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ON SOME NONLINEAR NONHOMOGENEOUS
ELLIPTIC UNILATERAL PROBLEMS INVOLVING
NONCONTROLLABLE LOWER ORDER TERMS WITH
MEASURE RIGHT HAND SIDE

Abstract. We prove the existence of entropy solutions to unilateral prob-
lems associated to equations of the type Au — div(é(u)) = u € LY(2) +
W50 (), where A is a Leray-Lions operator acting from Wol’p(’)(Q)
into its dual W~1P()(Q) and ¢ € CO(R,RN).

1. Introduction. Let £2 be a bounded open subset of RY, N > 2. Let
A be a nonlinear operator of the Leray—Lions type from WO1 P (')(Q) into its
dual W=1P0)(§2) defined by Au = — div(a(z,u, Vu)), where a(z,u, Vu) is
a Carathéodory vector valued function on 2 x R x RV which satisfies suit-
able Leray—Lions conditions. Consider now the following nonlinear Dirichlet

problem:
(1.1) { fi—o dizgﬁgt)) = f—div(F) in £,
where ¢ = (¢1,...,0n) € (COR))Y, f € LY(R) and F € (LP O(2)N.

The study of problems with variable exponent is a new and interesting
topic which raises many mathematical difficulties. One of our motivations
for studying comes from applications to electrorheological fluids (we
refer to [12] for more details), an important class of non-Newtonian fluids
(sometimes referred to as smart fluids). Other important applications are
related to image processing (see [7]) and elasticity (see [15]). The function
¢(u) does not belong in (Li_(£2)) because ¢ is just assumed to be contin-
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uous on R, so that proving existence of a weak solution (i.e. in the sense of
distributions) seems to be an arduous task. To overcome this difficulty we
use the framework of entropy solutions.

The first objective of our paper is to study the problem in the
generalized Sobolev space with general right hand side p which lies in
LY )+ W70 ().

The second objective is to treat unilateral problems; more precisely, the
existence of an entropy solution for the following obstacle problem:

u € Tol’p(')((}), u>1  ae. in 2,
S a(x,u, Vu)VTi(u — v) dx + S d(u)VTi(u —v)dx
(1.2) 2 ?
< Ska(u—v) dx + S FVTi(u—v)dx
n 0]
Vv € Ky N L®(12), Yk > 0,

is proved in Theorem [3.1] without assuming regularity of the obstacle 1, in
particular ¢t € Ky N L(£2) is not supposed.

The plan of the paper is as follows. In Section 2 we give some prelim-
inaries and the definition of generalized Sobolev spaces. In Section 3 we
make precise all the assumptions and give some technical results and we
establish the existence of an entropy solution to problem . In Section 4
(Appendix) we give the proof of Lemma

2. Preliminaries. For each open bounded subset £2 of RV (N > 2), we
denote

CT(2)={p: 2 — R" continuous | 1 < p_ < p, < oo},
where p_ = inf__p(z) and p; = sup, . p(z). We define the variable ex-
ponent Lebesgue space for p € CT(£2) by

PO(02) = {u : {2 — R measurable ‘ S lu(z)[P®) do < oo}.
2

The space LP()(£2) under the norm
[ullp(.y = inf {A >0 \ | (@) /AP da < 1}
2

is a uniformly convex, reflexive Banach space. We denote by LP'()(£2) the
conjugate space of LP()(£2) where 1/p(z) + 1/p/(z) = 1.

PrOPOSITION 2.1 (cf. [§]).

(i) For any u € LPO)(2) and v € LP'O)(2), we have

1 1
wodr| < [ — + — ) |u|l, ey |v]» -
[§ (o + o ) lulboolielcy
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(ii) For all p1,p2 € CT(2) such that p1(x) < pa(x) for any x € 02, we
have LP2()(2) — LP() () and the embedding is continuous.

PROPOSITION 2.2 (cf. [8]). If we denote

p(u) =\ [uf@dz  vue V()
2
then:
(1) llullpy <1 (resp. =1, > 1) & p(u) <1 (resp. =1, > 1).
) Tl > 1= fulfy < pla) < Il and ey < 1= ol <
p(u) < [ull”,.
(iii) [Jullp) — 0 < p(u) — 0 and [Jull,) — 0o & p(u) — oo.
We define the variable exponent Sobolev space by
WHO(2) = {u e LPV(2) | |Vu| € LD (2)},

normed by

lllipey = lullpy + [ Vullyy — Vu € WHO(0).

We denote by Wol’p(')(Q) the closure of C§°(§2) in WHPO)(£2) and set p*(-) =

J\J{pr}()-().) for p(-) < N.

PROPOSITION 2.3 (cf. []).

(1) Assuming 1 < p_ < py < oo, the spaces WP (£2) and Wol’p(')(ﬂ)
are separable reflexive Banach spaces.
(ii) If g € CT(2) and q(z) < p*(z) for any x € 2, then the embedding
Wol’p(’)(ﬂ) s LIO(02) is compact and continuous.
(iii) There is a constant C' > 0 such that |jull,.) < C|[Vully.) for all

ue Wi (0).

