) =

ū∞(rκ̄(ᾱ,r) − 1)

(r − 1)(ᾱD(ᾱ)− rκ̄(ᾱ,r) + 1)
.

Remark 5.3. Observe that if

(5.13) log(1 +D(ᾱ)/ᾱ)/F ′1(x0) ≤ x0 ≤ logR,
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then r̄0 = (1 +D(ᾱ)/ᾱ)1/F ′1(x0). Due to (5.9), the condition (5.13) is equiv-
alent to x0 ≤ logR and

1 +
D(ᾱ)

α
≤ L(ex0)− ex0

(1− b)ᾱ(ex0 − 1)
.

Therefore for a large class of examples we have a computable direct bound
on the rate of convergence even for general ergodic Markov chains.

If ū∞ = b̄π(C) is unknown then we have to treat it as a parameter
and use a bound on ᾱ. As for the upper bounds, we can use (5.7); on the
other hand we show in Corollary A.3 that if b̄ν(C) = b then ᾱ ≥ b̄−1.
Since in the same way as in the atomic case (1 + D(ᾱ)/ᾱ)1/κ̄(ᾱ,r) increases
with b assuming that b̄, L,R are fixed, we can always assume ᾱ ≥ b̄−1. Let
ᾱ0 = max

{
1−b̄
1−b(1 + α1), 1−b̄

1−b + b̄−b
1−bα2

}
.

Theorem 5.4. Let b̄1 ≥ b, and suppose that b̄(r) satisfies (5.6). Then∑∞
n=0(ūn − ū∞)zn is convergent for |z| < r̄0, where

r̄0 = min
{
R, (1− b̄)−1/(1+α1), min

b̄−1≤ᾱ≤b̄−1ᾱ0

r̄0(ᾱ)
}
,

where r̄0(ᾱ) is the unique solution of the equation

r = (1 +D(ᾱ)/ᾱ)1/κ̄(ᾱ,r).

Moreover, for r < r̄0,

sup
|z|=r

∣∣∣ ∞∑
n=0

(un − u∞)zn
∣∣∣ ≤ K̄0(r)

= max
b̄−1≤ᾱ≤b̄−1ᾱ0

b̄(rκ̄(ᾱ,r) − 1)

(r − 1)(ᾱ−1D(ᾱ)− rκ̄(ᾱ,r) + 1)
.

We show by examples that the approach presented in Theorems 5.2 and
5.4 is comparable with the coupling method (see [2, Section 7] for a short
introduction). Therefore we obtain a computable tool for the general question
of rates of convergence of ergodic Markov chains under the geometric drift
condition.

We postpone the detailed computation of all the bounds required in
Proposition 5.1 to Appendix A. This knowledge enabled us to formulate
the main results for general Markov chains. The first one concerns the case
of W ≡ 1. By Proposition 5.1 and Propositions A.2, A.5 from Appendix A
we obtain the first result for general Markov chains.

Theorem 5.5. Suppose (Xn)n≥0 satisfies conditions (1)–(3) from the
introduction. Then (Xn)n≥0 is geometrically ergodic—it satisfies (1.2) and
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ρV ≤ r̄−1
0 ,

M1(r) ≤ 2λr

1− λ
+

2(1− b̄)(r1+α1 − 1)r

(r − 1)(1− (1− b̄)r1+α1)
+

b̄

1− (1− b̄)r1+α1

rλ(K − 1)

(1− λ)2

+
(r − 1)K̄0(r) + b̄(1− b̄)(r1+α1 − 1)

(r − 1)(1− (1− b̄)r1+α1)2

r(K − λ)

1− λ
,

where K̄0(r) = K̄0(r, b, b̄, λ−1,Kλ−1) and r̄0 = r̄0(b, b̄, λ−1,Kλ−1) are given
in Theorems 5.2 and 5.4.

Proof. Note that b̄π(C)H̄1(1, a, 1) = 1. We apply Proposition 5.1 so that
we sum (5.2) with weight 1 − b̄1C(x) and (5.3) with weight b̄1C(x). Then
we use (A.5) to bound b̄1C(x) + (1− b̄1C(x))Ḡ(r, x, 0), and (A.19) to bound
(1− b̄1C(x))H̄1(r, x, 0) = (1− b̄1C(x)) rḠ(r,x,0)−1

r−1 . Finally (A.20) and (A.21)
are estimates for H̄(r, a, 1) and (H̄1(r, a, 1)− rH̄1(1, a, 1))/(r − 1).

