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ON SOME NONLINEAR NONHOMOGENEOUS

ELLIPTIC UNILATERAL PROBLEMS INVOLVING

NONCONTROLLABLE LOWER ORDER TERMS WITH

MEASURE RIGHT HAND SIDE

Abstract. We prove the existence of entropy solutions to unilateral prob-
lems associated to equations of the type Au − div(φ(u)) = µ ∈ L1(Ω) +

W−1,p
′(·)(Ω), where A is a Leray–Lions operator acting from W

1,p(·)
0 (Ω)

into its dual W−1,p(·)(Ω) and φ ∈ C0(R,RN ).

1. Introduction. Let Ω be a bounded open subset of RN , N ≥ 2. Let

A be a nonlinear operator of the Leray–Lions type from W
1,p(·)
0 (Ω) into its

dual W−1,p(·)(Ω) defined by Au = −div(a(x, u,∇u)), where a(x, u,∇u) is
a Carathéodory vector valued function on Ω ×R×RN which satisfies suit-
able Leray–Lions conditions. Consider now the following nonlinear Dirichlet
problem:

(1.1)

{
Au− div(φ(u)) = f − div(F ) in Ω,

u = 0 on Ω,

where φ = (φ1, . . . , φN ) ∈ (C0(R))N , f ∈ L1(Ω) and F ∈ (Lp
′(·)(Ω))N .

The study of problems with variable exponent is a new and interesting
topic which raises many mathematical difficulties. One of our motivations
for studying (1.1) comes from applications to electrorheological fluids (we
refer to [12] for more details), an important class of non-Newtonian fluids
(sometimes referred to as smart fluids). Other important applications are
related to image processing (see [7]) and elasticity (see [15]). The function
φ(u) does not belong in (L1

loc(Ω))N because φ is just assumed to be contin-
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uous on R, so that proving existence of a weak solution (i.e. in the sense of
distributions) seems to be an arduous task. To overcome this difficulty we
use the framework of entropy solutions.

The first objective of our paper is to study the problem (1.1) in the
generalized Sobolev space with general right hand side µ which lies in
L1(Ω) +W−1,p

′(·)(Ω).
The second objective is to treat unilateral problems; more precisely, the

existence of an entropy solution for the following obstacle problem:

(1.2)



u ∈ T 1,p(·)
0 (Ω), u ≥ ψ a.e. in Ω,�

Ω

a(x, u,∇u)∇Tk(u− v) dx+
�

Ω

φ(u)∇Tk(u− v) dx

≤
�

Ω

fTk(u− v) dx+
�

Ω

F∇Tk(u− v) dx

∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0,

is proved in Theorem 3.1 without assuming regularity of the obstacle ψ, in
particular ψ+ ∈ Kψ ∩ L∞(Ω) is not supposed.

The plan of the paper is as follows. In Section 2 we give some prelim-
inaries and the definition of generalized Sobolev spaces. In Section 3 we
make precise all the assumptions and give some technical results and we
establish the existence of an entropy solution to problem (1.1). In Section 4
(Appendix) we give the proof of Lemma 3.5.

2. Preliminaries. For each open bounded subset Ω of RN (N ≥ 2), we
denote

C+(Ω) = {p : Ω → R+ continuous | 1 < p− ≤ p+ <∞},
where p− = infx∈Ω p(x) and p+ = supx∈Ω p(x). We define the variable ex-

ponent Lebesgue space for p ∈ C+(Ω) by

Lp(·)(Ω) =
{
u : Ω → R measurable

∣∣∣ �
Ω

|u(x)|p(x) dx <∞
}
.

The space Lp(·)(Ω) under the norm

‖u‖p(·) = inf
{
λ > 0

∣∣∣ �
Ω

|u(x)/λ|p(x) dx ≤ 1
}

is a uniformly convex, reflexive Banach space. We denote by Lp
′(·)(Ω) the

conjugate space of Lp(·)(Ω) where 1/p(x) + 1/p′(x) = 1.

Proposition 2.1 (cf. [8]).

(i) For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∣∣∣ �
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·).
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(ii) For all p1, p2 ∈ C+(Ω) such that p1(x) ≤ p2(x) for any x ∈ Ω, we
have Lp2(·)(Ω) ↪→ Lp1(·)(Ω) and the embedding is continuous.

Proposition 2.2 (cf. [8]). If we denote

ρ(u) =
�

Ω

|u|p(x) dx ∀u ∈ Lp(·)(Ω),

then:

(i) ‖u‖p(·) < 1 (resp. = 1, > 1) ⇔ ρ(u) < 1 (resp. = 1, > 1).

(ii) ‖u‖p(·) > 1 ⇒ ‖u‖p−p(·) ≤ ρ(u) ≤ ‖u‖p+p(·) and ‖u‖p(·) < 1 ⇒ ‖u‖p+p(·) ≤
ρ(u) ≤ ‖u‖p−p(·).

(iii) ‖u‖p(·) → 0⇔ ρ(u)→ 0 and ‖u‖p(·) →∞⇔ ρ(u)→∞.

We define the variable exponent Sobolev space by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) | |∇u| ∈ Lp(·)(Ω)},

normed by

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) ∀u ∈W 1,p(·)(Ω).

We denote by W
1,p(·)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(·)(Ω) and set p∗(·) =

Np(·)
N−p(·) for p(·) < N.

Proposition 2.3 (cf. [8]).

(i) Assuming 1 < p− ≤ p+ <∞, the spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω)

are separable reflexive Banach spaces.
(ii) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω, then the embedding

W
1,p(·)
0 (Ω) ↪→↪→ Lq(·)(Ω) is compact and continuous.

(iii) There is a constant C > 0 such that ‖u‖p(·) ≤ C‖∇u‖p(·) for all

u ∈W 1,p(·)
0 (Ω).

