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ITERATIVE METHODS FOR
PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract. This paper is concerned with iterative methods for parabolic
functional differential equations with initial boundary conditions. Monotone
iterative methods are discussed. We prove a theorem on the existence of
solutions for a parabolic problem whose right-hand side admits a Jordan
type decomposition with respect to the function variable. It is shown that
there exist Newton sequences which converge to the solution of the initial
problem. Differential equations with deviated variables and differential inte-
gral equations can be obtained from our general model by specializing given
operators.

1. Introduction. Let Ω ⊂ R2 be an open domain and suppose that
f : Ω → R is a continuous function and (t0, x0) ∈ Ω. Let us denote by
ω̃ : [t0, a]→ R the solution of the Cauchy problem

(1.1) ω′(t) = f(t, ω(t)), ω(t0) = x0.

Under natural assumptions on f there exist sequences {αk}, {βk} of functions
[t0, a]→ R for k ≥ 0 such that:

(i) For each k ≥ 1 the functions αk and βk are solutions of linear prob-
lems generated by (1.1). More precisely, αk is a solution of the prob-
lem

ω′(t) = f(t, αk−1(t))+
∂f

∂x
(t, αk−1(t))(ω(t)−αk−1(t)), ω(t0) = x0,

and βk is a solution of the problem

ω′(t) = f(t, βk−1(t))+
∂f

∂x
(t, αk−1(t))(ω(t)−βk−1(t)), ω(t0) = x0.
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(ii) For k ≥ 0 we have

αk(t) ≤ αk+1(t) ≤ ω̃(t) ≤ βk+1(t) ≤ βk(t), t ∈ [t0, a],

and

lim
k→∞

αk(t) = lim
k→∞

βk(t) = ω̃(t) uniformly on [t0, a].

(iii) The convergence that we get is of the Newton type, which means
that there is A ≥ 0 such that

ω̃(t)− αk(t) ≤
A

22k
and βk(t)− ω̃(t) ≤ A

22k
, t ∈ [t0, a], k ≥ 0.

The construction of the sequences {αk} and {βk} was given by S. A.
Chaplygin [5]. There exist many generalizations and extensions of the above
classical result. It is not our aim to give a full review of results concerning
the above problem.

Iterative methods and monotone iterative methods for differential sys-
tems and for boundary value problems generated by second order differen-
tial equations have been considered in [6], [15]. The monographs [12], [14],
[15] contain an exposition of classical developments on monotone iterative
methods for partial differential equations.

The papers [4], [11] introduced the monotone iterative method for evo-
lution functional differential equations. Initial boundary value problems of
the Dirichlet type for parabolic functional differential equations were inves-
tigated in [4]. Monotone iterative methods for the Cauchy problem for an
infinite system of parabolic type equations were studied in [20]. The papers
[2], [9], [11] concern initial or initial boundary value problems for Hamilton–
Jacobi functional differential equations. A theorem on convergence of the
Newton method for the Darboux problem related to a hyperbolic functional
differential equation can be found in [8]. Theorems on Chaplygin sequences
and on the Newton method for hyperbolic functional differential problems
are given in [10]. The Chaplygin method is proposed in [19] as a tool of prov-
ing existence results for an infinite system of first order partial functional
differential equations. It is easy to see that the results given in [19] are not
applicable to differential integral systems of Volterra type and to systems
with deviated variables.

The aim of the paper is to construct two monotone iterative methods for
parabolic functional differential equations with initial boundary conditions.
Now we formulate our functional differential problems.

Let S ⊂ Rn be a bounded domain with boundary ∂S of class C1. Write

Q0 = [−b0, 0]× S̄, Q = (0, a)× S̄,

where a > 0, b0 ∈ R+ and S̄ is the closure of S. For each (t, x) ∈ [0, a] × S̄
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we define
D[t, x] = {(τ, y) ∈ Rn+1 : τ ≤ 0, (t+ τ, x+ y) ∈ Q0 ∪Q}.

There is [c, d] ⊂ Rn such that
D[t, x] ⊂ [−b0 − a, 0]× [c, d] for (t, x) ∈ [0, a)× S̄.

Write I = [−b0−a, 0] and B = [−b0−a, 0]×[c, d]. For a function z : Q0∪Q→
R and a point (t, x) ∈ [0, a)× S̄ we define z(t,x) : D[t, x]→ R by

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x].

In words, we restrict z to (Q0 ∪ Q) ∩ ([−b0, t] × Rn) and then shift the
restriction to D[t, x]. Let φ0 : [0, a) → R and φ = (φ1, . . . , φn) : Q → Rn
be given functions. Write ϕ(t, x) = (φ0(t), φ(t, x)) for (t, x) ∈ Q. We assume
that 0 ≤ φ0(t) ≤ t and φ(t, x) ∈ S for (t, x) ∈ Q.

Let F : Q̄×C(B,R)→ R, ψ : Q0 → R, and β, γ, Ψ : [0, a)× ∂S → R be
given. Write

Λ[z](t, x) = β(t, x)z(t, x) + γ(t, x)
∂z(t, x)

∂n(x)
,

where n(x) is the unit outward normal to ∂S at x ∈ ∂S. We write ∂n instead
of ∂n(x).