The second case is when W ≡ V . Propositions 5.1, A.2 and A.6 imply
our result in the most general form.

Theorem 5.6. Suppose (Xn)n≥0 satisfies conditions (1)–(3) from the
introduction. Then (Xn)n≥0 is geometrically ergodic—it satisfies (1.2) and

ρV ≤ r̄−1
0

and

MV (r) ≤ λr

1− rλ
+

(
K − rλ
1− rλ

− b̄
)

r

1− (1− b̄)r1+α1

+
K − λ
1− λ

(
rλ

1− λ
+

(1− b̄)(r1+α1 − 1)r

(r − 1)(1− (1− b̄)r1+α1)

)
+

b̄

1− (1− b̄)r1+α1

(
r(K − 1)

(1− λ)(1− rλ)

+

(
K − rλ
1− rλ

− b̄
)

1

1− (1− b̄)r1+α1

r(K − λ)

1− λ

)
+

K̄0(r)

1−(1−b̄)r1+α1

(
r(K − rλ)

1− rλ
+

(
K − rλ
1− rλ

− b̄
)

r − 1

1− (1− b̄)r1+α1

r(K−λ)

1−λ

)
,

where K̄0(r) = K̄0(r, b, b̄, λ−1,Kλ−1) and r̄0 = r̄0(b, b̄, λ−1,Kλ−1) are given
in Theorems 5.2 and 5.4.

Proof. Observe that π(C) ≤ 1. As in the proof of Theorem 5.5, we
use Proposition 5.1, summing (5.2) with weight 1 − b̄1C(x) and (5.3) with
weight b̄1C(x). Again we use (A.5) to bound b̄1C(x) + (1− b̄1C(x))Ḡ(r, x, 0),
then (A.25), (A.26), (A.27) to bound respectively (1 − b̄1C(x))H̄V (r, x, 0),
H̄V (r, a, 1) and (H̄V (r, a, 1) − rH̄V (1, a, 1))/(r − 1). We also use the bound
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H̄V (1, a, 1) ≤ b̄−1K−λ
1−λ and (A.19) to bound (1 − b̄1C(x))H̄1(r, x, 0) = (1 −

b̄1C(x)) rḠ(r,x,0)−1
r−1 .

Appendix A

A.1. Global bounds. Our method described in Corollary 5.2 implies
that

sup
|z|=r

∣∣∣ ∞∑
n=0

(ūn − ū∞)zn
∣∣∣ ≤ K0(r) for 1 ≤ r ≤ r0.

The first step is to replace the stopping time T by τ = τC . For this, we define

G(r, x, i) = Ex,ir
τ , HW (r, x, i) = Ex,i

( τ∑
n=1

rnW (Xn)
)
.

Let also

G(r) = sup
x∈C

Ex,0r
τ and HW (r) = sup

x∈C
Ex,0

τ∑
n=1

rnW (Xn).

In [2, Lemma A.1] the following inequalities are proved:

Proposition A.1. For r ≤ λ−1 and (1− b̄)G(r) < 1,

Ḡ(r, x, i) ≤ b̄G(r, x, i)

1− (1− b̄)G(r)
,(A.1)

H̄W (r, x, i) ≤ HW (r, x, i) +
(1− b̄)HW (r)G(r, x, i)

1− (1− b̄)G(r)
.(A.2)

In the introduction we have explained that it is crucial for our approach
to establish (5.6). Now we have all the necessary tools to get that result.

Proposition A.2. For all a ∈ C and 1 ≤ r ≤ min
{
λ−1, (1−b̄)−1/(1+α1)

}
,

(A.3) Ḡ(r, a, 1) ≤ max

{
b̄r

1− (1− b̄)r1+α1
,
br + (b̄− b)rα2

1− (1− b̄)r

}
,

where α1 = log
(
K−b̄
1−b̄

)
/log λ−1 and α2 = log

(
K−1+b̄−b

b̄−b
)
/log λ−1. Moreover,

if 1 + b ≥ 2b̄, then

(A.4) Ḡ(r, a, 1) ≤ b̄r

1− (1− b̄)r1+α1
.

For all x ∈ S and 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)},

(A.5) b̄1C(x) + (1− b̄1C(x))Ḡ(r, x, 0) ≤ b̄V (x)

1− (1− b̄)r1+α1
.