Remark 2.1. By Proposition 2.3(iii), ‖∇u‖p(·) and ‖u‖1,p(·) are equiva-

lent norms on W
1,p(·)
0 (Ω).

Lemma 2.1 (cf. [6]). Let g∈Lr(·)(Ω) and gn∈Lr(·)(Ω) with ‖gn‖r(·)≤C
for 1 < r(·) <∞. If gn(·)→ g(·) a.e. on Ω, then gn ⇀ g in Lr(·)(Ω).

3. Main general results

3.1. Basic assumptions and some lemmas. Let a : Ω × RN × RN
→ RN be a Carathéodory function satisfying the following conditions: for
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all ξ, η ∈ RN and almost every x ∈ Ω, we have

|a(x, s, ξ)| ≤ β(k(x) + |s|p(x)−1 + |ξ|p(x)−1),(3.1)

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 ∀ξ 6= η,(3.2)

a(x, s, ξ)ξ ≥ α|ξ|p(x),(3.3)

where k(·) is a positive function in Lp
′(·)(Ω) and α and β are positive con-

stants. Finally, consider the convex set

Kψ = {u ∈W 1,p(·)
0 (Ω) | u ≥ ψ a.e. in Ω}

where ψ is a measurable function such that

(3.4) Kψ ∩ L∞(Ω) 6= ∅.
We suppose that

φ ∈ C0(R,RN ),(3.5)

f ∈ L1(Ω),(3.6)

F ∈ (Lp
′(·)(Ω))N ,(3.7)

and p ∈ C+(Ω) is such that there is a vector l ∈ RN −{0} such that for any
x ∈ Ω,

(3.8) g(t) = p(x+ tl) is monotone for t ∈ Ix = {t | x+ tl ∈ Ω}.
Lemma 3.1 (cf. [6]). Assume that (3.1)–(3.3) hold, and let (un)n be a

sequence in W
1,p(·)
0 (Ω) such that un ⇀ u in W

1,p(·)
0 (Ω) and

(3.9)
�

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx→ 0.

Then un → u in W
1,p(·)
0 (Ω).

Lemma 3.2. Assume that (3.8) holds. Then there is a constant C > 0
such that

(3.10) ρ(u) ≤ Cρ(∇u) ∀u ∈W 1,p(·)
0 (Ω)− {0}.

Proof. Let

λ∗ = inf
u∈W 1,p(·)

0 (Ω)−{0}

	
Ω |∇u|

p(x) dx	
Ω |u|p(x) dx

.

By [9, Theorem 3.3], we have λ∗ > 0, which implies that

0 < λ∗ ≤
	
Ω |∇u|

p(x) dx	
Ω |u|p(x) dx

∀u ∈W 1,p(·)
0 (Ω)− {0};

consequently, there is a constant C > 0 such that ρ(u) ≤ Cρ(∇u) for all

u ∈W 1,p(·)
0 (Ω)− {0}.
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Remark 3.1. The inequality (3.10) holds true if we assume that there
exists a function ξ ≥ 0 such that ∇p∇ξ ≥ 0, with |∇ξ| 6= 0 in Ω (cf. [3]).

Lemma 3.3. Let F : R → R be a uniformly Lipschitz function with

F (0) = 0, and p ∈ C+(Ω). If u ∈ W
1,p(·)
0 (Ω), then F (u) ∈ W

1,p(·)
0 (Ω);

moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)

∂xi
=

{
F ′(u) ∂u∂xi a.e. in {x ∈ Ω | u(x) /∈ D},
0 a.e. in {x ∈ Ω | u(x) ∈ D}.

Proof. Consider first the case of F ∈ C1(R) and F ′ ∈ L∞(R). Let u ∈
W

1,p(·)
0 (Ω). Since C∞0 (Ω)

W 1,p(·)(Ω)
= W

1,p(·)
0 (Ω), there are un ∈ C∞0 (Ω)

such that un → u in W
1,p(·)
0 (Ω), so un → u a.e. in Ω and ∇un → ∇u

a.e. in Ω. Then F (un) → F (u) a.e. in Ω. On the other hand, |F (un)| =
|F (un)− F (0)| ≤ ‖F ′‖∞|un|, so

|F (un)|p(x) ≤ (‖F ′‖∞ + 1)p+ |un|p(x),∣∣∣∣∂F (un)

∂xi

∣∣∣∣p(x) =

∣∣∣∣F ′(un)
∂un
∂xi

∣∣∣∣p(x) ≤M ∣∣∣∣∂un∂xi

∣∣∣∣p(x),
where M = (‖F ′‖∞+1)p+ . We conclude that F (un) is bounded in W

1,p(·)
0 (Ω)

and so F (un) converges to ν weakly in W
1,p(·)
0 (Ω). Then F (un) converges to

ν strongly in Lq(·)(Ω) with 1 < q(x) < p∗(x) and p∗(x) = Np(x)/(N − p(x)),
and since F (un)→ ν a.e. in Ω, we obtain

ν = F (u) ∈W 1,p(·)
0 (Ω).

Let F : R→ R be a uniformly Lipschitz function. Then Fn = F ∗ϕn → F
uniformly on each compact set, where ϕn is a regularizing sequence. We
conclude that Fn ∈ C1(R) and F ′n ∈ L∞(R). From the first part, we have

Fn(u) ∈W 1,p(·)
0 (Ω) and Fn(u)→ F (u) a.e. in Ω. Since (Fn(u))n is bounded

in W
1,p(·)
0 (Ω), it follows that Fn(u) ⇀ ν weakly in W

1,p(·)
0 (Ω) and a.e. in Ω,

so ν = F (u) ∈W 1,p(·)
0 (Ω).

Lemma 3.4. Let Ω be a bounded open subset of RN (N ≥ 1). If u ∈
(W

1,p(·)
0 (Ω))N then �

Ω

div(u) dx = 0.

