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INEXACT NEWTON METHOD UNDER WEAK AND

CENTER-WEAK LIPSCHITZ CONDITIONS

Abstract. The paper develops semilocal convergence of Inexact Newton
Method (INM) for approximating solutions of nonlinear equations in Ba-
nach space setting. We employ weak Lipschitz and center-weak Lipschitz
conditions to perform the error analysis. The results obtained compare fa-
vorably with earlier ones in at least the case of Newton’s Method (NM).
Numerical examples, where our convergence criteria are satisfied but the
earlier ones are not, are also explored.

1. Introduction. Let X, Y be Banach spaces and D be a nonempty,
convex and open subset in X. Let U(x, r) and U(x, r) stand, respectively,
for the open and closed ball in X with center x and radius r > 0. Denote
by L(X,Y) the space of bounded linear operators from X into Y. In the
present paper, we are concerned with the problem of approximating a locally
unique solution x? of the equation

(1.1) F(x) = 0

where F is a Fréchet continuously differentiable operator defined on D with
values in Y.

Many problems from computational sciences and other disciplines can
be brought into the form of equation (1.1) using mathematical modelling
[1, 2, 3, 5, 6, 10]. The solution of these equations can rarely be found in closed
form. That is why the solution methods for these equations are iterative.
In particular, the practice of numerical analysis for finding such solutions is
essentially connected to variants of Newton’s method [2, 3, 4, 6, 7, 10, 11].
The study of convergence of iterative procedures is usually centered on two
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types of analysis: semilocal and local convergence analysis. The semilocal
convergence analysis is based on the information around an initial point, to
give criteria ensuring the convergence of the iterative procedure; while the
local one is, based on the information around a solution, to find estimates of
the radii of convergence balls. There is a plethora of studies on the weakness
and/or extension of the hypotheses made on the underlying operators; see
for example [1–28].

Undoubtedly the most popular iterative method for generating a se-
quence approximating x? is the Newton’s method (NM), which is defined
as

(1.2) xn+1 = xn −F ′(xn)−1F(xn) for n = 0, 1, 2, . . . ,

where x0 is an initial point. There are two difficulties with the implementa-
tion of (NM). The first is to evaluate F ′ and the second is to exactly solve
the Newton equation

(1.3) F ′(xn)(xn+1 − xn) = −F(xn) for n = 0, 1, 2, . . . .

It is well-known that evaluating F ′ and solving (1.3) may be computationally
expensive [9, 10, 13–27, 28]. The computational cost can be reduced if the
(INM)

(1.4) xn+1 = xn + sn, F ′(xn)sn = −F(xn) + rn for n = 0, 1, 2, . . . ,

is used. Here, {rn} is a null-sequence in the Banach space Y. Clearly, the
convergence behavior of (INM) depends on the residual controls {rn} and
hypotheses on F ′. In particular, Lipschitz continuity conditions on F ′ have
been used, together with residual controls of the form

(1.5)

‖rn‖ ≤ ηn‖F(xn)‖,
‖F ′(x0)−1rn‖ ≤ ηn‖F ′(x0)−1F(xn)‖,
‖F ′(x0)−1rn‖ ≤ ηn‖F ′(x0)−1F(xn)‖1+θ,

‖Pnrn‖ ≤ θn‖PnF(xn)‖1+θ,

for some θ ∈ [0, 1] and all n = 0, 1, 2, . . . . Here, {ηn}, {θn} are sequences in
[0, 1], {Pn} is a sequence in L(Y,X), and F ′(x0)−1F ′ satisfies a Lipschitz
or Hölder condition on U(x0, r) [1–24].

In this work, motivated by the works of Argyros et al. [1–5, 7, 8], Shen
et al. [22, 23] and Wang et al. [25, 26], we suppose that F has a continuous
Fréchet derivative in U(x0, r), F ′(x0)−1F ′ exists and F ′(x0)−1F ′ satisfies
the weak Lipschitz condition

(1.6) ‖F ′(x0)−1(F ′(x)−F ′(xτ ))‖ ≤
ρ(x)�

τρ(x)

L(u) du
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for each x ∈ U(x0, r). Here, ρ(x) = ‖x− x0‖, xτ = x0 + τ(x− x0), τ ∈ [0, 1]
and L is a positive, integrable, nondecreasing function on [0, r]. Moreover,
we suppose that the 3rd formula of (1.5) is satisfied for θ = 1, that is,

(1.7) ‖F ′(x0)−1rn‖ ≤ ηn‖F ′(x0)−1F(xn)‖2 for n = 0, 1, 2, . . . .