Let aij , bi : Q̄→ R, i, j = 1, . . . , n, be given functions. Write

L[z](t, x) = ∂tz(t, x)−
n∑

i,j=1

aij(t, x)∂xixjz(t, x) +
n∑
i=1

bi(t, x)∂xiz(t, x).

We consider the functional differential equation
(1.2) L[z](t, x) = F (t, x, zϕ(t,x))

with initial boundary conditions
(1.3) Λ[z](t, x) = Ψ(t, x) on [0, a)× ∂S, z(t, x) = ψ(t, x) on Q0.

We will say that the function F satisfies condition (V ) if for each (t, x) ∈
Q and any ω, ω̃ ∈ C(B,R) such that ω(τ, y) = ω̃(τ, y) for (τ, y) ∈ D[ϕ(t, x)],
we have F (t, x, ω) = F (t, x, ω̃). Condition (V ) means that the value of F
at (t, x, w) ∈ Q̄ × C(B,R) depends on (t, x) and on the restriction of w to
D[ϕ(t, x)] only.

Remark 1.1. Consider the functional differential equation
(1.4) L[z](t, x) = F (t, x, z(t,x))

with initial boundary conditions (1.3). It is clear that (1.4) is a particular
case of (1.2) with ϕ(t, x) = (t, x).

Differential equations with deviated variables are obtained from (1.4) in
the following way. Write
(1.5) F (t, x, w) = F̃ (t, x, w(ϕ(t, x)− (t, x))),
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where F̃ : Q̄× R→ R is a given function. Then (1.4) is equivalent to

L[z](t, x) = F̃ (t, x, z(ϕ(t, x))).

Later we assume that F (·, w) ∈ Cα/2,α(Q̄,R) for every w ∈ C(B,R).
On the other hand, the function F defined by (1.5) does not satisfy this
condition (in general). That is why we consider problem (1.2), (1.3) instead
of (1.4), (1.3).

We give examples of equations which can be derived from (1.2) by spe-
cializing the operator F .

Example 1.1. Let f : Q̄× R→ R be given. Write ϕ(t, x) = (t, x) and

F (t, x, w) = f(t, x,
�

D[t,x]

w(τ, y)dy dτ) on Q̄× C(B,R).

Then (1.2) reduces to the differential integral equation

L[z](t, x) = f
(
t, x,

�

D[t,x]

z(t+ τ, x+ y) dy dτ
)
.

Example 1.2. For the above f we put

F (t, x, w) = f(t, x, w(0, O[n])) on Q̄× C(B,R),

where O[n] = (0, . . . , 0) ∈ Rn. Then (1.2) reduces to the equation with
deviated variables

L[z](t, x) = f(t, x, z(ψ(t, x))).

The paper is organized as follows: In Section 2 we give sufficient condi-
tions for the existence of two monotone sequences which converge to extremal
solutions of problem (2.2), (1.3); uniqueness of solutions is also considered.
In Section 3 we investigate the Newton method. We prove that there exists a
Newton type sequence which converges to the unique solution of (1.2), (1.3).

2. Monotone iterative methods. Suppose that

(2.1) F (t, x, w) = H(t, x, w) +G(t, x, w) on Q̄× C(B,R),

where H(t, x, ·) is non-decreasing and G(t, x, ·) is non-increasing. We prove
a theorem on the existence of solutions for a parabolic problem whose right-
hand side admits a Jordan type decomposition with respect to the function
variable (see [17]).

Suppose thatH,G : Q̄×C(B,R)→ R are given. We consider the problem
consisting of the functional differential equation

(2.2) L[z](t, x) = H(t, x, zϕ(t,x)) +G(t, x, zϕ(t,x))

and the initial boundary conditions (1.3).
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We prove that there are u∗, v∗ : Q0 ∪Q→ R such that

L[u∗](t, x) = H(t, x, u∗ϕ(t,x)) +G(t, x, v∗ϕ(t,x)) in Q,(2.3)

L[v∗](t, x) = H(t, x, v∗ϕ(t,x)) +G(t, x, u∗ϕ(t,x)) in Q,(2.4)

and u∗, v∗ satisfy (1.3).
Now we define some function spaces. Let A ⊂ R1+n be a bounded domain

and 0 < α < 1. We denote by Cα/2,α(A,R) the space of all continuous
functions f : A→ R with the finite norm

‖f‖Cα/2,α(A,R) = ‖f‖C(A,R) +Hα/2,α[f ]
where

‖f‖C(A,R) = sup{|f(t, x)| : (t, x) ∈ A},

Hα/2,α[f ] = sup

{
|f(t, x)− f(t̃, x)|
|t− t̃|α/2

: (t, x), (t̃, x) ∈ A, t 6= t̃

}
+ sup

{
|f(t, x)− f(t, x̃)|
‖x− x̃‖α

: (t, x), (t, x̃) ∈ A, x 6= x̃

}
and ‖·‖ is the Euclidean norm in Rn. Let C1+α/2,2+α(A,R) denote the space
of all continuous functions f : A→ R satisfying:

(i) ∂tf, ∂xf = (∂x1f, . . . , ∂xnf), ∂xxf = [∂xixjf ]ni,j=1 exist on A, and ∂tf,
∂xf, ∂xxf are continuous,

(ii) the following norm is finite:

‖f‖C1+α/2,2+α(A,R)

= ‖f‖C(A,R) + ‖∂tf‖C(A,R) +
n∑
i=1

‖∂xif‖C(A,R)

+

n∑
i,j=1

‖∂xixjf‖C(A,R) +Hα/2,α[∂tf ] +

n∑
i,j=1

Hα/2,α[∂xixjf ].