Proof. Fix u=(u1, . . . , uN )∈(W
1,p(·)
0 (Ω))N . We have D(Ω)=W

1,p(·)
0 (Ω)

and thus each ui can be approximated by a suitable sequence uik ∈ D(Ω)

such that uik converges to ui strongly in W
1,p(·)
0 (Ω). Moreover, as uik ∈
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D(Ω) ⊂ D(Ω), the Green formula gives

(3.11)
�

Ω

∂uik
∂xi

dx =
�

∂Ω

uik~n ds = 0.

On the other hand, ∂uik/∂xi → ∂ui/∂xi strongly in Lp(·)(Ω). Thus ∂uik/∂xi
→ ∂ui/∂xi strongly in L1(Ω), which gives

	
Ω div(u) dx = 0 by (3.11).

3.2. General existence result. We now state our main result:

Theorem 3.1. Assume that (3.1)–(3.8) hold true. Then there exists a
solution of the unilateral problem

(P )



u ∈ T 1,p(·)
0 (Ω), u ≥ ψ a.e. in Ω,�

Ω

a(x, u,∇u)∇Tk(u− v) dx+
�

Ω

φ(u)∇Tk(u− v) dx

≤
�

Ω

fTk(u− v) dx+
�

Ω

F∇Tk(u− v) dx,

∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0,

where T
1,p(·)
0 (Ω) = {u : Ω → R measurable | Tk(u) ∈ W

1,p(·)
0 (Ω) for all

k > 0}.

Step 1: The approximate problem

Theorem 3.2. Let (fn)n be a sequence in W−1,p
′(·)(Ω)∩L1(Ω) such that

fn → f in L1(Ω) and ‖fn‖1 ≤ ‖f‖1, and consider the approximate problem

(3.12)

(Pn)


un ∈ Kψ,

〈Aun, un − v〉+
�

Ω

φn(un)∇(un − v) dx

≤
�

Ω

fn(un − v) dx+
�

Ω

F∇(un − v) dx ∀v ∈ Kψ ∩ L∞(Ω),

where φn(s) = φ(Tn(s)). Assume that (3.1)–(3.8) hold true. Then there exists
a weak solution un of problem (Pn).

Proof. We define the operator Gn=−div φn : W
1,p(·)
0 (Ω)→W−1,p

′(·)(Ω)
such that 〈Gn(u), v〉 = −〈div φn(u), v〉 =

	
Ω φn(u)∇v dx for all u, v ∈

W
1,p(·)
0 (Ω). From the Hölder inequality we have∣∣∣ �

Ω

φn(u)∇v dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖φn(u)‖p′(·)‖∇v‖p(·)
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≤
(

1

p−
+

1

p′−

)( �

Ω

|φ(Tn(u))|p′(x) dx
)γ0
‖v‖1,p(·)

≤
(

1

p−
+

1

p′−

)(
meas(Ω) ·

(
sup
|s|≤n

|φ(s)|+ 1
)p+)γ0

· ‖v‖1,p(·)

≤ C0‖v‖1,p(·)

where

γ0 =

{
1/p′− if ‖φn(u)‖p′(·) > 1,

1/p′+ if ‖φn(u)‖p′(·) ≤ 1,

and C0 is a constant which depends only on φ, n and p.

Lemma 3.5. The operator Bn = A + Gn is pseudo-monotone from the

space W
1,p(·)
0 (Ω) into W−1,p

′(·)(Ω). Moreover, Bn is coercive in the following
sense: there exists v0 ∈ Kψ such that

〈Bnv, v − v0〉
‖v‖1,p(·)

→∞ if ‖v‖1,p(·) →∞, v ∈ Kψ.

Proof. See the Appendix.

In view of Lemma 3.5, there exists a solution un ∈W 1,p(·)
0 (Ω) of problem

(Pn) (cf. [11]).

Step 2: A priori estimate

Proposition 3.1. Assume that (3.1)–(3.8) hold true and let un be a
solution of problem (Pn). Then for all k ≥ 0, there exists a constant c(k)
(which does not depend on n) such that

(3.13)
�

Ω

|∇Tk(un)|p(x)dx ≤ c(k).

Proof. Let v0 ∈ Kψ ∩ L∞(Ω) and let k ≥ ‖v0‖∞ be such that v =
Th(un − Tk(un − v0)) ∈ Kψ ∩ L∞(Ω). Choosing v as a test function in (Pn)
and letting h→∞, we obtain, for n large enough (n ≥ k + ‖v0‖∞),

�

Ω

a(x, un,∇un)∇Tk(un − v0) dx+
�

Ω

φ(un)∇Tk(un − v0) dx

≤
�

Ω

fnTk(un − v0) dx+
�

Ω

F∇Tk(un − v0) dx.

This implies that
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�

Ω

a(x, un,∇un)∇Tk(un − v0) dx

≤
�

{|un−v0|<k}

|φ(Tk+‖v0‖∞(un))| |∇un| dx

+
�

{|un−v0|<k}

|φ(Tk+‖v0‖∞(un))| |∇v0| dx

+ k‖f‖L1 +
�

{|un−v0|<k}

|F | |∇un| dx+
�

{|un−v0|<k}

|F | |∇v0| dx.

Thus,
�

{|un−v0|<k}

a(x, un,∇un)∇un dx

≤
�

{|un−v0|<k}

|a(x, un,∇un)| |∇v0| dx

+
�

{|un−v0|<k}

|φ(Tk+‖v0‖∞(un))| |∇un| dx

+
�

{|un−v0|<k}

|φ(Tk+‖v0‖∞(un))| |∇v0| dx

+ k‖f‖L1 +
�

{|un−v0|<k}

|F | |∇un| dx+
�

{|un−v0|<k}

|F | |∇v0| dx.