Moreover, we suppose that

(1.8) η = sup
n≥0

ηn < 1.

In view of (1.6) there exists a positive, integrable and nondecreasing function
on [0, r] such that the center-weak Lipschitz condition

(1.9) ‖F ′(x0)−1(F ′(x)−F ′(x0))‖ ≤
ρ(x)�

0

L0(u) du

holds for each x ∈ U(x0, r). Clearly,

(1.10) L0(u) ≤ L(u)

for each u ∈ [0, r] and L/L0 can be arbitrarily large [4, 9, 6].
In this work, we use our idea of recurrent functions [8–6] to perform

convergence analysis for the (INM). In the computation of ‖F(x)−1F ′(x0)‖
we use the condition (1.9) which is tighter than (1.6), and the Banach lemma
on invertible operators [10], to obtain the perturbation bound

(1.11) ‖F ′(x)−1F ′(x0)‖ ≤
(

1−
ρ(x)�

0

L0(u) du
)−1

for x ∈ U(x0, r),

instead of using (1.6) to obtain

(1.12) ‖F ′(x)−1F ′(x0)‖≤
(

1−
ρ(x)�

0

L(u) du
)−1

for x ∈ U(x0, r).

It turns out that using (1.12) instead of (1.11), in the case when L0(u)<L(u)
for each u ∈ [0, r], leads to tighter majorizing sequences for (INM). This
observation in turn leads to the following advantages over the earlier works
(for ηn = 0 for each n = 0, 1, 2, . . . or not, and L being a constant or not
(see also Section 4)):

A1: Weaker sufficient convergence conditions.
A2: Tighter error estimates on the distances ‖xn+1 − xn‖, ‖xn − x?‖ for

each n = 0, 1, 2, . . . .
A3: At least as precise information on the location of the solution.

The rest of the paper is organized as follows. Section 2 develops the semilo-
cal convergence analysis I for (INM) by employing the traditional majorant
principle in combination with the Kantorovich theory for (INM) and non-
linear equations. Section 3 contains the semilocal convergence analysis II
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of (INM) using recurrent functions [8–6]. In the concluding Section 4, we
present special cases and numerical examples where the claims A1–A3 are
verified.

2. Semilocal convergence I. For convenience, let us define some ma-
jorizing functions. Let b, c, d > 0 and θ ∈ [0, 1). Define functions f , g0 and g
on [0, R] by

f(t) = b− (1− θ)t+ dt2 + c

t�

0

L(u)(t− u) du,(2.1)

g0(t) = b− t+ c

t�

0

L0(u)(t− u) du,(2.2)

g(t) = b− t+ c

t�

0

L(u)(t− u) du.(2.3)

We have

f ′(t) = −(1− θ) + 2dt+ c

t�

0

L(u) du,(2.4)

f ′′(t) = 2d+ cL(t) > 0,(2.5)

g′0(t) = −1 + c

t�

0

L0(u) du,(2.6)

g′(t) = −1 + c

t�

0

L(u) du,(2.7)

f ′(t) = g′(t) + θ + 2dt,(2.8)

g0(t) ≤ g(t),(2.9)

g′0(t) ≤ g′(t).(2.10)

Define

r := sup
{
r ∈ (0, R) : c

r�

0

L(u) du+ 2dr ≤ 1− θ
}
,(2.11)

p := (1− θ)r − dr2 − c
r�

0

L(u)(r − u) du,(2.12)

µ := c

R�

0

L(u) du+ 2dR.(2.13)
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It follows that

(2.14) r =

{
R, µ < 1− θ,
r, µ ≥ 1− θ,

where r ∈ [0, R] is such that

c

r�

0

L(u) du+ 2dr = 1− θ.