In a similar way we define the space C(1+α)/2,1+α(A,R), 0 < α < 1. Let
C1,2(A,R) be the space of all continuous functions f : A→ R satisfying:

(i) ∂tf, ∂xf, ∂xxf exist and are continuous on A,
(ii) the following norm is finite:

‖f‖C1,2(A,R)

= ‖f‖C(A,R) + ‖∂tf‖C(A,R) +
n∑
i=1

‖∂xif‖C(A,R) +
n∑

i,j=1

‖∂xixjf‖C(A,R).

Let Lq(A,R), q ≥ 1, be the Banach space of all equivalence classes of
Lebesgue measurable functions f defined on A into R with a finite norm

‖f‖Lq(A,R) =
( �

A

|f(τ, y)|q dy dτ
)1/q

.
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We denote by W 1,2
q (A,R) the Banach space consisting of all f ∈ Lq(A,R)

having generalized derivatives ∂tf, ∂xf, ∂xxf = [∂xixjf ]ni,j=1 and such that
the following norm is finite:

‖f‖
W 1,2
q (A,R)

= ‖f‖Lq(A,R) + ‖∂tf‖Lq(A,R)

+

n∑
i=1

‖∂xif‖Lq(A,R) +

n∑
i,j=1

‖∂xixjf‖Lq(A,R).

For non-integral α, the Banach space Wα/2,α
q (A,R) is defined analogously

(see [14]).
Let S ⊂ Rn be a bounded domain with boundary ∂S. We will say that ∂S

is of class C2+α, 0 < α < 1, if for every x ∈ ∂S there exists a neighborhood
Ux of x and i ∈ {1, . . . , n} such that ∂S ∩Ux can be represented in the form

xi = h(x1, . . . , xi−1, xi+1, . . . , xn), (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Ũx,

where Ũx ⊂ Rn−1 is an open set and h ∈ C2+α(Ũx,R).
For w ∈ C(B,R), w̃ ∈ C(Q0 ∪Q,R) we put

‖w‖B = max{|w(τ, y)| : (τ, y) ∈ B},
‖w̃(t,x)‖D[t,x] = max{|w̃(t,x)(τ, y)| : (τ, y) ∈ D[t, x], (t, x) ∈ Q}.

Assumption H∗.

(1) aij ∈ Cα/2,α(Q̄,R), bi ∈ Cα/2,α(Q̄,R) for i, j = 1, . . . , n and there
exist K1,K2 > 0 such that for (t, x) ∈ Q̄ we have

K1‖λ‖2 ≤
n∑

i,j=1

aij(t, x)λiλj ≤ K2‖λ‖2, λ = (λ1, . . . , λn),

(2) S ⊂ Rn is a bounded domain and ∂S is of class C2+α,
(3) β, γ ∈ C(1+α)/2,1+α([0, a]×∂S,R+), β(t, x) > 0 for (t, x) ∈ [0, a]×∂S,
(4) Ψ ∈ C(1+α)/2,1+α([0, a]× ∂S,R), ψ ∈ C2+α(Q0,R) and the following

compatibility conditions hold for all x ∈ ∂S:

β(0, x)ψ(0, x) + γ(0, x)
∂ψ(0, x)

∂n(x)
= Ψ(0, x),(2.5)

L[ψ](0, x) = H(0, x, ψϕ(0,x)) +G(0, x, ψϕ(0,x)).(2.6)

Given f : Q̄→ R, consider the linear parabolic equation

(2.7) L[z](t, x) = f(t, x)

with the initial boundary conditions

(2.8) Λ[z](t, x) = Ψ(t, x) on [0, a]× ∂S, z(0, x) = ψ(0, x) for x ∈ ∂S.
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Theorem 2.1. Suppose that Assumption H∗ is satisfied and f ∈
Cα/2,α(Q̄,R). Then there exists exactly one solution ũ : Q̄ → R of (2.7),
(2.8) and ũ ∈ C1+α/2,2+α(Q̄,R).

The proof can be found in [13, Chapter IV, Theorem 5.3]; see also [14,
Appendix A, Section 3] and [16, Chapter V, Theorem 5.18].