REMARK 2.1. By Proposition (iii), [Vullpy and [Jul|; ) are equiva-
lent norms on Wol’p(')(Q).

LEMMA 2.1 (cf. [6]). Let g€ L"0(2) and g, € L™V (£2) with ||gn ;) <C
for 1 <r(-) < oo. If gu(-) — g(-) a.e. on 2, then g, — g in L"O)(£2).
3. Main general results

3.1. Basic assumptions and some lemmas. Let a : 2 x RY x RV
— RY be a Carathéodory function satisfying the following conditions: for
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all £,n € RN and almost every = € {2, we have

(3.1) (@, 5,€)| < Bk(x) + [P~ + ¢,
(32) [a(m,s,g) —a(%Sﬂ?)](f—Tl) >0 Vf?'é??,
(3.3) a(z, 5,)€ > af¢ P,

where k(-) is a positive function in L” ()(£2) and o and § are positive con-
stants. Finally, consider the convex set

Ky={ueW Q) |u>1ae in 2}

where v is a measurable function such that

(3.4) Ky N L>®(2) 0.
We suppose that

(3.5) ¢ € CO(R,RY),
(3.6) feLly(n),
(3.7) F e (r7O(@)",

and p € C+(£2) is such that there is a vector | € RV — {0} such that for any
x € {2,

(3.8) g(t) = p(x + tl) is monotone for t € I, = {t | x + tl € 02}.
LEMMA 3.1 (cf. [6]). Assume that (3.1)—(3.3) hold, and let (uy), be a
sequence in Wol’p(')(Q) such that u, — u in Wol’p(')(ﬁ) and
(3.9) S[a(a:, Up, Vy) — a(x, Uy, Vu)|V(u, —u)dz — 0.
Q
Then u, — u in Wol’p(')(ﬁ).

LEMMA 3.2. Assume that (3.8) holds. Then there is a constant C > 0
such that

(3.10) p(u) < Cp(Vu)  Yu e WePY (02) — {0}
Proof. Let
VulP®) g
wewl O @2)—0y g [ulP®) dx
By [0, Theorem 3.3], we have A, > 0, which implies that

0< X\ < S [Vl dx [Vl de

17p(’) _ .

consequently, there is a constant C' > 0 such that p(u) < Cp(Vu) for all
weWirY(Q) - {0}. a
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REMARK 3.1. The inequality (3.10|) holds true if we assume that there
exists a function £ > 0 such that VpV¢ > 0, with |[VE| # 0 in 2 (cf. [3]).

LEMMA 3.3. Let F' : R — R be a uniformly Lipschitz function with
F(0) = 0, and p € C4(2). If u € Wg* (), then F(u) € Wo*" (02);
moreover, if the set D of discontinuity points of F' is finite, then

O(Fou) {F’(u)gz a.e. in{x e 2 |u(x)¢ D},
Oz; 0 a.e. in{x € 2| u(x)e D}.
Proof. Consider first the case of F' € C'(R) and F’ € L®(R). Let u €
wiel) ince o)V @ i) o
0 (92). Since C§°(£2) = W, (£2), there are u, € C°(12)
such that u, — u in Wol’p(’)(()), so u, — u a.e. in {2 and Vu, — Vu
a.e. in {2. Then F(u,) — F(u) a.e. in {2. On the other hand, |F(u,)| =
|F(un) = F(0)] < [|F"|loc|un, s0
| () P < (1F oo + 1)PF Jun [P,
OF (uy,) P(@) B Ouy,
ox; N Zg

p(z)

)

p(z)
<M

Oouy,

/
F'(uy) oz,

where M = (|| F'[|c+1)P*+. We conclude that F'(u,) is bounded in W(}*’(')(Q)

and so F'(uy,) converges to v weakly in WO1 #() (£2). Then F(u,) converges to
v strongly in L20) () with 1 < ¢(z) < p*(x) and p*(z) = Np(x)/(N — p(z)),
and since F'(u,) — v a.e. in {2, we obtain

v =F(u) € W)

Let F : R — R be a uniformly Lipschitz function. Then F,, = Fxp,, — F
uniformly on each compact set, where ¢, is a regularizing sequence. We
conclude that F,, € CY(R) and F), € L>(R). From the first part, we have

Fo(u) € WiPY(Q) and F,(u) — F(u) ae. in £2. Since (Fy(u)), is bounded
in Wol’p(')(ﬂ), it follows that F,,(u) — v weakly in Wol’p(')(_Q) and a.e. in 2,
sov=F(u) € Wol’p(')(ﬂ). .
LEMMA 3.4. Let 2 be a bounded open subset of RV (N > 1). If u €
(WP (2)N then
S div(u) dz = 0.