Proof. The split chain construction implies that for any a ∈ C,

(A.6) (1− b̄) sup
x∈C

G(r, x, 0) + b̄G(r, a, 1) = sup
x∈C

G(r, x) = G(r).
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Moreover, due to b̄ν(C) ≥ b we have b̄G(r, a, 1) = b̄
∑∞

k=1 Pν(σ = k − 1)rk,
where σ = inf{n ≥ 0 : Xn ∈ C}, has its first coefficient greater than or equal
to b. Therefore by our usual argument with the Hölder inequality we deduce
that

(1− b̄) sup
x∈C

G(r, x, 0) ≤ (1− b̄)rv
log r

log λ−1 , b̄G(r, a, 1) ≤ br + (b̄− b)ru
log r

log λ−1 ,

where u = G(λ−1, a, 1), v = supx∈C G(λ−1, x, 0) satisfy

(A.7) λ−1(b+ (b̄− b)u+ (1− b̄)v) = sup
x∈C

G(λ−1, x) ≤ Kλ−1, u, v ≥ 1.

Observe that by (A.1),

(A.8) Ḡ(r, a, 1) ≤ b̄G(r, a, 1)

1− (1− b̄)G(r)
≤ F (u, v) =

br + (b̄− b)ru
log r

log λ−1

1− (1− b̄)rv
log r

log λ−1

.

One can check that the bounding function F (u, v) is convex for all (u, v)
that satisfy (A.7) and hence it takes its maximum on the boundaries of the
set given by (A.7). Consequently, due to (A.8) we obtain

(A.9) Ḡ(r, a, 1) ≤ max

{
b̄r

1− (1− b̄)r1+α1
,
br + (b̄− b)r1+α2

1− (1− b̄)r

}
.

It is easy to check that whenever 1 + b ≥ 2b̄ then (1− b̄)α1 ≥ (b̄− b)α2 and
the maximum in (A.9) can be replaced by the first quantity for any r ≥ 1.
Otherwise if 1 + b < 2b̄ then (1 − b̄)α1 < (b̄ − b)α2 and therefore for small
enough r the maximum in (A.9) is attained at the second expression.

We turn to showing the second assertion. Observe that by Proposition
4.1 we have G(r, x, 0) = G(r, x) ≤ V (x) for all x 6∈ C. Consequently, (A.1)
yields

(A.10) Ḡ(r, x, 0) ≤ b̄V (x)

1− (1− b̄)G(r)

for all x 6∈ C. Since obviously G(r) ≤ r1+α1 we deduce that

Ḡ(r, x, 0) ≤ b̄V (x)

1− (1− b̄)rα1
.

On the other hand, by (A.1),

Ḡ(r, x, 0) ≤ b̄rα1

1− (1− b̄)r1+α1

for all x ∈ C and therefore

(A.11) b̄+ (1− b̄)Ḡ(r, x, 0) ≤ b̄

1− (1− b̄)r1+α1

for all x ∈ C. Since V ≥ 1, inequalities (A.10) and (A.11) imply (A.5).
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The next step is to obtain the estimate (5.13).

Corollary A.3. The following inequality holds:

b̄−1 ≤ H̄1(1, a, 1)− 1

1− b
(A.12)

≤ b̄−1 max

{
1− b̄
1− b

(1 + α1),
1− b̄
1− b

+
b̄− b
1− b

α2

}
= b̄−1ᾱ0.

Proof. For the first inequality, we simply apply (A.3) to bound H̄1(r, a, 1)

= rḠ(r,a,1)−1
r−1 and then let r → 1. To prove the second inequality let S =

max{k ≥ 1 : τk ≤ T}, where τk, k ≥ 0, are the successive visits to C by
(Xn)n≥0, in particular τ0 = 0. Observe that

H̄1(1, a, 1) = Ea,1

( ∞∑
k=0

1S≥k(τk − τk−1)
)
.

Therefore by construction

H̄1(1, a, 1) ≥ Eν(1 + σ) + Ea,1(S − 1),

where we recall that σ = min{n ≥ 0 : Xn ∈ C}. Since S has geometric
distribution with the probability of success b̄, we obtain

H̄1(1, a, 1) ≥ b̄−1 + Eνσ.

It remains to notice that Eνσ ≥ 1− ν(C), therefore if b̄ν(C) = b then

H̄1(1, a, 1) ≥ b̄−1 + 1− b

b̄
,

which completes the proof.

Now we state an improvement of the result mentioned in the proof of
Proposition 4.4 in [2].