Assumption H[ϕ]. The function ϕ : Q̄→ R1+n, ϕ(t, x) = (φ0(t), φ(t, x))
for (t, x) ∈ Q, satisfies the conditions

(1) φ0 ∈ C([0, a],R+), φ ∈ C(Q̄,Rn), 0 ≤ φ0(t) ≤ t for t ∈ [0, a],
φ(t, x) ∈ S̄ for (t, x) ∈ Q̄,

(2) there is C0 ≥ 0 such that

|φ0(t)− φ0(t̃)| ≤ C0|t− t̃|, t, t̃ ∈ [0, a],

‖φ(t, x)− φ(t̃, x̃)‖ ≤ C0(|t− t̃|+ ‖x− x̃‖), (t, x), (t̃, x̃) ∈ Q̄.
Assumption H[H,G]. The functions H,G : Q̄ × C(B,R) → R satisfy

condition (V ) and

(1) H, G ∈ C(Q̄ × C(B,R),R) and for every w ∈ C(B,R) we have
H(·, w), G(·, w) ∈ Cα/2,α(Q̄,R),

(2) for each (t, x)∈Q̄ the functionG(t, x, ·) is non-increasing andH(t, x, ·)
is non-decreasing,

(3) there is L ≥ 0 such that for all (t, x, w) ∈ Q̄× C(B,R),

|H(t, x, w)−H(t, x, w̃)| ≤ L‖w − w̃‖αB,
|G(t, x, w)−G(t, x, w̃)| ≤ L‖w − w̃‖αB.

Example 2.1. Suppose that d, k ∈ Cα/2,α(Q̄,R+) are given functions.
Write H(t, x, w) = d(t, x)w, and G(t, x, w) = −k(t, x)w. Then H and G
satisfy Assumption H[H,G].

Example 2.2. Suppose that G(t, x, w) = 0 on Q̄ × C(B,R) and H :
Q̄ × C(B,R) → R satisfy condition (V ) and condition (1) of Assumption
H[H,G] and there are L1, L2, L3 ∈ R+ such that

‖∂wH(t, x, w)− ∂wH(t̄, x̄, w̄)‖CL ≤ L1(|t− t̄|α/2 + ‖x− x̄‖α) +L2‖w− w̄‖B
for all (t, x, w), (t̄, x̄, w̄) ∈ Q× C(B,R), and

‖∂wH(t, x, θ)‖CL ≤ L3,

for all (t, x, θ) ∈ Q × C1,2(B,R) with θ(t, x) = 0 for (t, x) ∈ B. Moreover
suppose that for (t, x, w) ∈ Q× C(B,R) and w̄ ∈ C(B,R) we have

∂wH(t, x, w)h ≥ 0 if h ∈ C(B,R+),

∂wH(t, x, w)h ≥ ∂wH(t, x, w̄)h if h ∈ C(B,R+), w ≥ w̄ on B.

Then H and G satisfy Assumption H[H,G].



228 M. Matusik

Assumption H[u, v]. There are u, v ∈ C1,2(Q0∪Q̄,R) such that u(t, x) ≤
v(t, x) for (t, x) ∈ Q0 ∪ Q̄ and

L[u](t, x) ≤ H(t, x, uϕ(t,x)) +G(t, x, vϕ(t,x)) on Q,

Λ[u](t, x) ≤ Ψ(t, x) on [0, a]× ∂S, u(t, x) ≤ ψ(t, x) on Q0,

and

L[v](t, x) ≥ H(t, x, vϕ(t,x)) +G(t, x, uϕ(t,x)) on Q,

Λ[v](t, x) ≥ Ψ(t, x) on [0, a]× ∂S, v(t, x) ≥ ψ(t, x) on Q0.

Theorem 2.2. Suppose that Assumptions H∗, H[u, v], H[ϕ] and H[H,G]
are satisfied. Then there exist functions U [u, v], V [u, v] ∈ C1+α/2,2+α(Q̄,R)
which are solutions of

L[U [u, v]](t, x) = H(t, x, uϕ(t,x)) +G(t, x, vϕ(t,x)),

L[V [u, v]](t, x) = H(t, x, vϕ(t,x)) +G(t, x, uϕ(t,x)),

with the initial boundary conditions (1.3). Moreover

(2.9) u(t, x) ≤ U [u, v](t, x) ≤ V [u, v](t, x) ≤ v(t, x) for (t, x) ∈ Q̄.
and for ũ = U [u, v], ṽ = V [u, v] we have

L[ũ](t, x) ≤ H(t, x, ũϕ(t,x)) +G(t, x, ṽϕ(t,x)) on Q,(2.10)

L[ṽ](t, x) ≥ H(t, x, ṽϕ(t,x)) +G(t, x, ũϕ(t,x)) on Q.(2.11)

Proof. Consider problem (2.7), (2.8) with

(2.12) f(t, x) = H(t, x, uϕ(t,x)) +G(t, x, vϕ(t,x)), (t, x) ∈ Q.

We prove that f ∈ Cα/2,α(Q̄,R). Note that the functions uϕ(t,x) and uϕ(t̄,x̄),
where (t, x), (t̄, x̄) ∈ Q, have different domains. Therefore, we need the fol-
lowing construction. Write Y = [−b0, a] × [c̃, d̃] where c̃ = (c̃1, . . . , c̃n),
d̃ = (d̃1, . . . , d̃n), c̃i = ci − |di − ci|, d̃i = di + |di − ci| for i = 1, . . . , n.
There is ũ : Y → R such that ũ ∈ C1,2(Y,R) and ũ(t, x) = u(t, x) for
(t, x) ∈ Q0 ∪ Q̄. Then the function ũϕ(t,x) is defined on B for (t, x) ∈ Q̄.
There is C̃0 > 0 such that for (t, x), (t̄, x̄) ∈ Q we have

‖ũ(t, x)− ũ(t̄, x̄)‖B ≤ C̃0(|t− t̄|+ ‖x− x̄‖),
‖ṽ(t, x)− ṽ(t̄, x̄)‖B ≤ C̃0(|t− t̄|+ ‖x− x̄‖).