2

Proof. Fix u=(ul,...,u)e€ (Wol’p(')(Q))N. We have (Q):W(}’p(')((z)
and thus each v’ can be approximated by a suitable sequence u}c € D(02)

such that u{ converges to u' strongly in VVO1 P (')(Q). Moreover, as u} €



202 C. Yazough et al.

D(£2) € D(£2), the Green formula gives
out ~
(3.11) S aukf dr = S upnds = 0.
o 9 002
On the other hand, oul /0x; — Ou' /Oz; strongly in LPO)(£2). Thus dul /O
— Ou’/Ox; strongly in L'(£2), which gives {, div(u) dz = 0 by (3.11).

3.2. General existence result. We now state our main result:

THEOREM 3.1. Assume that (3.1)—(3.8) hold true. Then there exists a
solution of the unilateral problem

u € Tol’p(')(Q), u>1Y ae. in (2,
S a(z,u, Vu)VTi(u — v) dx + S d(u)VT(u—v)dx

(P) £ n
< Ska(u—v) dx + S FVTi(u—v)dex,
2 2
Vv € Ky NL>®(£2), Yk >0,

where Tol’p(')(ﬁ) = {u : 2 — R measurable | Ty(u) € Wol’p(')(ﬁ) for all
k> 0}.

STEP 1: The approzimate problem

THEOREM 3.2. Let (fn)n be a sequence in W=7 () ()N LY (2) such that
fn— [ in LY(92) and ||fullr < ||f|l1, and consider the approzimate problem

(3.12)
Up € Kdﬁ
(Aup, up —v) + S On(un)V(up —v) de
(Pn) 2
<\ faltn —v)dz+ | FV(up —v)dz Vo € Ky N L®(0),
Q Q

where ¢n(s) = ¢(Tn(s)). Assume that (3.1)—(3.8]) hold true. Then there exists
a weak solution wu,, of problem (P,).

Proof. We define the operator G,,=—div ¢, : Wol’p(')(Q) W)
such that (Gp(u),v) = —(divon(u),v) = |, én(u)Vode for all u,v €
WO1 P (')(Q). From the Holder inequality we have

1 1
§ on(w)Vvda| < ( +— )||¢n<u>up/<.>uw||p<.>
s p- P



Nonlinear elliptic unilateral problems 203

< ( oyt 3) (V16T @) do) " oll o

b—- P

Q

1 1 P+\ "0
<=+ : '
() ami g
< Collvll1p(,

where
Yo = {I/P’— if [|on(u)llpr() > 1,
Upl i [lgn(w)lly) < 1,

and Cj is a constant which depends only on ¢,n and p. =

LEMMA 3.5. The operator B, = A+ G, is pseudo-monotone from the
space Wol’p(')(ﬂ) into W=10'0)(02). Moreover, B,, is coercive in the following
sense: there exists vg € Ky, such that

<an7 U — 'U()>

— oo if ””Hl,p(~) — 00, v € Ky,
vll1pe)

Proof. See the Appendix. m

In view of Lemma there exists a solution wu,, € WO1 #() (£2) of problem
(Py,) (cf. [11]).

STEP 2: A priori estimate

PROPOSITION 3.1. Assume that (3.1)—(3.8]) hold true and let u, be a
solution of problem (P,). Then for all k > 0, there exists a constant c(k)
(which does not depend on n) such that

(3.13) V VT (un) P da < (k).
2

Proof. Let vg € Ky N L>®(£2) and let k& > |lvg|lo be such that v =
Th(un — Ti(un — v0)) € Ky N L>®($2). Choosing v as a test function in (P,
and letting h — oo, we obtain, for n large enough (n > k + ||vg||~),

S G’(xv Un, vun>VTk(un - UO) dx + S ¢(un>VTk(un - UO) dx
(9] N

< S Tk (up — vo) dx + S FVTy(up — vo) d.
2 02

This implies that
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S a(x, Up, V) VT (u, — vg) dx

0
< 18T o () [Vt | dee
{lun—vo|<k}
+ | D (Tht v oo (un)) [ V0| da
{lun—vo|<k}
+EIfl+  IEVuelde+ B[Vl da
{Jun—vo|<k} {|un—vo|<k}
Thus,
S a(z, up, V) Vu, dr
{lun—vo|<k}

< S la(z, up, Vuy)| |Vog| dz

{[un—vo| <k}
+ 18T oo e (un))] [Vt | dae

{[n—vo| <k}

+ 10Tk g () V00| dee

{lun—vo|<k}

+EIfl+ \ IEVueldz+ | [F [Vl da

{|lun—vo|<k} {lun—vo|<k}

Since ¢ € CO(R,RN) and F € (L”O)(£2))V, using Young’s inequality we
have

a S IV, [P®) da < ¢ S la(z, tn, V) [P @ da
{lun—vol<k} {|un—vo|<k}
+5 1 V) da+ (k).
{lun—vo|<k}

which implies, from (3.1]) and ({3.3]),
o | VulPde<T (4 Vu ) da
{lun—vo|<k} {|un—vo|<k}
+5 1 IVuP@ da + k),
{lun—vo|<k}

hence o
5 S |V [P@ da < e(k),
{lun—wvo|<k}
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where ¢(k) is a constant which depends on k. Since {|u,| < k} C {|u,—vo| <
k + |lvollo }, we deduce that §, |V T} (u,)|P@dz < c(k). =

STEP 3: Strong convergence of truncations

PROPOSITION 3.2. Let uy, be a solution of problem (P,). Then there
exists a measurable function u such that

Ti(un) = T (u)  strongly in Wol’p(')(Q).
We will use the following lemma:

LEMMA 3.6. Assume that (3.1)—(3.8)) hold true and let u, be a solution
of problem (P,). Then

(3.14) VIV Tk (i — T (un)) P da < ke
0
for all k > h > ||vg||o, where ¢ is a constant that does not depend on k, and

v € Ky N L¥(02).