Proposition A.4. For r ≤ λ−1 and (1− b̄)G(r) < 1 we have

(A.13) H̄W (r, a, 1) ≤ 1

b̄
sup
x∈C

HW (r, x) +
1− b̄
b̄

HW (r) supx∈C(G(r, x)− 1)

1− (1− b̄)G(r)

and

H̄W (r, a, 1)− rH̄W (1, a, 1) ≤ 1

b̄
sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0))(A.14)

+
1− b̄
b̄

HW (r)(Ḡ(r, a, 1)− 1).

Proof. To prove the first assertion note that (A.6) can be rewritten as

b̄G(r, a, 1)

1− (1− b̄)G(r)
≤ 1 +

supx∈C(G(r, x)− 1)

1− (1− b̄)G(r)
.
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Combining the above inequality with (A.2) we derive

H̄W (r, a, 1) ≤ HW (r, a, 1) +
1− b̄
b̄

HW (r)

+
(1− b̄)HW (r) supx∈C(G(r, x)− 1)

b̄(1− (1− b̄)G(r))
.

Since the definition of HW (r, x, 1) implies that

b̄HW (r, a, 1) + (1− b̄)HW (r) ≤ sup
x∈C

HW (r, x)

we obtain (A.13).
To show the second assertion we use S = max{k ≥ 1 : τk ≤ T} defined

in the proof of Corollary A.3. Then

(A.15) H̄W (r, a, 1)− rH̄W (1, a, 1) ≤ HW (r, a, 1)− rHW (1, a, 1)

+
∞∑
k=2

Ea,1

[
1k≤S sup

x∈C
(rτk−1HW (r, x, 0)− rHW (1, x, 0))

]
.

As shown in Corollary A.3, Ea,1(S − 1) = (1− b̄)/b̄, and we deduce that
∞∑
k=2

(Ea,11k≤N ) sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0))

=
1− b̄
b̄

sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0)),

which together with (A.15) provides

(A.16) H̄W (r, a, 1)− rH̄W (1, a, 1) ≤ HW (r, a, 1)− rHW (1, a, 1)

+
1− b̄
b̄

sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0))

+

∞∑
k=2

[Ea,11k≤N (rτk−1 − 1)] sup
x∈C

HW (r, x, 0).

As usual we observe that

(A.17) HW (r, a, 1)− rHW (1, a, 1)

+
1− b̄
b̄

sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0))

≤ 1

b̄
sup
x∈C

(HW (r, x)− rHW (1, x)).

Moreover, since Yτk is independent of τk−1 we have

Ea,1r
τk−11k≤S = (1− b̄)Ea,1rτk−11k−1≤S ,
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which implies that
∞∑
k=2

Ea,1r
τk−11S=k−1 = b̄

∞∑
k=2

Ea,1r
τk−11k−1≤S =

b

1− b̄

∞∑
k=2

Erτk−11k≤S ,

and thus
∞∑
k=2

Ea,11k≤S(rτk−1 − 1) =
1− b̄
b̄

Ea,1(rT − 1) =
1− b̄
b̄

(Ḡ(r, a, 1)− 1).

Consequently,
(A.18)
∞∑
k=2

[Ea,11k≤N (rτk−1 − 1)] sup
x∈C

HW (r, x, 0) =
1− b̄
b̄

HW (r)(Ḡ(r, a, 1)− 1).

Combining (A.16)–(A.18) we conclude that

H̄W (r, a, 1)− rH̄W (1, a, 1) ≤ 1

b̄
sup
x∈C

(HW (r, x, 0)− rHW (1, x, 0))

+
1− b̄
b̄

HW (r)(Ḡ(r, a, 1)− 1).

This completes the proof of (A.14).

A.2. Case of W ≡ 1. In the case of W ≡ 1, the above result improves
the estimation of H̄1(r, a, 1)− rH̄1(1, a, 1), which, as mentioned in the intro-
duction, can be used in the part of the proof where sup|z|=r |

∑∞
n=0(ūn−ū∞)|

is considered.