Since φ ∈ C0(R,RN ) and F ∈ (Lp
′(·)(Ω))N , using Young’s inequality we

have

α
�

{|un−v0|<k}

|∇un|p(x) dx ≤ c0
�

{|un−v0|<k}

|a(x, un,∇un)|p′(x) dx

+
α

3

�

{|un−v0|<k}

|∇un|p(x) dx+ c(k),

which implies, from (3.1) and (3.3),

α
�

{|un−v0|<k}

|∇un|p(x) dx ≤
α

6

�

{|un−v0|<k}

(|un|p(x) + |∇un|p(x)) dx

+
α

3

�

{|un−v0|<k}

|∇un|p(x) dx+ c(k),

hence
α

2

�

{|un−v0|<k}

|∇un|p(x) dx ≤ c(k),
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where c(k) is a constant which depends on k. Since {|un| ≤ k} ⊂ {|un−v0| ≤
k + ‖v0‖∞}, we deduce that

	
Ω |∇Tk(un)|p(x)dx ≤ c(k).

Step 3: Strong convergence of truncations

Proposition 3.2. Let un be a solution of problem (Pn). Then there
exists a measurable function u such that

Tk(un)→ Tk(u) strongly in W
1,p(·)
0 (Ω).

We will use the following lemma:

Lemma 3.6. Assume that (3.1)–(3.8) hold true and let un be a solution
of problem (Pn). Then

(3.14)
�

Ω

|∇Tk(un − Th(un))|p(x) dx ≤ kc

for all k > h > ‖v0‖∞, where c is a constant that does not depend on k, and
v0 ∈ Kψ ∩ L∞(Ω).

Proof. Let l ≥ ‖v0‖∞. It is easy to see that v = Tl(un−Tk(un−Th(un)))
∈ Kψ ∩L∞(Ω). By using v as a test function in (Pn) and letting l→∞, we
obtain
�

Ω

a(x, un,∇un)∇Tk(un − Th(un)) dx+
�

Ω

φ(Th(un))∇Tk(un − Th(un)) dx

≤
�

Ω

fnTk(un − Th(un)) dx+
�

Ω

F∇Tk(un − Th(un)) dx.

Let us define

(3.15) χhk(t) =

{
1 if h < |t| < h+ k,

0 otherwise.

We consider θ(t) = φ(t)χhk(t) and θ̃(t) =
	t
0 θ(s) ds. Then by Lemma 3.4,

�

Ω

φ(un)∇Tk(un − Th(un)) dx =
�

Ω

φ(un)χhk(un)∇un dx

=
�

Ω

θ(un)∇un dx =
�

Ω

div(θ̃(un)) dx = 0.

Thus, the second term on the left side of (3.2) vanishes for n large enough,
which implies that
�

Ω

a(x,∇un)∇Tk(un − Th(un)) dx ≤ k‖f‖L1(Ω) +
�

Ω

F∇Tk(un − Th(un)) dx.
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By Young’s inequality,
�

Ω

a(x, un,∇un)∇Tk(un − Th(un)) dx

≤ k‖f‖L1(Ω) + c1 +
α

2

�

Ω

|∇Tk(un − Th(un))|p(x) dx.

Since ∇Tk(un − Th(un)) = ∇unχ(hk) we have
�

Ω

a(x, un,∇Tk(un − Th(un)))∇Tk(un − Th(un)) dx

≤ kc2 +
α

2

�

Ω

|∇Tk(un − Th(un))|p(x) dx.

Finally, from (3.3), we deduce that
	
Ω |∇Tk(un−Th(un))|p(x)dx ≤ kc, which

concludes the proof of Lemma 3.6.

Proof of Proposition 3.2. We will show first that (un)n is a Cauchy se-
quence in measure. Let k > 2h > 2‖v0‖∞. Then

kmeas{|un − Th(un)| > k} ≤
�

{|un−Th(un)|>k}

|Tk(un − Th(un))| dx.

By Hölder’s inequality, Poincaré’s inequality and (3.14) one has

kmeas{|un − Th(un)| > k}

≤
�

Ω

|Tk(un − Th(un))| dx ≤
(

1

p−
+

1

p′−

)
‖1‖p′(·)‖Tk(un − Th(un))‖p(·)

≤
(

1

p−
+

1

p′−

)
(meas(Ω) + 1)1/p

′
−‖Tk(un − Th(un))‖p(·) ≤ C4k

1/γ ,

where

(3.16) γ =

{
1/p− if ‖∇Tk(un − Th(un))‖p(·) > 1,

1/p+ if ‖∇Tk(un − Th(un))‖p(·) ≤ 1.

Finally, for k > 2h > 2‖v0‖∞, we have

(3.17) meas{|un| > k} ≤ meas{|un − Th(un)| > k − h} ≤ c

(k − h)1−1/γ
,

so

(3.18) meas({|un| > k} → 0 as k →∞,
and, for all δ > 0,

meas{|un − um| > δ} ≤ meas{|un| > k}
+ meas{|um| > k}+ meas{|Tk(un)− Tk(um)| > δ}.



Nonlinear elliptic unilateral problems 207

By (3.18), for each ε > 0, there exists k0 such that

(3.19) meas{|un| > k} ≤ ε/3 and meas{|um| > k} ≤ ε/3 ∀k ≥ k0.