Proof. Let | > ||vg|oo- It is easy to see that v = Tj(uy — T (un —Th(uy)))
€ KyNL>®(§2). By using v as a test function in (P,) and letting I — oo, we
obtain

S a(x, U, Vun ) VT (uy, — Th(uy)) dz + S O(Th(un)) VT (uy — Th(uy)) de
%) 17

<\ faTe(tn — T (un)) da + | PV Tk (un — Th(un)) da
2 02

Let us define

1 ifh<l|t|<h+k,
(3.15) xhk@):{ ith <[t

0 otherwise.

We consider 0(t) = ¢(t)xnr(t) and 6(t) = Sg 6(s) ds. Then by Lemma

| ¢ (un) VT (un — T(un)) do = | ¢(un)Xnk(tn) Vi, da

(0] k0]
= | 0(un)Vun, do = | div(0(un)) dz = 0.
2 2

Thus, the second term on the left side of (3.2]) vanishes for n large enough,
which implies that

V a(z, Vun) VT (un — T (un)) do < K| £l o) + | FVT(un — T (un)) do.
2 9]
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By Young’s inequality,

S a(x, Up, Vun ) VT (un — Ty (uy)) do
2
o _ p(z)
<K fllzie) + e+ 5 VIV T — T (un)) [P da.
7

Since VT (uy — Th(uy)) = Vupx(hk) we have

\ a(@, tn, Vi (un — Th(un)) Vi (un — Th(un)) da
9]
< kea + % VIV T (n — T () P dr.
Q
Finally, from 1} we deduce that |, |VTj(uy, — T (up))|P®de < ke, which
concludes the proof of Lemma [3.6] =

Proof of Proposition[3.4 We will show first that (uy), is a Cauchy se-
quence in measure. Let k£ > 2h > 2||vg||oo. Then

kmeas{|u, — Th(un)| > k} < | Ty (wn, — Th (un))]| da.
{lun—Tp (un)|>k}
By Hélder’s inequality, Poincaré’s inequality and (3.14)) one has

kmeas{|u, — Th(un)| > k}

11
< | 1 Th(un = T (un))| dz < < + ,> 12 () 1T (= T (un)) Ly
J p— o
1 1 ,
< (p n p,) (meas(2) + D)7 | Ti(utn — Th(un) . < Cak/7,
where
(3.16) _ { L/p— if [ VT(un — Th(un))llpe) > 1,
' Ups i VT (un — Th(un))|lp) < 1.

Finally, for & > 2h > 2||vg||0, We have
c

(3.17)  meas{|u,| > k} < meas{|u, — Th(up)| >k —h} < (=T

S0
(3.18) meas({|up| >k} -0 ask — oo,

and, for all § > 0,

meas{ |, — Up,| > 0} < meas{|u,| > k}
+ meas{|up| > k} + meas{|Ti(un) — Ti(um)| > 6}
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By (3.18]), for each € > 0, there exists ko such that
(3.19)  meas{|u,| >k} <e/3 and meas{|u,| >k} <e/3 Vk> k.

By 1} , the sequence (T (uy,))yn is bounded in ng #() (£2), so a subsequence

(not relabeled) converges to 1 weakly in I/VO1 P (’)(_Q) as n — oo, and by the
compact embedding, Tj(u,) converges to n;, strongly in LP()(£2) a.e. in £2.
Thus, we can assume that (Tj(u,)), is a Cauchy sequence in measure in (2.
Then there exists ng which depends on § and e such that

(3.20)  meas{|Ti(un) — Ti(um)| >0} <e/3 Vm,n >mng and k > ko.
In view of and , we obtain

V9 >0, 3¢ > 0: meas{|u, —um| >0} <e Vn,m > ng(ko,0).
Thus (uy)n is a Cauchy sequence in measure in {2, so there exists a subse-
quence still denoted u,, which converges almost everywhere to some mea-

surable function u. Then w,, converges to u a.e. in {2, and by Lemma 2.1
we obtain:

(321) { Ti(un) = Ti(w) in Wy (22),

Ti(un) = Tjp(u) in LPO(0) and a.e. in (2.
Now, we choose v = Tj(up — hm(un — vo)(Tk(un) — Tr(u))) as a test
function in (P, ), where
1 if |s| < m,
(3.22) hm(s) =40 if |s] > m+ 1,
m+1—|s| ifm<|s|<m+1.
For n > m + 1, by letting | — oo we get

| a(@, 1w, Viin)V (B (= v0)(Tho(un) — Ti(w)) da
(9]