It follows from Assumptions H[H,G] and H[ϕ] that there is C̃ > 0 such that
for (t, x), (t̄, x̄) ∈ Q we have

|f(t, x)− f(t̄, x̄)|
= |H(t, x, ũϕ(t,x)) +G(t, x, ṽϕ(t,x))−H(t̄, x̄, ũϕ(t̄,x̄))−G(t̄, x̄, ṽϕ(t̄,x̄))|
≤ L‖ũϕ(t,x) − ũϕ(t̄,x̄)‖αB + L‖ṽϕ(t,x) − ṽϕ(t̄,x̄)‖αB

+ 2C̃[|t− t̄|α/2 + ‖x− x̄‖α] ≤ C∗[|t− t̄|α/2 + ‖x− x̄‖α],
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where C∗ = 2C̃+2LC̃α0 (1+2C0)α[max{aα/2, 1}]. This gives f ∈ Cα/2,α(Q̄,R).
It follows from Theorem 2.1 that there is exactly one solution of problem
(2.7), (2.8) with f given by (2.12). Let us denote this solution by U [u, v].
Analogously we prove that there is exactly one solution V [u, v] of problem
(2.7), (2.8) with f given by f(t, x) = H(t, x, vϕ(t,x))+G(t, x, uϕ(t,x)). It follows
from Theorem 2.1 that U [u, v], V [u, v] ∈ C1+α/2,2+α(Q0 ∪ Q̄,R). Let z =
u− U [u, v]. We conclude from Assumptions H[u, v], H[ϕ], H[H,G] that

L[z](t, x) ≤ 0 on Q,

and Λ[z](t, x) = 0 on [0, a) × ∂S and z(t, x) = 0 on Q0. The theorem on
differential inequalities for mixed problems (see [14, Theorem 2.2.1]) now
shows that z(t, x) ≤ 0 on Q. Hence u ≤ U [u, v]. In the same manner we can
see that V [u, v] ≤ v on Q. Let z̃ = V [u, v]− U [u, v]. We have Λ[z̃](t, x) = 0
on [0, a)× ∂S and z̃(t, x) = 0 on Q0. Moreover

L[z̃](t, x) = H(t, x, vϕ(t,x)) +G(t, x, uϕ(t,x))

−H(t, x, uϕ(t,x))−G(t, x, vϕ(t,x)) ≥ 0.

An application of the theorem on differential inequalities for mixed problems
yields z̃(t, x) ≥ 0 on Q. Consequently, we have

u ≤ U [u, v] ≤ V [u, v] ≤ v on Q,

and (2.9) is proved. From (2.9) it is obvious that inequalities (2.10), (2.11)
are satisfied. This completes the proof.

Theorem 2.3. Suppose that Assumptions H∗, H[u, v], H[ϕ] and H[H,G]
are satisfied. Then there exist monotone sequences {u(k)}, {v(k)} which con-
verge to u∗, v∗ respectively, and u∗, v∗ satisfy (2.3), (2.4), and the initial
boundary conditions (1.3).

Proof. First we formulate a monotone iterative method for problem (2.2),
(1.3). Let us consider the sequences {u(k)}, {v(k)}, where u(k), v(k) : Q0 ∪ Q̄
→ R, defined in the following way:

• u(0) = u, v(0) = v, where u, v are given in H[u, v],
• if u(k) and v(k) are known functions, then we put u(k+1) =U [u(k), v(k)],
v(k+1) = V [u(k), v(k)].

It follows from Theorem 2.2 that

(2.13) u(0) ≤ · · · ≤ u(k) ≤ u(k+1) ≤ v(k+1) ≤ v(k) ≤ · · · ≤ v(0) on Q.

We will show that the sequences {u(k)} and {v(k)} are convergent. Let

hk(t, x) = H(t, x, u
(k)
ϕ(t,x)) +G(t, x, v

(k)
ϕ(t,x)), (t, x) ∈ Q, k ≥ 1.

We will show that there exists K̃ > 0 such that

‖u(k)‖C1+α/2,2+α(Q̄,R) ≤ K̃.
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It follows from [13, Theorem 5.3] (see also [14, Theorem 2.3.1]) that

‖u(k)‖C1+α/2,2+α(Q̄,R)

≤ C[‖hk‖Cα/2,α(Q̄,R) + ‖Ψ‖C(1+α)/2,1+α([0,a]×∂S,R) + ‖ψ‖C2+α(Q̄0,R)].

We need to show that there exists K̃1 > 0 such that

‖hk‖Cα/2,α(Q̄,R) = ‖hk‖C(Q̄,R) +Hα/2,α[hk] ≤ K̃1.