Hence,

(2.15) p


≥ c

r�

0

L(u)u du+ dr2, µ < 1− θ,

= c

r�

0

L(u)u du+ dr2, µ ≥ 1− θ.

As in [8], let us define the scalar sequences {sn} and {tn} for each θ ∈ [0, 1)
by

s0 = 0, sn+1 = sn −
f(sn)

g′0(sn)
,(2.16)

t0 = 0, tn+1 = tn −
f(tn)

g′(tn)
.(2.17)

Note that if d = 0 and c = 1 (i.e. if rn = 0 for all n = 0, 1, 2, . . .) the
functions and sequences defined above reduce to the corresponding ones
in [8]. If equality holds in (1.10), then g0(t) = g(t) for each t ∈ [0, R].
Otherwise (i.e. if g0(t) < g(t) for each t ∈ [0, R]) then we shall show in
Lemma 2.2 that the scalar sequence {sn} is at least as tight as {tn}. But
first we need a crucial result on majorizing sequences for (INM). The proof
is similar to the corresponding Lemma 2.1 in [8] where d = 0 and c = 1.
However there are some crucial differences.

Lemma 2.1. Suppose

(2.18) b ≤ p.

Then

(G2) A function f is strictly decreasing on [0, r] and has exactly one zero
s? ∈ [0, r] for each θ ∈ [0, 1) such that

(2.19) b < s?.

(G2) The sequence {sn} defined by (2.16) is strictly increasing and con-
verges to s?.
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Proof. (G1) It follows from (2.5) and (2.11) that f ′ is strictly increasing
on [0, r]. In particular, f ′(0) < 0 and f ′(r) ≤ 0. That is, f is strictly decreas-
ing on [0, r]. Moreover, using (2.1) we find that f(0) = b > 0 and f(r) ≤ 0.
Hence, the graph of f crosses the interval (0, r] only once at a zero denoted
by s. Furthermore,

(2.20) f(b) = θb+ db2 + c

b�

0

L(u)(b− u) du > 0,

which shows (2.19).

(G2) We use induction on n. It follows from (2.16) and (2.19) that

(2.21) 0 = s0 < s1 = b < s?.

Assume that

sk−1 < sk < s? for each k ≤ n.

We have g′′0(t) = cL0(t). Hence, −g′0 is strictly decreasing on [0, r]. In view
of (2.8), (2.10), (2.21) and the definition of r we get

−g′0(sk) > −g′0(s?) ≥ −g′0(r) ≥ −g′(r) = −f ′(r) + θ + 2dr ≥ 0.

We also have f(sk) > 0 by (G1). Hence,

(2.22) sk+1 = sk −
f(sk)

g′0(sk)
> sk,

which completes the induction. Let us define a function q on [0, s?] by

(2.23) q(t) = t− f(t)

g′0(t)
.

We have

(2.24) g′0(t) < 0 for each t ∈ [0, s?]

except if θ = 0 and t = s? = r. As in [8], we use the L’Hôpital rule to obtain

(2.25)
f(s?)

g′0(s
?)

= lim
t→s?−

f(t)

g′0(t)
= 0.

Hence, the function q is well defined and continuous on [0, s?]. It then follows
from (G1), (2.5) and (2.24) that

(2.26) q′(t) = 1− f ′(t)g′0(t)− f(t)g′′(t)

(g′0(t))
2

=
−g′0(t)(θ + 2dt) + f(t)g′′0(t)

(g′0(t))
2

> 0

for each t ∈ [0, s?]. Hence, q is strictly increasing on [0, s?]. Using (2.21),
(2.22) and (2.26) we obtain

(2.27) sk < sk+1 = q(sk) < q(s?) = s?,
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which completes the induction. That is, {sn} is increasing, bounded from
above by s? and so converges to its least upper bound s? ∈ [0, s?] with
f(s?) = 0. But by (G1), s

? = s?.

Next, we compare the sequences {sn} and {tn}.
Lemma 2.2. Suppose that condition (2.18) holds. Then, for each n =

0, 1, 2, . . . ,

sn ≤ tn,(2.28)

sn+1 − sn ≤ tn+1 − tn.(2.29)

Moreover, if L0(t) < L(t) for each t ∈ [0, s?] then inequalities (2.28) and
(2.29) are strict.