+ | (un)V (hn (1 — 00) (Ti(un) — Ti(w))) da
9]
< S fnhm(un - UO)(Tk(un) - Tk(u)) dx
9]
+ | PV (B (un — v0) (Th(un) — Tio(u))) da,
9]

which implies that

| a(@, tn, Viin) V(Ti(un) — T (1)) (g, — v0) dae
(9}
+ | a(@, un, Vun)V (tn — v0) b, (un — 00) (Ti(un) — T(w)) do
(9}
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T $(0) ¥ at — 00) (11— 00) (Ti(un) — Ti(w)) de
+ ?d) V(Th(ttn) — T (1)) hm (21, — v0) dav

< | o — 0)(Te(n) — T
N

S FV - UO h, (un - UO)(Tk(un) - Tk(u>) dx
02
+ g FV (Ti(tn) — Ti () ) hm (n, — v0) dez.

By almost everywhere convergence of uy, Ay, (u, —v0)(Tk(un) — Tk (u)) con-
verges to 0 weakly™ in L*°(2) as n — o0, so

(3.23) \ ol (s = 00) (Th () — Ti(w)) da = ().

9]
Moreover, by Lebesgue’s theorem, ¢(up, )y, (un, —vo) tends to ¢(u)hy, (u—1vp)
strongly in LP'()(£2), and since VTy(uy) converges to VTj(u) weakly in
LP0)(2) we can deduce that

(3.24) | ¢(1n)V (Ti(tn) — Ti (1)) B (1, — v0) da = €(n).
9]
Similarly,
(3.25) \ PV (Th(un) — Tho(w) o (i, — o) dzv = €(n).
2

On the other hand,

’ | PV (un — vo) ity (= v0) (Ti(un) — Ti () d
2

| § FV (= 00) (Ti(1tn) = T X -1} 2
2

< VIV (Tar (un) = v0) (Tio(un) — Ti(u))| de
n
with M = m + 1+ |Jug||ec. Then by Lebesgue’s theorem, F(Tj(uy,) — Tk (u))
converges to 0 strongly in L ()(£2), and since V(T (uy) — vg) converges to
V(Tyr(u) — vo) weakly in (LPO)(£2))N, we have
(3.26) S FV (up, — vo)hl, (un — v0)(Tk(upn) — Ti(u)) dx = e(n).
Q
Similarly,

(3.27) S B (un)V (un, — v0) L (un, — v0) (T (un) — Tk (u)) dz = €(n).
2
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We claim that

(3.28) S a(z, U, Vun)V (uy — vo)hl, (un — vo) (Tk(un) — Ti(u)) dx = €(n).
%)

Indeed,
‘ V(e wn, Vi)V (= v0) iy (1 — 00) (Ti () — T () dx‘
2

- ‘ { a(, tn, Vtin)V (un — v0) (Th(un) — Tho(w)) daz‘
{m<|un—vo|<m+1}
< 2k S la(z, up, Vi)V (uy, — vo)| dz
{m<|un—vo|<m+1}
< 2kz( S a(x, un, V) Vuy, dr + S la(x, Vuy,)| Vv d:z;)

{i<lun|<i+s} {I<]un|<i+s}

where | = m— ||vg||eo and s = 2||vp||oc +1. We take v = up —Ts(upn —Ti(uy))
as a test function in (P,) to get

S a(x, up, Vup)Vuy, dr + S div (6 (uy)) dz

{I<]un |<l+s} 0

<\ T (tn = Ti(un)) da + | FVT(un — T (up)) da
2 (9}

where 0,(t) = Sf) 0s(2) dz and 05(2) = ¢(2)xs(z) with

1, I<t<l+s,
Xst 0, otherwise.

Using the fact that 6(u,) € (Wol’p(')(ﬂ))N and Lemma we get

(3.29) S a(z, up, Vi) Vu, dr
{I<|un|<l+s}

<s S | fn| dz + S FVu, dx.
{lun|>1} {I<un|<i+s}

Firstly, we will show that

S FYVu, dx = e¢(n,m).
{i<|un|<l+s}
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Indeed, by (3.29) and Young’s inequalities, we get
S a(x, Up, Vip)Vu, dr < s S | fn] dz + ¢ S |FIP'®) dz
{I<lun|<l+s} {lun|>1} {lun|>1}
+ % S |V [P da
{I<lun|<l+s}

which yields, thanks to (3.3)),

% | vwl@de<s § faldete | [FP@de,

{I<]un|<l+s} {Jun|>1} {Jun|>1}
which implies that
2 2 :
JIVL (= T )P de < = [fuldz+ = | PP da
2 {Jun|>1} {Jun|>1}

Consequently, by the strong convergence in L!(§2) of f, and since F €
LP'()(£2), by Lebesgue’s theorem we have

l—00 n—00

lim lim | [VT4(un — Ty(un)) P da = 0,
k0]

which implies by Hoélder’s inequality, that
lim lim | FVT.(u, — T (up)) dz = 0.