It follows from Assumptions H[H,G] and H[ϕ] that

|hk(t, x)− hk(t̄, x̄)|
≤ |H(t, x, u

(k)
ϕ(t,x))−H(t̄, x̄, u

(k)
ϕ(t̄,x̄)

)|+ |G(t, x, v
(k)
ϕ(t,x))−G(t̄, x̄, v

(k)
ϕ(t̄,x̄)

)|

≤ 2C[|t− t̄|α/2 + ‖x− x̄‖α] + L(‖ũ(k)
ϕ(t,x) − ũ

(k)
ϕ(t̄,x̄)

‖αB + ‖ṽ(k)
ϕ(t,x) − ṽ

(k)
ϕ(t̄,x̄)

‖αB).

Notice that C1+α/2,2+α(Q̄,R) ⊂ W 1,2
q (Q̄,R) where q ≥ (n+ 2)/(1− α).

It follows from Theorem A.3.4 in [14] that W 1,2
q (Q̄,R) is embedded in

C(1+α)/2,1+α(Q̄,R) and

‖u(k)‖C(1+α)/2,1+α(Q̄,R) ≤ C‖u
(k)‖

W 1,2
q (Q̄,R)

, k ≥ 1.

By Theorem A.3.3 in [14] we have

(2.14) ‖u(k)‖
W 1,2
q (Q̄,R)

≤ C[‖hk‖Lq(Q̄,R) + ‖Ψ‖W 1/2−1/2q,1−1/q([0,a]×∂S,R) + ‖ψ‖
W

2−2/q
q (Q0,R)

].

As C(Q̄,R) is dense in Lq(Q̄,R), from the conditions (2), (3) of H[H,G],
it follows that {hk} is a bounded sequence in Lq(Q̄,R). Hence there exists
K̃2 > 0 such that

‖u(k)‖C(1+α)/2,1+α(Q̄,R) ≤ K̃2 for k ≥ 0.

Using this estimate we have

|hk(t, x)− hk(t̄, x̄)|
≤ 2C[|t− t̄|α/2 + ‖x− x̄‖α] + 2LK̃2[|φ0(t)− φ0(t̄)|(1+α)/2

+ ‖φ(t, x)− φ(t̄, x̄)‖]α

≤ 2C[|t− t̄|α/2 + ‖x− x̄‖α] +M [|t− t̄|α/2 + ‖x− x̄‖α]

= N [|t− t̄|α/2 + ‖x− x̄‖α],

where M = 2LK̃2C
α
0 max{aα2/2 + aα/2, 1} and N = 2C +M . Hence

‖u(k)‖C1+α/2,2+α(Q̄,R) ≤ K̃.

It follows from the Arzelà–Ascoli Theorem that there exists a subsequence
of {u(k)} which converges uniformly to u∗ in C1,2(Q̄,R). Since {u(k)} is
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monotone, it converges uniformly in C1,2(Q̄,R). Hence

lim
n→∞

‖u(k) − u∗‖C1,2(Q̄,R) = 0,

and u(0)(t, x) ≤ u∗(t, x) ≤ v(0)(t, x) for (t, x) ∈ Q̄. Similarly, we can prove
that v(k) converges to v∗ in C1,2(Q̄,R) and u(0)(t, x) ≤ v∗(t, x) ≤ v(0)(t, x)
for (t, x) ∈ Q̄. It follows from (2.13) that

(2.15) u(0)(t, x) ≤ u∗(t, x) ≤ v∗(t, x) ≤ v(0)(t, x), (t, x) ∈ Q̄.
It is easy to see that u∗, v∗ satisfy

L[u∗](t, x) = H(t, x, u∗ϕ(t,x)) +G(t, x, v∗ϕ(t,x)) on Q,

L[v∗](t, x) = H(t, x, v∗ϕ(t,x)) +G(t, x, u∗ϕ(t,x)) on Q,

and the initial boundary conditions (1.3). This completes the proof.

Theorem 2.4. Suppose that Assumptions H∗, H[u, v], H[ϕ] and H[H,G]
are satisfied and for any w, w̃ ∈ C(B,R) with w(t, x) ≥ w̃(t, x) on B,

H(t, x, w)−H(t, x, w̃) ≤ L1(w−w̃), G(t, x, w)−G(t, x, w̃) ≥ −L2(w−w̃),

for all (t, x) ∈ Q with some L1, L2 > 0. Then u∗ = v∗ = z̃, where z̃ is
solution of (2.2), (1.3) such that u(0) ≤ z̃ ≤ v(0) on Q̄.

Proof. It follows from Theorem 2.3 that u∗ ≤ v∗ on Q̄. Suppose that z̃
is any solution of (2.2), (1.3) such that u(0)(t, x) ≤ z̃(t, x) ≤ v(0)(t, x) on Q̄.
Assume that for some k > 1 we have u(k)(t, x) ≤ z̃(t, x) ≤ v(k)(t, x) on Q̄.
Let w = u(k+1) − z̃. Then Λ[w](t, x) = 0 on (0, a] × ∂S and w(t, x) = 0 for
all (t, x) ∈ Q0. It follows from Assumption H[H,G] that

L[w](t, x) = H(t, x, u
(k)
ϕ(t,x)) +G(t, x, v

(k)
ϕ(t,x))

−H(t, x, z̃ϕ(t,x))−G(t, x, z̃ϕ(t,x)) ≤ 0, (t, x) ∈ Q̄.