Proposition A.5. The following inequalities hold:

(A.19) (1− b̄1C(x))H̄1(r, x, 0) ≤ rλ(V (x)− 1)

1− λ
+

(1− b̄)(r1+α1 − 1)rV (x)

(r − 1)(1− (1− b̄)r1+α1)

for all x ∈ S, 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)};

(A.20) H̄1(r, a, 1) ≤ 1

1− (1− b̄)r1+α1

r(K − λ)

1− λ

for all a ∈ C and 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)}; and

(A.21)
H̄1(r, a, 1)− rH̄1(r, a, 1)

r − 1
≤ 1

b̄

rλ(K − 1)

(1− λ)2

+
1

b̄

(1− b̄)(r1+α1 − 1)

(r − 1)(1− (1− b̄)r1+α1)

r(K − λ)

1− λ

for all a ∈ C and 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)}.
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Proof. By (A.2) we have

H̄1(r, x, 0) ≤ H1(r, x, 0) +
(1− b̄)H1(r)G(r, x, 0)

1− (1− b̄)G(r)
.

Together with H1(r, x, 0) = H1(r, x) and G(r, x, 0) = G(r, x) ≤ V (x) for
x 6∈ C it follows that

H̄1(r, x, 0) ≤ H1(r, x) +
(1− b̄)H1(r)V (x)

1− (1− b̄)G(r)
.

Consequently, by Proposition 4.3,

H̄1(r, x, 0) ≤ rλ(V (x)− 1)

1− λ
+

(1− b̄)(G(r)− 1)rV (x)

(r − 1)(1− (1− b̄)G(r))
.

Using G(r) ≤ r1+ᾱ we deduce that

(A.22) H̄1(r, x, 0) ≤ rλ(V (x)− 1)

1− λ
+

(1− b̄)(r1+α1 − 1)rV (x)

(r − 1)(1− (1− b̄)r1+α1)

for all x 6∈ C. On the other hand, (A.2) implies that

H̄1(r, x, 0) ≤ H1(r)

(
1 +

(1− b̄)G(r)

1− (1− b̄)G(r)

)
=

H1(r, x, 0)

1− (1− b̄)G(r)
for x ∈ C.

Hence again by G(r) ≤ r1+α1 ,

(A.23) (1− b̄)H̄1(r, x, 0) ≤ (1− b̄)(r1+α1 − 1)r

(r − 1)(1− (1− b̄)r1+α1)
for x ∈ C.

From (A.22) and (A.23) we deduce (A.19).
Observe that (A.1) and (A.6) imply that

H̄1(r, a, 1) =
r(Ḡ(r, a, 1)− 1

r − 1
≤ supx∈C r(G(r, x)− 1)

(r − 1)(1− (1− b̄)G(r))
(A.24)

=
supx∈C H1(r, x)

1− (1− b̄)G(r)

and therefore

H̄1(r, a, 1) ≤ supx∈C(H1(r, x))

1− (1− b̄)r1+α1
≤ r(K − λ)

(1− λ)(1− (1− b̄)r1+α1)
,

which is (A.20).
To prove the last assertion we use (A.14) and (A.24), which imply that

H̄1(r, a, 1)− rH̄1(1, a, 1) ≤ 1

b̄
sup
x∈C

(H1(r, x)− rH1(r, x))

+
(1− b̄)H1(r) supx∈C(G(r, x)− 1)

1− (1− b̄)G(r)
.
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The above inequality is equivalent to

H̄1(r, a, 1)− rH̄1(1, a, 1) ≤ 1

b̄
sup
x∈C

(H1(r, x)− rH1(r, x))

+
(1− b̄)(G(r)− 1) supx∈C H1(r, x)

1− (1− b̄)G(r)
.

Clearly H1(r, x) = r(G(r,x)−1)
r−1 , thus by Proposition 4.3 we obtain

H̄1(r, a, 1)− rH̄1(1, a, 1)

r − 1

≤ 1

b̄

rλ(K − 1)

(1− λ)2
+

(1− b̄)(G(r)− 1)

b̄(r − 1)(1− (1− b̄)G(r))

r(K − λ)

1− λ
.

Due to G(r) ≤ r1+α1 we deduce (A.21), completing the proof.

A.3. Case of W ≡ V . The second case we consider is when W = V .