l—00 n—00

Hence
(3.30) S FYVu,dz = ¢(n,l).
{I<]un|<l+s}

Finally by (3.29)) and (3.30) we deduce

(3.31) S a(x, Up, Vi) Vu, dr = e(n, ).
{I<]un |<l+s}

On the other hand,

S ’a<$7un7vun)‘ ‘VUO’d[B
{I<|un|<l4s}

’ ol
< o [ (e, VTu(un = Ti(wn)) @ do) IV 00X (a1
02
< o § (15(@) + 19Ty = Ti(un) P + [Ty = Ti(un)) ) dr)
02

X (V00X {jun >3 lp()
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where
B {1/p’_ if |la(x, VT(un — Ti(un))) ) = 1,
g i (e, VT (n — Tl < 1

Furthermore by Lemma [3.6] we have

(3.32) VIV T — Ti(un)) [P da < c(s),
2
(3.33) V1T (i — Ti(un)) P da < € (s),
9]

where ¢(s) and /(s) are constants independent of I. By (3.2)), (3.32) and
(3-33), we obtain

(3.34) | |a(z, tn, V)| | Voo dz = e(n, 1).
{I<|un|<l+s}

Finally, (3.31)) and (3.34]) yield the estimate (3.28]). Combining (3.23))—(3.28)

and [ = m — [|vg||eo, We get

(3.35) | a(@, un, Viun) V(Ti(un) — T () o (un — v0) d < €(n, m).
2
Splitting the first integral on the left hand side of (3.35) where |u,| < k and

|un| > k, we can write

V a(@, un, Vun) V(T (un) — Ti(w)) b (un — v0) dav
2
= | a(@ Ti(un), VTk(1n))V(Ti(un) = Ti(w)) b (un — v0) dav

{lun|<k}
— S a(x, Up, Vi) VI (w)hy (U, — vo) dz

{lun|>k}

| ale, Th(un), VIk(un))V(Tk(un) = Ti(u) o (i — o) dx
{lun|<k}

=V lae, Tar (un), VT0r ()| [V T3 (1) X fjun54) D2
2
where M = m + ||vg|loc + 1. Since a(x, Tas(un), VIar(uy)) is bounded in
(LY ()N, for a subsequence we have a(x, Tar(un), VI (tn)) — I
weakly in (L>(£2))N as n — oo. Since ‘8T§$")‘x{|un|>k} converges to
‘87(;;;(?) |X{|u|>k} = 0 strongly in LP()(£2), we get

v

(3.36)  la(e, Tar (un), Vo ()| VT3 (1) X g 55y de = €().
02
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From (3.35)) and (3.36) we have

(3.37) S a(z, Ti(up), VI (un))V(Ti(un) — Tk (w)) b (un, —v0) dx < €(n, m).
(9}

It is easy to see that

(3.38) S a(x, Ty (un), VI (un))V(Tk(un) — T (w) ) A, (un, — vo) dx
Q

= S[a(x,Tk(un),VTk(un)) —a(z, T (un), VT (u))]

? Y (Ti(tn) — T (1)) (1, — v0)
+ S a(z, T (un), VI (w)V(Tk(upn) — T (w)) b (upn, — vo) dz
2

[a(z, Th(un), VTk(un)) = a(x, Ti(un), Vi (u))]

X V(T (un) — T(uw)) o (un, — vg) d
a(x, Ti(un), VT (w)) VT () i (uyn — vg) dz

QD —

+

) a
Q
S a(x, Ti(un), VI (uw)) VI (w) by (wy — vo) d.
Q

By the continuity of the Nemytskii operator, a(z, T (un), VIk(w))hm (un—vo)
converges to a(z, T (u), VIk(1))hm(u — vo) strongly in (LP'C)(2)N while
Ty (uy)/0x; converges to Ty (u)/0z; weakly in LP()(£2). The second and
third terms of the right hand side of tend respectively to {, a(z, Ty (u),
VT (u) VI (w)hm(u — vo) dz and —\, a(z, Ti(u), VI (u)) VT (1) (0 —
vo) dx. So (3.37) and (3.38) yield

(339) [0 Tiun), VTi(un)) — a(, Ti(n), VTi(u))]
9]
X V(Ti(up) — Ti(w) ) o (un, — v0) dz < €(n,m),

which implies that

(3.40)

S [a(x, Ty (un), VIg(uy)) — a(z, Tk (un), VI (u)]V (T (un) — Ti(uw)) dx
[0
= \la(2, Th(un), VTi(un)) — a(z, Tr(un), Vi (u))]
12

X V(Tx(un) — T (w)) o, (un, — v0) dx

+ Vla(@, Tu(un), VT (un)) — a(@, T(un), VIi(w)]
2

X V(Tk(upn) — Ti(w)) (1 — A (up, — vo)).
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Since 1 — Ay (up —v9) = 0in {z € 2| |uy, —vo| < m} and {x € 2| |u,| < k}
C {x € 2| |up, —vo| < m} for m large enough, we deduce from (3.40) that

S [a(z, Ti(un), VIk(un)) — a(x, VI (w)|V(Tk(uyn) — Ti(w)) dx
Q
= \la(@, T(un), VTi(un)) — a(z, VI}(u))]
Q
X V(Tx(un) — T (w)) o, (un, — vo) dx
- S a(z, T (upn), VI () VT (u) de.
{lunl>k}

It is easy to see that the last term tends to zero as n — oo, which implies
that

S[a(x, Ty (un), VI (up)) — a(z, Tr(un), VI (w)|V(Tk(un) — Ti(w)) dz
Q
= \la(z, Th(un), VTi(un)) — a(z, Te(un), Vi (u))]
Q
X V(Tk(upn) — Ti(w)) o (un, — v0) da
+¢e(n).