By (3.13), the sequence (Tk(un))n is bounded in W
1,p(·)
0 (Ω), so a subsequence

(not relabeled) converges to ηk weakly in W
1,p(·)
0 (Ω) as n→∞, and by the

compact embedding, Tk(un) converges to ηk strongly in Lp(·)(Ω) a.e. in Ω.
Thus, we can assume that (Tk(un))n is a Cauchy sequence in measure in Ω.
Then there exists n0 which depends on δ and ε such that

(3.20) meas{|Tk(un)− Tk(um)| > δ} ≤ ε/3 ∀m,n ≥ n0 and k ≥ k0.
In view of (3.19) and (3.20), we obtain

∀δ > 0, ∃ε > 0 : meas{|un − um| > δ} ≤ ε ∀n,m ≥ n0(k0, δ).
Thus (un)n is a Cauchy sequence in measure in Ω, so there exists a subse-
quence still denoted un which converges almost everywhere to some mea-
surable function u. Then un converges to u a.e. in Ω, and by Lemma 2.1,
we obtain:

(3.21)

{
Tk(un) ⇀ Tk(u) in W

1,p(·)
0 (Ω),

Tk(un)→ Tk(u) in Lp(·)(Ω) and a.e. in Ω.

Now, we choose v ≡ Tl(un − hm(un − v0)(Tk(un) − Tk(u))) as a test
function in (Pn), where

(3.22) hm(s) =


1 if |s| ≤ m,
0 if |s| ≥ m+ 1,

m+ 1− |s| if m ≤ |s| ≤ m+ 1.

For n > m+ 1, by letting l→∞ we get
�

Ω

a(x, un,∇un)∇
(
hm(un − v0)(Tk(un)− Tk(u))

)
dx

+
�

Ω

φ(un)∇
(
hm(un − v0)(Tk(un)− Tk(u))

)
dx

≤
�

Ω

fnhm(un − v0)(Tk(un)− Tk(u)) dx

+
�

Ω

F∇
(
hm(un − v0)(Tk(un)− Tk(u))

)
dx,

which implies that
�

Ω

a(x, un,∇un)∇(Tk(un)− Tk(u))hm(un − v0) dx

+
�

Ω

a(x, un,∇un)∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx
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+
�

Ω

φ(un)∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx

+
�

Ω

φ(un)∇(Tk(un)− Tk(u))hm(un − v0) dx

≤
�

Ω

fnhm(un − v0)(Tk(un)− Tk(u)) dx

+
�

Ω

F∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx

+
�

Ω

F∇(Tk(un)− Tk(u))hm(un − v0) dx.

By almost everywhere convergence of un, hm(un− v0)(Tk(un)− Tk(u)) con-
verges to 0 weakly∗ in L∞(Ω) as n→∞, so

(3.23)
�

Ω

fnhm(un − v0)(Tk(un)− Tk(u)) dx = ε(n).

Moreover, by Lebesgue’s theorem, φ(un)hm(un−v0) tends to φ(u)hm(u−v0)
strongly in Lp

′(·)(Ω), and since ∇Tk(un) converges to ∇Tk(u) weakly in
Lp(·)(Ω) we can deduce that

(3.24)
�

Ω

φ(un)∇(Tk(un)− Tk(u))hm(un − v0) dx = ε(n).

Similarly,

(3.25)
�

Ω

F∇(Tk(un)− Tk(u))hm(un − v0) dx = ε(n).

On the other hand,∣∣∣ �
Ω

F∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx
∣∣∣

=
∣∣∣ �
Ω

F∇(un − v0)(Tk(un)− Tk(u))χ{m<|un−v0|<m+1} dx
∣∣∣

≤
�

Ω

|F∇(TM (un)− v0)(Tk(un)− Tk(u))| dx

with M = m+ 1 + ‖v0‖∞. Then by Lebesgue’s theorem, F (Tk(un)− Tk(u))
converges to 0 strongly in Lp

′(·)(Ω), and since ∇(TM (un)− v0) converges to
∇(TM (u)− v0) weakly in (Lp(·)(Ω))N , we have

(3.26)
�

Ω

F∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx = ε(n).

Similarly,

(3.27)
�

Ω

φ(un)∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx = ε(n).
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We claim that

(3.28)
�

Ω

a(x, un,∇un)∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx = ε(n).

Indeed,∣∣∣ �
Ω

a(x, un,∇un)∇(un − v0)h′m(un − v0)(Tk(un)− Tk(u)) dx
∣∣∣

=
∣∣∣ �

{m≤|un−v0|≤m+1}

a(x, un,∇un)∇(un − v0)(Tk(un)− Tk(u)) dx
∣∣∣

≤ 2k
�

{m≤|un−v0|≤m+1}

|a(x, un,∇un)∇(un − v0)| dx

≤ 2k
( �

{l≤|un|≤l+s}

a(x, un,∇un)∇un dx+
�

{l≤|un|≤l+s}

|a(x,∇un)| |∇v0| dx
)

where l = m−‖v0‖∞ and s = 2‖v0‖∞+1. We take v ≡ un−Ts(un−Tl(un))
as a test function in (Pn) to get

�

{l≤|un|≤l+s}

a(x, un,∇un)∇un dx+
�

Ω

div(θ̃s(un)) dx

≤
�

Ω

fnTs(un − Tl(un)) dx+
�

Ω

F∇Ts(un − Tl(un)) dx

where θ̃s(t) =
	t
0 θs(z) dz and θs(z) = φ(z)χsl(z) with

χsl =

{
1, l ≤ t ≤ l + s,

0, otherwise.

Using the fact that θ̃(un) ∈ (W
1,p(·)
0 (Ω))N and Lemma 3.4, we get

(3.29)
�

{l≤|un|≤l+s}

a(x, un,∇un)∇un dx

≤ s
�

{|un|>l}

|fn| dx+
�

{l≤|un|≤l+s}

F∇un dx.

Firstly, we will show that

�

{l≤|un|≤l+s}

F∇un dx = ε(n,m).
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Indeed, by (3.29) and Young’s inequalities, we get
�

{l≤|un|≤l+s}

a(x, un,∇un)∇un dx ≤ s
�

{|un|>l}

|fn| dx+ c
�

{|un|>l}

|F |p′(x) dx

+
α

2

�

{l≤|un|≤l+s}

|∇un|p(x) dx,

which yields, thanks to (3.3),

α

2

�

{l≤|un|≤l+s}

|∇un|p(x) dx ≤ s
�

{|un|>l}

|fn| dx+ c
�

{|un|>l}

|F |p′(x) dx,

which implies that
�

Ω

|∇Ts(un − Tl(un))|p(x)dx ≤ 2s

α

�

{|un|>l}

|fn| dx+
2c

α

�

{|un|>l}

|F |p′(x) dx.