Then u(k+1)(t, x) ≤ z̃(t, x) on Q̄. Similarly we show that z̃(t, x) ≤ v(k+1)(t, x)
on Q̄. It follows by induction that

u(k)(t, x) ≤ z̃(t, x) ≤ v(k)(t, x) on Q̄, k ≥ 0.

Hence u∗(t, x) ≤ z̃(t, x) ≤ v∗(t, x) on Q̄. Let w̃ = v∗ − u∗. We have
Λ[w̃](t, x) = 0 on [0, a)× ∂S and w̃(t, x) = 0 on Q0. Moreover

L[w̃](t,x) = H(t, x, v∗ϕ(t,x))+G(t, x, u∗ϕ(t,x))−H(t, x, u∗ϕ(t,x))−G(t, x, v∗ϕ(t,x))

≤ (L1 + L2)w̃ϕ(t,x) on Q.

It follows from the theorem on differential inequalities for mixed problems
(see for instance [18, Th. 2.2]) that v∗ ≤ u∗ on Q̄. This completes the proof.

3. Newton method for functional differential problems. In the
proof of existence and convergence of monotone iterative methods we assume
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the monotonicity of the right hand side of the equation. In this section we will
omit this assumption and define a sequence which converges to the solution
of the initial problem.

We denote by CL(B,R) the class of all linear and continuous real func-
tions defined on C(B,R). Let ‖ ·‖CL denote the norm in the space CL(B,R)
generated by the maximum norm in C(B,R).

Assumption HC [F ]. The function F : Q̄×C(B,R)→ R of the variables
(t, x, w) satisfies condition (V ) and

(1) F is continuous and F (·, w) ∈ Cα/2,α(Q̄,R) for every w ∈ C(B,R),
(2) for every (t, x, w) ∈ Q×C(B,R) the Fréchet derivative ∂wF (t, x, w)

exists, and ∂wF (t, x, w) ∈ CL(B,R),
(3) there are L1, L2, L3 ∈ R+ such that

‖∂wF (t, x, w)− ∂wF (t̄, x̄, w̄)‖CL
≤ L1(|t− t̄|α/2 + ‖x− x̄‖α) + L2‖w − w̄‖B

for all (t, x, w), (t̄, x̄, w̄) ∈ Q× C(B,R), and

‖∂wF (t, x, w̃)‖CL ≤ L3 for all (t, x, w̃) ∈ Q× C1,2(B,R).

For given u ∈ C(Q0 ∪Q,R), we consider the function

F(t, x, w;u) = F (t, x, uϕ(t,x)) + ∂wF (t, x, uϕ(t,x))(w − uϕ(t,x)).

Suppose that the sequence {u(k)}, where u(k) : Q0 ∪ Q → R for k ∈ N,
satisfies the conditions

(a) u(0) ∈ C1,2(Q0 ∪ Q̄,R),
(b) for every k ≥ 1 the function u(k) is a solution of the equation

L[z](t, x) = F(t, x, zϕ(t,x);u
(k−1))

with the initial boundary conditions

Λ[z](t, x) = Ψ (k)(t, x) for (t, x) ∈ [0, a]× ∂S,
z(t, x) = ψ(k)(t, x) for (t, x) ∈ Q0,

where Ψ (k) ∈ C((1+α)/2,1+α)([0, a]×∂S,R) and ψ(k) ∈ C(2+α)(Q0,R).

It follows from Assumptions H∗, HC [F ], H[ϕ] and from Theorem 2.1
that such a sequence exists.

Now we will prove that the sequence {u(k)} converges to a solution of
(1.2), (1.3). In the proof we will use some ideas from the proof of the Newton–
Kantorovich theorem.

Theorem 3.1. Suppose that Assumptions H∗, HC [F ], H[ϕ] are satisfied
and

(1) z̃ : Q0 ∪ Q̄→ R is a solution of (1.2), (1.3),
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(2) u(0) ∈ C1,2(Q0 ∪ Q̄,R) and

|z̃(t, x)− u(0)(t, x)| ≤ ε0 on Q0 ∪ Q̄,

where ε0 = {4aL2K}−1 and K = exp (L3a),
(3) the inequalities

|ψ(t, x)− ψ(k)(t, x)| ≤ ε0[22kK]−1, (t, x) ∈ Q0,(3.1)

|Ψ(t, x)− Ψ (k)(t, x)| ≤ Λ[ωk(·))](t, x), (t, x) ∈ [0, a)× ∂S,(3.2)

hold for k ≥ 1, where ωk(·) is the solution of the Cauchy problem

(3.3) η′(t) = L2

(
2ε0

22(k−1)

)2

+ L3η(t), η(0) = ε0[22kK]−1.

Then for k ≥ 0 we have

(3.4) |z̃(t, x)− u(k)(t, x)| ≤ 2ε0

22k
on Q̄.

Proof. We prove (3.4) by induction. It is easy to see that (3.4) is satisfied
for k = 0. Suppose that it holds for some k ≥ 1. Then for (t, x) ∈ Q we have

L[z̃ − u(k+1)](t, x) = F (t, x, z̃ϕ(t,x))− F (t, x, u
(k)
ϕ(t,x))

− ∂wF (t, x, u
(k)
ϕ(t,x))[u

(k+1)
ϕ(t,x) − u

(k)
ϕ(t,x)].