Proposition A.6. The following inequalities hold:
(A.25)

(1− b̄1C(x))H̄V (r, x, 0) ≤ λr(V (x)− 1)

1− rλ
+

(
K − rλ
1− rλ

− b̄
)

rV (x)

1− (1− b̄)r1+α1

for all x ∈ S and 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)};
(A.26)

H̄V (r, a, 1) ≤ b̄−1 r(K − rλ)

1− rλ
+ b̄−1

(
K − rλ
1− rλ

− b̄
)

r − 1

1− (1− b̄)r1+α1

r(K − λ)

1− λ

for all a∈C and 1≤r≤min{λ−1, (1− b̄)−1/(1+α1)}, in particular H̄V (1, a, 1)
≤ b̄−1K−λ

1−λ ; and

(A.27)
H̄V (r, a, 1)− rH̄(1, a, 1)

r − 1
≤ b̄−1 r(K − 1)

(1− λ)(1− rλ)

+ b̄−1

(
K − rλ
1− rλ

− b̄
)

1

1− (1− b̄)r1+α1

r(K − λ)

1− λ

for all a ∈ C and 1 ≤ r ≤ min{λ−1, (1− b̄)−1/(1+α1)}.
Proof. We recall that (A.2) implies that

H̄V (r, x, 0) ≤ HV (r, x, 0) +
(1− b̄)HV (r)G(r, x, 0)

1− (1− b̄)G(r)
.

Therefore since HV (r, x, 0) = HV (r, x) and G(r, x, 0) = G(r, x) for all x 6∈ C,
we can use Propositions 4.1 and 4.5 to get

H̄V (r, x, 0) ≤ λr(V (x)− 1)

1− rλ
+

(1− b̄)HV (r)V (x)

1− (1− b̄)G(r)



Kendall theorem 159

for all x 6∈ C. Similarly for x ∈ C,

(1− b̄)H̄V (r, x, 0) ≤ (1− b̄)HV (r)

(
1 +

(1− b̄)G(r)

1− (1− b̄)G(r)

)
=

(1− b̄)HV (r)

1− (1− b̄)G(r)
.

Hence using G(r) ≤ r1+α1 we obtain

(1− b̄1C(x))H̄V (r, x, 0) ≤ λr(V (x)− 1)

1− rλ
+

(1− b̄)HV (r)V (x)

1− (1− b̄)r1+α1
.

Therefore it suffices to bound (1− b̄)HV (r). Note that

b̄HV (r, x, 1) + (1− b̄)HV (r) ≤ sup
x∈C

HV (r, x) for all x ∈ C.

Clearly HV (r, x, 1) ≥ r, so by Proposition 4.5 we deduce that

(A.28) (1− b̄)HV (r) ≤ r(K − rλ)

1− rλ
− b̄r,

which establishes (A.25).
To show the remaining assertions we use (A.13), (A.14) and (A.6), ob-

taining

H̄V (r, a, 1) ≤ b̄−1 sup
x∈C

HV (r, x) + b̄−1 (1− b̄)HV (r) supx∈C(G(r, x)− 1)

1− (1− b̄)G(r)

and

H̄V (r, a, 1)− rH̄V (r, a, 1) ≤ b̄−1 sup
x∈C

(HV (r, x)− rHV (1, x))

+ b̄−1 (1− b̄)HV (r) supx∈C(G(r, x)− 1)

1− (1− b̄)G(r)
.

Recall that G(r) ≤ r1+α1 and by Propositions 4.1 and 4.5,
G(r, x)− 1

r − 1
≤ K − λ

1− λ
, HV (r, x) ≤ r(K − rλ)

1− rλ
;

consequently,

H̄V (r, a, 1) ≤ b̄−1 r(K − rλ)

1− rλ
+ b̄−1 (r − 1)(1− b̄)HV (r)

1− (1− b̄)r1+α1

K − λ
1− λ

.

Together with (A.28) this completes the proof of (A.26).
Finally, the same argument shows

H̄V (r, a, 1)− rH̄V (r, a, 1)

r − 1
≤ b̄−1 r(K − 1)

(1− λ)(1− rλ)

+ b̄−1 (1− b̄)HV (r)

1− (1− b̄)r1+α1

K − λ
1− λ

.

Again by (A.28) we obtain (A.27), which completes the proof.
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Appendix B. We compare our result with what was shown in [2] as a
numerical test for the presented approach.

B.1. The reflecting random walk. We consider the Bernoulli random
walk on Z+ with transition probabilities P (i, i− 1) = p > 1/2, P (i, i+ 1) =
q = 1 − p for i ≥ 1 and boundary conditions P (0, 0) = p, P (0, 1) = q. We
set C = {0} and V (i) = (p/q)i/2, and compute λ = 2

√
pq, K = p +

√
pq,

b = p and u∞ = π(C) = 1− q/p. The optimal radius of convergence for the
reflecting random walk is λ.

Consider two cases:

(1) p = 2/3, so b = 2/3, λ = 2
√

2/3, K = (2 +
√

2)/3, u∞ = 1/2.
(2) p = 0.9, and hence λ = 0.6, K = 1.2, b = 0.9, u∞ = 8/9.