Combining (3.39) and (3.41)), we have

S [a(z, T (un), VT (uy)) — a(z, T (uyn), VI ()] V(T (uy) — Ti(u)) dx
2
< €e(n,m).

By passing to the limsup over n and letting m tend to infinity, we obtain

lim sup | [a(z, Ty (un), VT (un)) — a(z, Ti(un), VTi(u))]

n—00
9}

X V(Tg(upn) — Tg(u)) de = 0.
Thus by Lemma Ty (uy,) converges to Tj(u) strongly in Wol’p(')(ﬁ). n

Proof of Theorem[3.1. Let v € Ky,NL™(£2) and take Tj(u, — Ty (un —v))
as a test function in (P,). Letting [ — oo, we can write, for n large enough
(n >k 4+ [[v]loo),

S CL(:L‘, U, vun)VTk(un - U) dx + S ¢(un)VTk(un - U) dx
n 9]
< S Tk (up —v) dzx + S FNTy(uyp —v)dx.
2 2



214 C. Yazough et al.

We get

S a(m, Tk-+||v||oo (un), VTk+HvHoo (un))VTk(un - ’U) dx
N

+ S (ﬁ(TkH‘va(un))VTk(un - v) dx
Q
< S oIk (uy —v) dx + S FVTy(uy —v)dz.
Q 2
By Fatou’s lemma and the fact that a(z, Ty |v)o (Un)s VTt o] (Un)) con-
verges t0 a(, Ty |jv)le (%), Vg o) (1)) weakly in (LP Q)N it is easy
to see that

V al@, Tt oo (), VT o () VT (u—v) da
N

< liminf | a(@, Ty o) (n), Vo)) oo (tn)) VT (i — v) da.

n—oo

On the other hand, by using F € (L' ()(2))N, we deduce that
(3.41) S FVTi(up, —v)dx — SFVTk(u—v)dm as n — oo.
Q Q
Moreover, by Lebesgue’s theorem, ¢(Tj v (tn)) tends to ¢(Thy v (w))

strongly in (LP'()(£2))N as n. — oo, and VT (u, —v) converges to VTj(u—v)
weakly in (LP()(2))N, so that

(342) | $(Tirjofoe (1un) VTk(ttn — v) dos

Q
- S (T |jo]|oo () VT (v — v) dz as n — oo,
Q
Similarly,

(9] 9]
By using (3.43)), (3.42)), we can pass to the limit in (3.41]) to obtain

S a(x, Vun) VT (uy, — v) de + S &(un)VTi(un —v) dx
2 2
< S fuTk(uy —v) dx + S FNTy(up —v)dez,
2 0
which completes the proof of Theorem n

REMARK 3.2. Note that the condition (3.8) is used essentially to prove
the coercivity of the operator B,.
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We can prove the coercivity of B,, if we replace the condition (3.8) by
(3.44) p+ —p— < 1.
This is the objective of the following theorem:

THEOREM 3.3. Assume that (3.1)—(3.7) and (3.44) hold true. Then there

exists a solution of problem (P).

Proof. Following the same steps of argument of the proof of Theorem
[3:] it suffices to show the coercivity of the operator B,,.

Indeed, let v9 € Ky. From the Holder inequality and the growth condi-
tion, we have

(Av,vg) = S a(z,v, Vv)Vug dr
2

1 1 / ol
= 4= P'(x)
o(p + p,) ((g}]a(x,v,VvN dz) " fooll 1.0

IN

/

IN

1 1 / v
4 p'(x) p(z) p(z)
c(p + p,_) ||voHW01,p<.>(Q)(§26(k(x) o) 4 Vo) da

< Co(C1 + pl(v) + p(V0))” < Co(Cr + C(p(Vv))P+/P~ + p(Vo))"

where

1 /_ if a/.fU”U’V’U /0. >17
(345) ,Y/: /p/ ) H ( )HL;D()(_Q)
1/p, if Ha(:r,v,Vv)HLp/(‘)(Q) <1.
From (3.3)) we have
(3.46) (Av, v) B (Av, vp)
Ivllipey  lollipe
= vl (ap(Vv) — Co(C1 + C(p(V)P+/P= 4 p(Vu))Y).