Proof. Clearly, under condition (2.18) assertions (G ′1) and (G2) of Lemma
2.1 hold with the sequence {tn} replaced by {sn}. We shall show estimates
(2.28) and (2.29) by induction. Using (1.10), (2.16) and (2.17) we get

s0 = t0, s1 = t1 = b,

s1 = s0 −
f(s0)

g′0(s0)
≤ t0 −

f(t0)

g′(t0)
= t1

and so

s1 − s0 = − f(s0)

g′0(s0)
= − f(t0)

g′(t0)
= t1 − t0.

Hence, (2.28) and (2.29) hold for n = 0. Let us assume that estimates (2.28)
and (2.29) hold for each integer k ≤ n. Then

sk+1 = sk −
f(sk)

g′0(sk)
≤ tk −

f(tk)

g′(tk)
= tk+1

and

sk+1 − sk = − f(sk)

g′0(sk)
≤ − f(tk)

g′(tk)
= tk+1 − tk.

Let us denote

a = ‖F ′(x0)−1F(x0)‖, b = (1 +
√
η)a,(2.30)

c = 1 +
√
η, d =

η(1 +
√
η)(1 +

	R
0 L(u) du)2

(1−√η)2
.(2.31)

We need the following auxiliary result connecting (INM) with the majoriz-
ing sequence (2.16).

Lemma 2.3. Suppose the sequence {xn} generated by (INM) is well de-
fined for each n = 0, 1, 2, . . . . Furthermore, let F satisfy the weak Lipschitz
condition on U(x0, s

?), b ≤ p, and for some integer k ≥ 1,

(2.32)
√
η ‖F ′(x0)−1F(xn−1)‖ ≤ 1 and ‖xn − xn−1‖ ≤ sn − sn−1
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are satisfied for each n = 1, . . . , k. Then

(1 +
√
η)‖F ′(x0)−1F(xk)‖ ≤ f(sk),(2.33)
√
η ‖F ′(x0)−1F(xk)‖ ≤ 1.(2.34)

Proof. Suppose that (2.32) holds for each 1 ≤ n ≤ k. We write xrk−1 =
xk−1 + τ(xk − xk−1), where τ ∈ [0, 1]. Using (1.4), we obtain

F(xk) = F(xk)−F(xk−1)−F ′(xk−1)(xk − xk−1) + rk−1

=

1�

0

[F ′(xrk−1)− F ′(xk−1)] dτ (xk − xk−1) + rk−1.

Hence,

(2.35) ‖F ′(x0)−1F(xk)‖

≤
∥∥∥F ′(x0)−1 1�

0

[F ′(xrk−1)−F ′(xk−1)] dτ (xk − xk−1)
∥∥∥+ ‖F ′(x0)−1rk−1‖

= A+B.

To estimate A, by (2.32), we observe that

‖xrk−1 − x0‖ = ‖xk−1 + r(xk − xk−1)− x0‖(2.36)

≤
m−1∑
n=1

‖xn − xn−1‖+ r‖xk − xk−1‖

≤ sk−1 + τ(sk − sk−1) = (1− τ)sk−1 + rsk < s?.

In particular,

‖xk−1 − x0‖ ≤ sk−1 < s?, ‖xk − x0‖ ≤ sk < s?,

and so

(2.37) A ≤
‖xk−xk−1‖�

0

(‖xk − xk−1‖ − u)L(‖xk−1 − x0‖+ u) du.

Now, we estimate B. We notice that (1.7) and (2.32) yield

(2.38) ‖F ′(x0)−1F ′(xk−1)(xk − xk−1)‖
≥ ‖F ′(x0)−1F(xk−1)‖ − ‖F ′(x0)−1rk−1‖
≥ ‖F ′(x0)−1F(xk−1)‖ − η‖F ′(x0)−1F(xk−1)‖2

≥ (1−√η)‖F ′(x0)−1F(xk−1)‖.
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Since

‖F ′(x0)−1F ′(xk)‖ = ‖I + F ′(x0)−1[F ′(xk)−F ′(x0)]‖

≤ 1 +

ρ(xk)�

0

L(u) du ≤ 1 +

R�

0

L(u) du,

we have

‖F ′(x0)−1F(xk−1)‖ ≤
‖F ′(x0)−1F ′(xk−1)‖ ‖xk − xk−1‖

1−√η
(2.39)

≤
1 +

	R
0 L(u) du

1−√η
‖xk − xk−1‖.