We compare our result with others in Table 1 below, where ρ and ρC denote
estimates on the radius of convergence when u∞ is known and when it is
not. We use Optimal for the true value of the spectral radius, and Bednorz,
Baxendale, Meyn–Tweedie1 and Meyn–Tweedie2 respectively for our Corol-
laries 2.3 and 2.5, Baxendale’s Theorem 3.2 of [2], Meyn–Tweedie’s result of
[11] and its improved version (see [2, Section 8] for details).

Table 1

p = 2/3 ρ ρC

Optimal 0.9428 0.9428
Bednorz 0.9737 0.9737
Baxendale 0.9994 ?
Meyn–Tweedie1 0.9999 0.9988
Meyn–Tweedie2 0.9991 0.9927

p = 0.9 ρ ρC

Optimal 0.6 0.6
Bednorz 0.6 0.6
Baxendale 0.9060 ?
Meyn–Tweedie1 0.9967 0.9888
Meyn–Tweedie2 0.9470 0.9467

B.2. Metropolis–Hastings algorithm for the normal distribu-
tion. In this example we consider the convergence of a Metropolis–Hastings
algorithm in the case when we want to simulate π = N (0, 1) with candidate
transition probability q(x, ·) = N (x, 1). The example was studied in [11] and
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also in [14, 15]. By the algorithm definition P(x, ·) is distributed with density

p(x, y) =


1√
2π

exp

(
−(y − x)2

2

)
if |x| ≥ |y|,

1√
2π

exp

(
−(y − x)2 + y2 − x2

2

)
if |x| ≤ |y|.

The natural setting of the problem is to consider Lyapunov functions of the
type V (x) = es|x| and C = [−d, d]. Consequently (see [2] for details),

λ =
PV (d)

V (d)
, K = PV (d) = esdλ.

The computed value for ρ depends on d and s, and hence we need to find
the optimal ones. Moreover, to compare our result with the previous contri-
butions to the problem, let ν be given by

ν(dx) = c exp(−x2)1C(x)dx

for a suitable normalizing constant c. In this case, ν(C) = 1 and we have

b = b̄ =
√

2 exp(−d2)[Φ(
√

2 d)− 1/2].

In this case we work with the additional complication of the splitting construc-
tion. The results are compared in Table 2, where againBednorz1 andBednorz2
denote our Theorems 5.4 and 5.2 (depending on whether or not we use the
additional information on π(C)), Baxendale denotes what can be obtained
by Baxendale’s [2, Theorem 3.2], Coupling denotes the estimate obtained by
the coupling approach (see in [2, Section 7] and [17]), and Meyn–Tweedie the
result obtained in the original paper [11]. Note that we compare methods
where no additional assumptions on the transition probabilities are made.

Table 2

d s 1− ρ

Bednorz1 0.96 0.065 0.00000529
Bednorz2 0.92 0.169 0.00005496
Baxendale 1 0.13 0.00000063
Coupling 1.8 1.1 0.00068
Meyn–Tweedie 1.4 0.00004 0.000000016

Another possible choice of ν is

b̄ν(dx) =


1√
2π

exp

(
−(|x|+ d)2

2

)
dx if |x| ≤ d,

1√
2π

exp(−d|x| − |x|2)dx if |x| ≥ d.
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In this case

b = 2(Φ(2d)− Φ(d)) and b̄ = b+
√

2 exp(d2/4)(1− Φ(3d/
√

2)).

Using the same notation as in Table 2 we compare the results below.

Table 3

d s 1− ρ

Bednorz1 1.03 0.0733 0.00001061
Bednorz2 0.97 0.1740 0.00013637
Baxendale 1 0.16 0.0000017
Coupling 1.9 1.1 0.00187

Observe that our method is bit worse than coupling yet it is relatively simple
(does not require further examination of the Lyapunov function V ).

B.3. Contracting normals. Here we consider the family of Markov
chains with transition probability P(x, ·) = N (θx, 1−θ2) for some parameter
θ ∈ (−1, 1). This family occurs in [16] as a component of a two-component
Gibbs sampler. The example was discussed in [2], [14] and [15]. Here we take
V (x) = 1 + x2 and C = [−c, c]. Then (2) is satisfied with

λ = θ2 + 2
1− θ2

1 + c2
, K = 2 + θ2(c2 − 1).