Since [[v||; () — oo we have Ha(w,U,Vv)HLp/(.)(Q) > 1; then v/ = 1/p’_, and

as py — p— < 1, we have p,f’;_ <1, s0

(Av,v)  (Av, )
[ollipey  lollpe)
Since (Gnv,v)/||v]l1 p) and (Gnv,vo)/||[v]l1 p(.) are bounded, we have

(Bpv,v —wvg)  (Av,v —wvg)  (Gpu,v)  (Gro,v)

= + — — 00
vll1p0) [vll1p0) lvllipey ol

as [|v]|1p) — oo. =

— 00 as ||[v]ly py — oo
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4. Appendix

Proof of Lemma/[3.9. Let vy € Ky. From the Holder inequality and the
growth condition, we have

(Av,vg) = S a(z,v, Vo)V dz

2
11 , y
T p'(z)
< C(p_ + p,_) (;}Ia(az,v,w})] dx) dzx H”OHW(},p(-)(m
1 1 / y
o e ) T z

2
< Co(Cr + p(v) + p(V0))" < Co(C1 + Cp(Vv) + p(Vv))"

where

(4.1) = { 1/plif fla(z, v, V)|l ey o) 2 1,

1/ if fla(z, v, Vo)l gy ) < 1-
From (3.3) we have
(Av,v)  (Av,vp)

[ollipey  Iollipe)

(4.2)

> L

vl

Hence p(Vv)/|[v][1p) — 00 as [[v]|; ) — 0o, and we have

(Av,v)  (Av,vg)

Wollhpey ol

Since (Grnv,v)/||v||1pe) and (Grv,vo)/|[v]l1 p(.) are bounded, we have
(Brv,v — vg) _ (Av,v — vg) N (Gnv,v)  (Gno,v9)
[oll1p() [oll1p() [ollipey ol

as ||v[l p(.y = oo. It remains to show that By, is pseudo-monotone.
Let (ug)x be a sequence in Wol’p(')(ﬁ) such that

up — u in Wol’p(')(ﬂ),

(ap(Vv) — Co(Cy + Cp(Vv) + p(Vv))Y).

=00 as [[v][y py — oo

(4.3) Buup = x  in WP0(02),
lim sup (Bt ) < (o).
k—o0

We will prove that x = Byu and (Bj,uyg, u) converges to (x,u) as k — oo.

Firstly, since Wol’p(’)(Q) e LP@)(), we have u, — u in LPO) ()
for a subsequence still denoted by (ug)r. Since (ug)r is a bounded se-
quence in Wol’p(')(ﬂ), by the growth condition, (a(x,u, Vug))x is bounded
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n (LP'O)(2))N, therefore there exists ¢ € (L”()(£2))V such that
(4.4) a(z,up, Vug) = ¢ in (LZO@0Q))Y as k — oo.

Then ¢,, = ¢ 0T, is a continuous function, and since uy — u in LP0)(£2) we
have

(4.5) dn(ug) = dn(u) in (LP 02NN as k — .
It is clear that, for all v € Wol’p(')(ﬁ),
(4.6) (x,v) = lim (Bpug,v)
k—o0
= lim S a(z,ug, Vug)Vodzr — lim S On(ug) Vo dx
k—o0 0 k—o0 0

= S eVudr — S ¢n(w)Vodz.
02 2

On the one hand, by (4.5) we have

(4.7) S & (uk)Vug doe — S ¢n(u)Vudzr as k — oo.
9] 9

Combining (4.3)) and (4.6)), we have

(4.8)

lim sup (B, (ug), ug) = lim sup { S a(x, ug, Vug)Vuy de — S On (ug) Vug dx}
k0]

k—o00 k—o00 0

< S eVudr — S ¢n(u)Vudz.

Q 19
Therefore
(4.9) lim sup S a(x, ug, Vug)Vug de < S eVudz.
k—oo 0 )
On the other hand, thanks to (3.3)), we have
(4.10) S(a(w,uk, Vug) — alz, ug, Vu))(Vug — Vu) dz > 0,
2
SO

S a(x,ug, Vug)Vug de > — \ a(x, ug, Vu)Vudz
2

_|_

2
S a(z,ug, Vug)Vudr + S a(z,up, Vu)Vuy dz,
2 9]

and by (4.4), we get

lim inf S a(z,ug, Vug)Vuy de > S pVudz.

k—o00
(P
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This implies, by using (4.9)), that
(4.11) lim S a(x, ug, Vug)Vuy de = S eVudz.
k—o0 0

(9}
By combining (4.6)), (4.7) and (4.11]), we find that (B,ug,uy) converges to

(x,u) as k — oo.
On the other hand, by (4.11]) and the fact that a(x, ug, Vu) converges to
a(z,u, Vu) in (LP O (02))N we deduce that

klim S(a(z, ug, Vug) — a(z, ug, Vu))(Vug, — Vu) dx =0,
— 00
9]

and by Lemma uy, converges to u in Wol’p(')(Q) and a.e. in £2. We deduce
that a(z, ug, Vuy) converges to a(z, ug, Vu) in (LP ) (2))N, and ¢, (uy) con-
verges to ¢y (u) in (LP'()(2))N. Hence x = B,u, which completes the proof
of Lemma 3.5 =
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