Combining the preceding relations with (1.7), we get

(2.40) B ≤ η‖F ′(x0)−1F(xk−1)‖2 ≤ η
(1 +

	R
0 L(u) du)2

(1−√η)2
‖xk − xk−1‖2.

Accordingly, from (2.35), (2.37), (2.40) and Lemma 2.2, we get in turn

(2.41) (1 +
√
η)‖F ′(x0)−1F(xk)‖ ≤ (1 +

√
η)(A+B)

≤ (1 +
√
η)

‖xk−xk−1‖�

0

(‖xk − xk−1‖ − u)L(‖xk−1 − x0‖+ u) du

+
η(1 +

√
η)
(
1 +

	R
0 L(u) du

)2
(1−√η)2

‖xk − xk−1‖2

= c

‖xk−xk−1‖�

0

(‖xk − xk−1‖ − u)L(‖xk−1 − x0‖+ u) du+ d‖xk − xk−1‖2

=

(
c

‖xk − xk−1‖2

‖xk−xk−1‖�

0

(‖xk − xk−1‖ − u)

× L(‖xk−1 − x0‖+ u) du+ d

)
‖xk − xk−1‖2

≤
(

c

(sk − sk−1)2

sk−sk−1�

0

(sk − sk−1 − u)L(sk−1 + u) du+ d

)
(sk − sk−1)2

= c

sk−sk−1�

0

(sk − sk−1 − u)L(sk−1 + u) du+ d[s2k − s2k−1 − 2sk−1(sk − sk−1)]

= f(sk)− f(sk−1)− f ′(sk−1)(sk − sk−1)
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≤ f(sk)− f(sk−1)− (g′(sk−1) + θ + 2dsk−1)(sk − sk−1)
≤ f(sk)− f(sk−1)− g′0(sk−1)(sk − sk−1)

+ (g′0(sk−1)− g′(sk−1))(sk − sk−1)− (θ + 2dsk−1)(sk − sk−1)
≤ f(sk)

by (2.16), (2.8), (2.9) and (2.32). Moreover, since f is decreasing on [0, s?],
one obtains

(2.42) (1 +
√
η)‖F ′(x0)−1F(xk)‖ ≤ f(sk) ≤ f(s0) = b.

Therefore, we deduce that

(2.43)
√
η ‖F ′(x0)−1F(xk)‖ ≤

√
η

1 +
√
η
b =
√
η ‖F ′(x0)−1F(x0)‖ ≤ 1.

Hence, we conclude that (2.33) and (2.34) hold.

Moreover, we need the following version of the Banach lemma on invert-
ible operators.

Lemma 2.4 ([8]). Suppose that F ′ satisfies the center-Lipschitz condition
(1.9). Let r satisfy

	r
0 L0(u) du ≤ 1. Then F ′(x)−1 ∈ L(Y,X) for each x ∈

U(x0, r) and

(2.44) ‖F ′(x)−1F ′(x0)‖ ≤
(

1−
ρ(x)�

0

L0(u) du
)−1

.

Furthermore, we need a standard result concerning the behavior of a
certain function.

Lemma 2.5 ([24–26]). Suppose 0 ≤ R0 < R. Define a function ϕ on
[0, R−R0) by

(2.45) f(t) =
1

t2

t�

0

L(R0 + u)(t− u) du.

Then f is increasing on [0, R−R0].

We can now show the following semilocal convergence result for (INM).

Theorem 2.6. Suppose that

b ≤ min{1/√η, bλ}, U(x0, s
?) ⊆ U(x0, R)

and F ′(x0)−1F ′ satisfies the weak Lipschitz condition (1.9) on U(x0, s
?).