We choose ν concentrated on C so that

b̄ν(dy) = min
x∈C

1√
2π(1− θ2)

exp

(
−(θx− y)2

2(1− θ2)

)
dy

for y ∈ C. Integrating with respect to y gives

b̄ = 2

(
Φ

(
(1 + |θ|)c√

1− θ2

)
− Φ

(
|θ|c√
1− θ2

))
.

We compare our answer Bednorz1, Bednorz2 (Theorems 5.4, 5.2 resp.) with
the coupling method Coupling and Baxendale2, an approach based on a
Kendall-type result (Theorem 3.3 in [2]) that requires invertibility of the
transition function.

Table 4

θ c −ρ
Bednorz1 0.5 1.5 0.000872023152
Bednorz1 0.75 1.2 0.000000964524
Bednorz1 0.9 1.1 0.000000000004

Bednorz2 0.5 1.5 0.002754672439
Bednorz2 0.75 1.2 0.000017954821
Bednorz2 0.9 1.1 0.000000000881
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Table 4 (cont.)

θ c −ρ
Baxendale2 0.5 1.5 0.050
Baxendale2 0.75 1.2 0.0042
Baxendale2 0.9 1.1 0.00002

Coupling 0.5 2,1 0.054
Coupling 0.75 1.7 0.0027
Coupling 0.9 1.5 0.00002

B.4. Reflecting random walk, continued. Here we slightly redefine
our first example. Let P(0, {0}) = 1 and P(0, {1}) = 1 − ε for some ε > 0.
We concentrate on the difficult case, when ε < p, studied in [15] and [5].
Note that when ε ≥ p, the chain is stochastically monotone and then the
result of Tweedie [9] applies. Let V (i) = (p/q)i/2 and C = {0} as earlier.
Then λ = 2

√
pq, K = ε + (1 − ε)

√
p/q and b = ε. In this example we can

calculate the formula for b(z):

b(z) = G(z, 0) = εz + (1− ε)zG(z, 1)(B.1)

= εz +
1− ε

2q
(1− (1− 4pqz2)1/2)

for |z| < 1/
√

4pq, where the formula for G(z, 1) is in [4]. Consequently,

π({0})−1 = b′(1) = ε+
2p(1− ε)
p− q

.

On the other hand (B.1) leads to the optimal bound of the radius on con-
vergence:

ρ =


pq + (p− ε)2

p− ε
if ε <

p− q
1 +

√
q/p

,

2
√
pq otherwise.

We compare Bednorz1, Bednorz2 (our Corollaries 2.3, 2.5) with Fort and
Baxendale that denotes respectively the result of Fort [5] and Baxendale’s
[2, Theorem 1.2]. Note that both methods use further properties of transition
probability in this particular example.

Table 5

p = 0.6 ε = 0.05 ε = 0.25 ε = 0.5

Optimal 0.9864 0.9798 0.9798
Bednorz1 0.99993 0.9994 0.99783
Bednorz2 0.99993 0.9994 0.9977
Fort 0.9997 0.9995 0.9994
Bax 0.9909 0.9798 0.9798
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Table 5 (cont.)

p = 0.7 ε = 0.05 ε = 0.25 ε = 0.5

Optimal 0.9165 0.9165 0.9165
Bednorz1 0.9992 0.9940 0.9783
Bednorz2 0.9991 0.9935 0.9779
Fort 0.9964 0.9830 0.9757
Bax 0.9731 0.9165 0.9165

p = 0.8 ε = 0.05 ε = 0.25 ε = 0.5

Optimal 0.9633 0.8409 0.8000
Bednorz1 0.9970 0.9780 0.9266
Bednorz2 0.9964 0.9751 0.9253
Fort 0.9793 0.9333 0.9333
Bax 0.9759 0.8796 0.8000

p = 0.9 ε = 0.05 ε = 0.25 ε = 0.5

Optimal 0.9559 0.7885 0.6250
Bednorz1 0.9927 0.9489 0.8408
Bednorz2 0.9899 0.9358 0.8280
Fort 0.9696 0.8539 0.7500
Bax 0.9687 0.8470 0.6817

p = 0.95 ε = 0.5 ε = 0.25 ε = 0.5

Optimal 0.9528 0.7679 0.5556
Bednorz1 0.9888 0.9249 0.7827
Bednorz2 0.9841 0.9024 0.7537
Fort 0.9564 0.7853 0.5814
Bax 0.9645 0.7853 0.5814
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