Consequently, by the strong convergence in L1(Ω) of fn and since F ∈
Lp
′(·)(Ω), by Lebesgue’s theorem we have

lim
l→∞

lim
n→∞

�

Ω

|∇Ts(un − Tl(un))|p(x) dx = 0,

which implies by Hölder’s inequality, that

lim
l→∞

lim
n→∞

�

Ω

F∇Ts(un − Tl(un)) dx = 0.

Hence

(3.30)
�

{l≤|un|≤l+s}

F∇undx = ε(n, l).

Finally by (3.29) and (3.30) we deduce

(3.31)
�

{l≤|un|≤l+s}

a(x, un,∇un)∇un dx = ε(n, l).

On the other hand,
�

{l≤|un|≤l+s}

|a(x, un,∇un)| |∇v0| dx

≤ c
( �

Ω

|a(x,∇Ts(un − Tl(un)))|p′(x) dx
)γ
‖∇v0χ{|un|>l}‖p(·)

≤ c
( �

Ω

(
|k(x) + |∇Ts(un − Tl(un))|p(x) + |Ts(un − Tl(un))|p(x)

)
dx
)γ

× ‖∇v0χ{|un|>l}‖p(·)
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where

γ =

{
1/p′− if ‖a(x,∇Ts(un − Tl(un)))‖p′(·) ≥ 1,

1/p′+ if ‖a(x,∇Ts(un − Tl(un)))‖p′(·) < 1.

Furthermore by Lemma 3.6, we have
�

Ω

|∇Ts(un − Tl(un))|p(x) dx ≤ c(s),(3.32)

�

Ω

|Ts(un − Tl(un))|p(x) dx ≤ c′(s),(3.33)

where c(s) and c′(s) are constants independent of l. By (3.2), (3.32) and
(3.33), we obtain

(3.34)
�

{l≤|un|≤l+s}

|a(x, un,∇un)| |∇v0| dx = ε(n, l).

Finally, (3.31) and (3.34) yield the estimate (3.28). Combining (3.23)–(3.28)
and l = m− ‖v0‖∞, we get

(3.35)
�

Ω

a(x, un,∇un)∇(Tk(un)− Tk(u))hm(un − v0) dx ≤ ε(n,m).

Splitting the first integral on the left hand side of (3.35) where |un| ≤ k and
|un| > k, we can write
�

Ω

a(x, un,∇un)∇(Tk(un)− Tk(u))hm(un − v0) dx

=
�

{|un|≤k}

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))hm(un − v0) dx

−
�

{|un|>k}

a(x, un,∇un)∇Tk(u)hm(un − v0) dx

≥
�

{|un|≤k}

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))hm(un − v0) dx

−
�

Ω

|a(x, TM (un),∇TM (un))| |∇Tk(u)|χ{|un|>k} dx

where M = m + ‖v0‖∞ + 1. Since a(x, TM (un),∇TM (un)) is bounded in
(Lp

′(·)(Ω))N , for a subsequence we have a(x, TM (un),∇TM (un)) ⇀ lm
weakly in (L∞(Ω))N as n → ∞. Since

∣∣∂Tk(un)
∂xi

∣∣χ{|un|>k} converges to∣∣∂Tk(u)
∂xi

∣∣χ{|u|>k} = 0 strongly in Lp(·)(Ω), we get

(3.36)
�

Ω

|a(x, TM (un),∇TM (un))| |∇Tk(u)|χ{|un|>k} dx = ε(n).
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From (3.35) and (3.36) we have

(3.37)
�

Ω

a(x, Tk(un),∇Tk(un))∇(Tk(un)−Tk(u))hm(un−v0) dx ≤ ε(n,m).

It is easy to see that

(3.38)
�

Ω

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))hm(un − v0) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx

+
�

Ω

a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u))hm(un − v0) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx

+
�

Ω

a(x, Tk(un),∇Tk(u))∇Tk(un)hm(un − v0) dx

−
�

Ω

a(x, Tk(un),∇Tk(u))∇Tk(u)hm(un − v0) dx.

By the continuity of the Nemytskĭı operator, a(x, Tk(un),∇Tk(u))hm(un−v0)
converges to a(x, Tk(u),∇Tk(u))hm(u − v0) strongly in (Lp

′(·)(Ω)N while
∂Tk(un)/∂xi converges to ∂Tk(u)/∂xi weakly in Lp(·)(Ω). The second and
third terms of the right hand side of (3.38) tend respectively to

	
Ω a(x, Tk(u),

∇Tk(u))∇Tk(u)hm(u − v0) dx and −
	
Ω a(x, Tk(u),∇Tk(u))∇Tk(u)hm(u −

v0) dx. So (3.37) and (3.38) yield

(3.39)
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx ≤ ε(n,m),

which implies that

(3.40)�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx

+
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))(1− hm(un − v0)).
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Since 1−hm(un−v0) = 0 in {x ∈ Ω | |un−v0| < m} and {x ∈ Ω | |un| < k}
⊂ {x ∈ Ω | |un − v0| < m} for m large enough, we deduce from (3.40) that

�

Ω

[a(x, Tk(un),∇Tk(un))− a(x,∇Tk(u))]∇(Tk(un)− Tk(u)) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x,∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx

−
�

{|un|>k}

a(x, Tk(un),∇Tk(u))∇Tk(u) dx.

It is easy to see that the last term tends to zero as n → ∞, which implies
that
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u))hm(un − v0) dx
+ ε(n).