Then the sequence {xn} generated by the (INM) (1.4) converges to a solu-
tion x? of equation (1.1). Moreover,

(2.46) ‖xn − x?‖ ≤ s? − sn, n = 0, 1, 2, . . . .
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Proof. First we show by induction that (2.32) holds for each n = 1, 2, . . . .
For n = 1, by the above condition and (2.30), the first inequality in (2.32)
is satisfied, while the second can be proved as follows. First,

‖x1 − x0‖ ≤ ‖F ′(x0)−1F(x0)‖+ ‖F ′(x0)−1r0‖
≤ a+ ηa2 ≤ a+ a

√
η = (1 +

√
η)a = b = s1 − s0.

Suppose that (2.32) holds for all n ≤ k. Then from Lemma 2.4,

(1 +
√
η)‖F ′(x0)−1F(xk)‖ ≤ f(sk),

√
η ‖F ′(x0)−1F(xk)‖ ≤ 1.

Then, by (2.33), (2.37), the weak Lipschitz condition (1.9) and Lemma 2.3,
we obtain

(2.47)
‖xk+1 − xk‖ ≤ ‖F ′(xk)−1F ′(x0)‖(‖F ′(x0)−1F(xk)‖+ ‖F ′(x0)−1rk‖)

≤ 1

1−
	ρ(xk)
0 L(u) du

(‖F ′(x0)−1F(xk)‖+ η‖F ′(xk)−1F(xk)‖2)

≤
1 +
√
η

1− c
	ρ(xk)
0 L(u) du

‖F ′(x0)−1F(xk)‖

≤ − f(sk)

g′0(sk)
= sk+1 − sk.

Thus (2.32) is valid for n = k+ 1. Hence, it holds for each n ≥ 1. Hence, for
n ≥ 0 and k ≥ 0 we have

‖xk+n − xn‖ ≤
k∑
i=1

‖xi+n − xi+n−1‖(2.48)

≤
k∑
i=1

(si+n − si+n−1) = sk+n − sn.

The sequence {sn} converges to s? according to Lemma 2.1. Hence, it follows
from (2.48) that {xn} is a Cauchy sequence in the Banach space X and so
it converges to some x? ∈ U(x0, s

?). Letting k →∞ in (2.48) yields

‖xn − x?‖ ≤ s? − sn, n = 0, 1, 2, . . . .

Remark 2.7. (i) If c = 1 and d = 0, Theorem 2.6 reduces to Theorem
3.6 in [8]. Moreover, if ηn = 0 for each n = 0, 2, 3, . . . then (INM) reduces
to (NM). If g0(t) = g(t), the results further reduce to the corresponding
ones developed by Shen et al. [21–23].

(ii) Condition (2.18) is sufficient for the convergence of the majorizing
sequences {sn} and {tn}. At this point we may wonder if (2.18) can be
dropped and replaced by a possibly weaker sufficient convergence condition.
Let us define the scalar sequences {αn} and {ϕn} by
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(2.49)
α0 = 0, α1 = b,

α2 = α1 −

[
c

(α1−α0)2

	α1−α0

0 (α1 − α0 − u)L0(α0 + u) du+ d
]
(α1 − α0)

2

g′0(α1)
,

αn+1 = αn−[
c

(αn−αn−1)2

	αn−αn−1

0 (αn − αn−1 − u)L(αn−1 + u) du+ d
]
(αn − αn−1)2

g′0(αn)
,

and
(2.50)

ϕ0 = 0, ϕ1 = b,
ϕn+1 = ϕn−[

c
(ϕn−ϕn−1)2

	ϕn−ϕn−1

0 (ϕn − ϕn−1 − u)L(ϕn−1 + u) du+ d
]
(ϕn − ϕn−1)2

g′0(ϕn)
.

Then, according to (2.41) and (2.47), the sequences {αn} and {ϕn} are also
majorizing sequences for {xn}. Moreover, in view of (1.10), the sequence
{αn} is tighter than {ϕn}, which is tighter than {sn} (and {tn}). Clearly
the sequences {αn} and {ϕn} converge under (2.18) and can replace {sn} in
Theorem 2.6. Moreover a simple inductive argument (see also the proof of
Lemma 2.2) shows that

αn ≤ ϕn ≤ sn,(2.51)

αn+1 − αn ≤ ϕn+1 − ϕn ≤ sn+1 − sn,(2.52)

α? = lim
n→∞

αn ≤ ϕ? = lim
n→∞

ϕn ≤ s?.(2.53)

In the next section, we shall present sufficient convergence conditions for
{αn} and {ϕn} which are different and can be weaker than (2.18).