It follows from the Hadamard mean value theorem that

L[z̃ − u(k+1)](t, x)

=

1�

0

[∂wF (t, x, u
(k)
ϕ(t,x) + τ(z̃ϕ(t,x) − u

(k)
ϕ(t,x)))− ∂wF (t, x, u

(k)
ϕ(t,x))]

× [z̃ϕ(t,x) − u
(k)
ϕ(t,x)] dτ

+ ∂wF (t, x, u
(k)
ϕ(t,x))[u

(k+1)
ϕ(t,x) − z̃ϕ(t,x)].

Set Z(k) = z̃−u(k). We conclude from the above relations and from Assump-
tion HC [F ] that

|L[Z(k+1)](t, x)| ≤ L2‖Z(k)
ϕ(t,x)‖

2
B + L3‖Z(k+1)

ψ(t,x)‖B, (t, x) ∈ Q̄.

It follows from a comparison theorem for parabolic functional differential
inequalities (see [18]) and from (3.1), (3.2) that

|Z(k+1)(t, x)| ≤ ωk+1(t), (t, x) ∈ Q̄,
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where ωk+1 is the solution of (3.3). It follows that

ωk+1(t) = ε0{22k+1
K}−1 exp (L3t) + L2

(
2ε0

22k

)2 t�

0

exp (L3(t− s)) ds

≤ ε0

22k+1 +
4ε2

0L2aK

22k+1 =
2ε0

22k+1 .

Hence
|Z(k+1)(t, x)| ≤ 2ε0

22k+1 .

This completes the proof.

Remark 3.1. It is clear that conditions (3.1), (3.2) are satisfied if we
put

ψ(k)(t, x) = ψ(t, x) on Q0, Ψ (k)(t, x) = Ψ(t, x) on [0, a)× ∂S.

References

[1] R. A. Adams and J. Fournier, Sobolev Spaces, Academic Press and Elsevier, Ams-
terdam, 2003.

[2] S. Brzychczy, Chaplygin’s method for infinite systems of parabolic differential-
functional equations, Univ. Iagel. Acta Math. 38 (2000), 153–162.

[3] S. Brzychczy, An estimate for the rate of convergence of successive Chaplygin approx-
imations for a parabolic system of functional-differential equations, Differentsial’nye
Uravneniya 25 (1989), 1050–1052, 1101 (in Russian).

[4] S. Brzychczy, Chaplygin’s method for a system of nonlinear functional-differential
equations of parabolic type, Differentsial’nye Uravneniya 22 (1986), 705–708, 734 (in
Russian).

[5] S. A. Chaplygin, Selected Works. Gas and Fluid Mechanics. Mathematics. General
Mechanics, Nauka, Moscow, 1976 (in Russian).

[6] C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper
Solutions, Math. Sci. Engrg. 205, Elsevier, Amsterdam, 2006.

[7] W. Czernous, On the Chaplyghin method for generalized solutions of partial differ-
ential functional equations, Univ. Iagel. Acta Math. 43 (2005), 125–141.

[8] T. Człapiński, Iterative methods for the Darboux problem for partial functional-
differential equations, J. Inequal. Appl. 4 (1999), 141–161.

[9] T. Człapiński, On the Chaplyghin method for partial differential-functional equations
of the first order, Univ. Iagel. Acta Math. 35 (1997), 137–149.

[10] Z. Kamont,Hyperbolic Functional Differential Inequalities and Applications, Kluwer,
Dordrecht, 1999.

[11] Z. Kamont, On the Chaplygin method for partial differential-functional equations of
the first order, Ann. Polon. Math. 38 (1980), 27–46.

[12] G. S. Ladde, V. Lakshmikantham and A. Vatsala, Monotone Iterative Techniques
for Nonlinear Differential Equations, Monogr. Adv. Texts Surveys Pure Appl. Math.
27, Wiley, New York, 1985.

[13] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and Quasi-
linear Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc.,
Providence, RI, 1968.



Iterative methods for parabolic FDEs 235

[14] V. Lakshmikantham and S. Köksal, Monotone Flows and Rapid Convergence for
Nonlinear Partial Differential Equations, Taylor & Francis, London, 2003.

[15] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear
Problems, Math. Appl. 440, Kluwer, Dordrecht, 1998.

[16] G. M. Liberman, Second Order Parabolic Differential Equations, World Sci., Singa-
pore, 1996.

[17] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, 1988.
[18] M. Netka,Monotone iterative methods for parabolic functional differential equations,

Functional Differential Equations 17 (2010), 169–194.
[19] M. Nowotarska, Chaplygin method for an infinite system of first order partial differ-

ential-functional equations, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat. 22 (1981),
125–142.

[20] A. Pudełko,Monotone iteration for infinite systems of parabolic equations with func-
tional dependence, Ann. Polon. Math. 90 (2007), 1–19.

Milena Matusik
Institute of Mathematics
University of Gdańsk
Wit Stwosz Street 57
80-952 Gdańsk, Poland
E-mail: milena.matusik@mat.ug.edu.pl

Received on 30.1.2012;
revised version on 1.3.2013 (2121)

http://dx.doi.org/10.4064/ap90-1-1



	1 Introduction
	2 Monotone iterative methods
	3 Newton method for functional differential problems
	References