Combining (3.39) and (3.41), we have

�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) dx

≤ ε(n,m).

By passing to the lim sup over n and letting m tend to infinity, we obtain

lim sup
n→∞

�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×∇(Tk(un)− Tk(u)) dx = 0.

Thus by Lemma 3.1, Tk(un) converges to Tk(u) strongly in W
1,p(·)
0 (Ω).

Proof of Theorem 3.1. Let v ∈ Kψ∩L∞(Ω) and take Tl(un−Tk(un−v))
as a test function in (Pn). Letting l →∞, we can write, for n large enough
(n > k + ‖v‖∞),

�

Ω

a(x, un,∇un)∇Tk(un − v) dx+
�

Ω

φ(un)∇Tk(un − v) dx

≤
�

Ω

fnTk(un − v) dx+
�

Ω

F∇Tk(un − v) dx.
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We get
�

Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx

+
�

Ω

φ(Tk+‖v‖∞(un))∇Tk(un − v) dx

≤
�

Ω

fnTk(un − v) dx+
�

Ω

F∇Tk(un − v) dx.

By Fatou’s lemma and the fact that a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un)) con-

verges to a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u)) weakly in (Lp
′(·)(Ω))N , it is easy

to see that
�

Ω

a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))∇Tk(u−v) dx

≤ lim inf
n→∞

�

Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx.

On the other hand, by using F ∈ (Lp
′(·)(Ω))N , we deduce that

(3.41)
�

Ω

F∇Tk(un − v) dx→
�

Ω

F∇Tk(u− v) dx as n→∞.

Moreover, by Lebesgue’s theorem, φ(Tk+‖v‖∞(un)) tends to φ(Tk+‖v‖∞(u))

strongly in (Lp
′(·)(Ω))N as n→∞, and ∇Tk(un−v) converges to ∇Tk(u−v)

weakly in (Lp(·)(Ω))N , so that

(3.42)
�

Ω

φ(Tk+‖v‖∞(un))∇Tk(un − v) dx

→
�

Ω

φ(Tk+‖v‖∞(u))∇Tk(u− v) dx as n→∞.

Similarly,

(3.43)
�

Ω

fnTk(un − v) dx→
�

Ω

fTk(u− v) dx.

By using (3.43), (3.42), we can pass to the limit in (3.41) to obtain
�

Ω

a(x,∇un)∇Tk(un − v) dx+
�

Ω

φ(un)∇Tk(un − v) dx

≤
�

Ω

fnTk(un − v) dx+
�

Ω

F∇Tk(un − v) dx,

which completes the proof of Theorem 3.1.

Remark 3.2. Note that the condition (3.8) is used essentially to prove
the coercivity of the operator Bn.
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We can prove the coercivity of Bn if we replace the condition (3.8) by

(3.44) p+ − p− < 1.

This is the objective of the following theorem:

Theorem 3.3. Assume that (3.1)–(3.7) and (3.44) hold true. Then there
exists a solution of problem (P ).

Proof. Following the same steps of argument of the proof of Theorem
3.1, it suffices to show the coercivity of the operator Bn.

Indeed, let v0 ∈ Kψ. From the Hölder inequality and the growth condi-
tion, we have

〈Av, v0〉 =
�

Ω

a(x, v,∇v)∇v0 dx

≤ C
(

1

p−
+

1

p′−

)( �

Ω

|a(x, v,∇v)|p′(x) dx
)γ′
‖v0‖W 1,p(·)

0 (Ω)

≤ C
(

1

p−
+

1

p′−

)
‖v0‖W 1,p(·)

0 (Ω)

( �

Ω

β(k(x)p
′(x) + |v|p(x) + |∇v|p(x)) dx

)γ′
≤ C0(C1 + ρ(v) + ρ(∇v))γ

′ ≤ C0(C1 + C(ρ(∇v))p+/p− + ρ(∇v))γ
′

where

(3.45) γ′ =

{
1/p′− if ‖a(x, v,∇v)‖Lp′(·)(Ω) > 1,

1/p′+ if ‖a(x, v,∇v)‖Lp′(·)(Ω) ≤ 1.

From (3.3) we have

(3.46)
〈Av, v〉
‖v‖1,p(·)

− 〈Av, v0〉
‖v‖1,p(·)

≥ 1

‖v‖1,p(·)
(
αρ(∇v)− C0(C1 + C(ρ(∇v))p+/p− + ρ(∇v))γ

′)
.

Since ‖v‖1,p(·) →∞ we have ‖a(x, v,∇v)‖Lp′(·)(Ω) > 1; then γ′ = 1/p′−, and

as p+ − p− < 1, we have p+
p′−p−

< 1, so

〈Av, v〉
‖v‖1,p(·)

− 〈Av, v0〉
‖v‖1,p(·)

→∞ as ‖v‖1,p(·) →∞.

Since 〈Gnv, v〉/‖v‖1,p(·) and 〈Gnv, v0〉/‖v‖1,p(·) are bounded, we have

〈Bnv, v − v0〉
‖v‖1,p(·)

=
〈Av, v − v0〉
‖v‖1,p(·)

+
〈Gnv, v〉
‖v‖1,p(·)

− 〈Gnv, v0〉
‖v‖1,p(·)

→∞

as ‖v‖1,p(·) →∞.
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4. Appendix

Proof of Lemma 3.5. Let v0 ∈ Kψ. From the Hölder inequality and the
growth condition, we have

〈Av, v0〉 =
�

Ω

a(x, v,∇v)∇v0 dx

≤ C
(

1

p−
+

1

p′−

)( �

Ω

|a(x, v,∇v)|p′(x) dx
)γ′

dx ‖v0‖W 1,p(·)
0 (Ω)

≤ C
(

1

p−
+

1

p′−

)
‖v0‖W 1,p(·)

0 (Ω)

( �

Ω

β(k(x)p
′(x) + |v|p(x) + |∇v|p(x)) dx

)γ′
≤ C0(C1 + ρ(v) + ρ(∇v))γ

′ ≤ C0(C1 + Cρ(∇v) + ρ(∇v))γ
′

where

(4.1) γ′ =

{
1/p′− if ‖a(x, v,∇v)‖Lp′(·)(Ω) ≥ 1,

1/p′+ if ‖a(x, v,∇v)‖Lp′(·)(Ω) ≤ 1.