3. Semilocal convergence of (INM). Using our new idea of recur-
rent functions, we provide a semilocal convergence analysis for (INM). The
concept of recurrent functions has already been used to produce finer con-
vergence analysis for iterative methods using invertible operators or outer
or generalized inverses [8].

Let us first define some sequences and functions.

Definition 3.1. Let b > 0, c > 0 and d > 0. Let us define the sequence
{φn}, the functions fn, εn, µn on [0, 1) and ξ on I = [0, 1]2 × [1, 1/(1− t)]2
(t ∈ [0, 1)) by

(3.1)

φ0 = 0, φ1 = b,

φn+1 = φn +
δn + d(φn − φn−1)

1− δn
(φn − φn−1) (n ≥ 1).
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fn(t) = c

1�

0

zn−1(t)�

wn−1(t)

L(u) du dθ + tn−1b− λ+ t

wn(t)�

0

L0(u) du(3.2)

εn(t) = c

1�

0

(zn(t)�

wn(t)

L(u) du−
zn−1(t)�

wn−1(t)

L(u) du
)
dθ + d(λn − λn−1)b(3.3)

+ d

zn+1(t)�

wn(t)

L0(u) du,

(3.4) µn(t) = c

1�

0

(zn+1(t)�

wn+1(t)

L(u) du+

zn−1(t)�

wn−1(t)

L(u) du− 2

zn(t)�

wn(t)

L(u) du
)

+ d(λn+1 − λn−1 − 2λn−1)b+ t
(zn+1(t)�

wn+1(t)

L0(u) du−
zn(t)�

wn(t)

L0(u) du
)
,

(3.5) ξ(θ, t, λ1, λ2) =

1�

0

((λ1+λ2+λ2t+θt2)b�

(λ1+λ2+λ2t)b

L(u) du+

(λ1+θλ2)b�

λ1b

L(u) du− 2

(λ1+λ2+θλ2t)b�

(λ1+λ2)b

bL(u) du
)
dθ

+ d(λn+1−λn−1− 2λn−1)b+ t
((λ1+λ2t+t2λ2)b�

(λ1+λ2+λ2t)b

L0(u) du−
(λ1+λ2t)b�

(λ1+λ2)b

L0(u) du
)
,

where

δn =

1�

0

φn−1+θ(φn−φn−1)�

φn−1

L(u) du dθ,(3.6)

δn =

φn�

0

L0(u) du,(3.7)

zn(t) =

(
1− tn

1− t
+ θtn

)
b,(3.8)

wn(t) =
1− tn

1− t
b,(3.9)

γ = db− t.(3.10)

The function f∞ is defined on [0, 1) by

(3.11) f∞(t) = lim
n→∞

fn(t).
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Remark 3.2. Using (3.2) and (3.11), we obtain

(3.12) f∞(t) = t

b/(1−t)�

0

L0(u) du+ γ.

From (3.2)–(3.10), we deduce the following identities:

fn+1(t) = fn(t) + εn(t),(3.13)

εn+1(t) = εn(t) + µn(t),(3.14)

µn(t) = ξ(θ, t, λ1) = (1 + t+ · · ·+ tn−2)b, λ2 = tn−1b.(3.15)

We need the following result on majorizing sequences for (INM).

Lemma 3.3. Let the sequence {φn} and functions fn, εn, µn and ξ be as
in Definition 3.1. Furthermore assume that there exists α ∈ (0, 1) such that

b

1�

0

θb�

0

L(u) du dθ + db ≤ α
(

1−
b�

0

L0(u) du

)
,(3.16)

γ = db− α < 0,(3.17)

ξ(θ, λ1, λ2, λ3) ≥ 0 on I,(3.18)

ε1(α) ≥ 0,(3.19)

f∞(α) ≤ 0.(3.20)

Then the sequence {φn} given by (3.1) is nondecreasing, bounded from above
by

(3.21) φ?? =
b

1− α
and converges to its least upper bound φ? such that

(3.22) φ? ∈ [0, φ??].