From (3.3) we have

(4.2)
〈Av, v〉
‖v‖1,p(·)

− 〈Av, v0〉
‖v‖1,p(·)

≥ 1

‖v‖1,p(·)
(
αρ(∇v)− C0(C1 + Cρ(∇v) + ρ(∇v))γ

′)
.

Hence ρ(∇v)/‖v‖1,p(·) →∞ as ‖v‖1,p(·) →∞, and we have

〈Av, v〉
‖v‖1,p(·)

− 〈Av, v0〉
‖v‖1,p(·)

→∞ as ‖v‖1,p(·) →∞.

Since 〈Gnv, v〉/‖v‖1,p(·) and 〈Gnv, v0〉/‖v‖1,p(·) are bounded, we have

〈Bnv, v − v0〉
‖v‖1,p(·)

=
〈Av, v − v0〉
‖v‖1,p(·)

+
〈Gnv, v〉
‖v‖1,p(·)

− 〈Gnv, v0〉
‖v‖1,p(·)

→∞

as ‖v‖1,p(·) →∞. It remains to show that Bn is pseudo-monotone.

Let (uk)k be a sequence in W
1,p(·)
0 (Ω) such that

(4.3)


uk ⇀ u in W

1,p(·)
0 (Ω),

Bnuk ⇀ χ in W−1,p
′(·)(Ω),

lim sup
k→∞

〈Bnuk, uk〉 ≤ 〈χ, u〉.

We will prove that χ = Bnu and 〈Bnuk, uk〉 converges to 〈χ, u〉 as k →∞.
Firstly, since W

1,p(·)
0 (Ω) ↪→↪→ Lp(x)(Ω), we have uk → u in Lp(·)(Ω)

for a subsequence still denoted by (uk)k. Since (uk)k is a bounded se-

quence in W
1,p(·)
0 (Ω), by the growth condition, (a(x, uk,∇uk))k is bounded
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in (Lp
′(·)(Ω))N , therefore there exists ϕ ∈ (Lp

′(·)(Ω))N such that

(4.4) a(x, uk,∇uk) ⇀ ϕ in (Lp
′(·)(Ω))N as k →∞.

Then φn = φ ◦Tn is a continuous function, and since uk → u in Lp(·)(Ω) we
have

(4.5) φn(uk)→ φn(u) in (Lp
′(·)(Ω))N as k →∞.

It is clear that, for all v ∈W 1,p(·)
0 (Ω),

〈χ, v〉 = lim
k→∞
〈Bnuk, v〉(4.6)

= lim
k→∞

�

Ω

a(x, uk,∇uk)∇v dx− lim
k→∞

�

Ω

φn(uk)∇v dx

=
�

Ω

ϕ∇v dx−
�

Ω

φn(u)∇v dx.

On the one hand, by (4.5) we have

(4.7)
�

Ω

φn(uk)∇uk dx→
�

Ω

φn(u)∇u dx as k →∞.

Combining (4.3) and (4.6), we have

lim sup
k→∞

〈Bn(uk), uk〉 = lim sup
k→∞

{ �

Ω

a(x, uk,∇uk)∇uk dx−
�

Ω

φn(uk)∇uk dx
}(4.8)

≤
�

Ω

ϕ∇u dx−
�

Ω

φn(u)∇u dx.

Therefore

(4.9) lim sup
k→∞

�

Ω

a(x, uk,∇uk)∇uk dx ≤
�

Ω

ϕ∇u dx.

On the other hand, thanks to (3.3), we have

(4.10)
�

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx > 0,

so�

Ω

a(x, uk,∇uk)∇uk dx ≥ −
�

Ω

a(x, uk,∇u)∇u dx

+
�

Ω

a(x, uk,∇uk)∇u dx+
�

Ω

a(x, uk,∇u)∇uk dx,

and by (4.4), we get

lim inf
k→∞

�

Ω

a(x, uk,∇uk)∇uk dx ≥
�

Ω

ϕ∇u dx.
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This implies, by using (4.9), that

(4.11) lim
k→∞

�

Ω

a(x, uk,∇uk)∇uk dx =
�

Ω

ϕ∇u dx.

By combining (4.6), (4.7) and (4.11), we find that 〈Bnuk, uk〉 converges to
〈χ, u〉 as k →∞.

On the other hand, by (4.11) and the fact that a(x, uk,∇u) converges to
a(x, u,∇u) in (Lp

′(·)(Ω))N we deduce that

lim
k→∞

�

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx = 0,

and by Lemma 3.1, uk converges to u in W
1,p(·)
0 (Ω) and a.e. in Ω. We deduce

that a(x, uk,∇uk) converges to a(x, uk,∇u) in (Lp
′(·)(Ω))N , and φn(uk) con-

verges to φn(u) in (Lp
′(·)(Ω))N . Hence χ = Bnu, which completes the proof

of Lemma 3.5.
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Université Hassan 1

B.P. 784, Settat, Morocco
E-mail: redwane hicham@yahoo.fr

Received on 15.10.2012;
revised version on 31.1.2013 (2154)

http://dx.doi.org/10.1007/s00605-008-0550-4
http://dx.doi.org/10.1090/S0002-9947-09-04399-2



	1 Introduction
	2 Preliminaries
	3 Main general results
	3.1 Basic assumptions and some lemmas
	3.2 General existence result

	4 Appendix
	References