Moreover, for all n ≥ 0,

0 ≤ φn+1 − φn ≤ α(φn − φn−1) ≤ αnb,(3.23)

0 ≤ φ? − φn ≤
αnb

1− α
.(3.24)

Proof. Estimate (3.23) holds if

(3.25) δn + d(φn − φn−1) ≤ α(1− δn)

for all n ≥ 1. It follows from (3.1), (3.16) and (3.17) that (3.25) holds for
n = 1. We also notice that (3.23) holds for n = 1 and

(3.26) φn ≤
1− αn

1− α
b < φ??.

By the induction hypotheses and (3.26), the estimate (3.25) is true if

(3.27) δk + d(φk − φk−1)b+ αδk + d(φk − φk−1)− δ ≤ 0
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or

(3.28)

1�

0

zk−1(α)�

wk−1(α)

L(u) du dθ+dλk−1b+α

wk(α)�

0

L0(u) du+d(φk−φk−1)−α ≤ 0

for all k ≤ n. Estimate (3.28) motivates introducing the function fk given
by (3.2) and we will show instead of (3.28) that

(3.29) fk(α) ≤ 0.

From (3.13)–(3.15) (for t = α) and (3.19) we have

(3.30) fk+1(α) ≥ fk(α).

In view of (3.11), (3.12) and (3.30), the estimate (3.29) will hold if (3.20)
holds since

(3.31) fk(α) ≤ f∞(α),

and this completes the induction. It follows from (3.23) and (3.26) that the
sequence {φn} is nondecreasing, bounded from above by φ?? given by (3.21)
and so converges to φ?. Finally, (3.24) follows from (3.23) by using standard
majorization techniques [10].

Using the recurrent function approach, we now show the following semilo-
cal convergence result for (INM).

Theorem 3.4. Suppose that F ′ satisfies (3.4), (3.6) on U(x0, φ
?) ⊆ D,

and the hypotheses of Lemma 3.3 as well as

(3.32) U(x0, φ
?) ⊆ D.

Then the sequence {xn} generated by (INM) is well defined, remains in
U(x0, φ

?) for all n ≥ 0 and converges to a zero x? of F ′(·)F(·) in U(x0, φ
?).

Moreover,

‖xn+1 − xn‖ ≤ φn+1 − φn,(3.33)

‖xn − x?‖ ≤ φ? − φn.(3.34)

Proof. As in Theorem 2.6, we deduce the estimates (3.33) and (3.34)
(with φk replacing sk), which in view of (3.1) lead to

(3.35) ‖xk+1 − xk‖ ≤ φn+1 − φn.
Estimates (3.18), (3.19), (3.35) and Lemma 3.5 imply that {xk} is a Cauchy
sequence in Rm and hence converges to some x? ∈ U(x0, φ

?).

Remark 3.5. (i) The point φ?? given by (3.21) can replace φ? in hy-
pothesis (3.32).

(ii) The hypotheses of Lemma 3.2 involve only computations with the
initial data. These hypotheses differ from (3.13) given in Theorem 2.6. In
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practice, one has to test which of the two are satisfied. If both are satisfied,
we use the more precise error bounds given in Theorem 3.4.

In the next section, we show that the conditions of Theorem 3.4 can be
weaker than those of Theorem 2.6.

4. Special cases and numerical examples. We compare the Kan-
torovich type conditions introduced in Section 2 with the corresponding
conditions in Section 3.

Special case (Newton’s method). Let L(u) = l > 0, L0(u) = l0 > 0,
η = 0, θ = 0, c = 1. Then the sequences introduced in Sections 2 and 3
reduce to

s0 = 0, sn+1 = sn −
f(sn)

g′0(sn)
for n = 0, 1, 2, . . . ,(4.1)

t0 = 0, tn+1 = tn −
f(tn)

g′(tn)
for n = 0, 1, 2, . . . ,(4.2)

α0 = 0, α1 = b, α2 = α1 +
l0(α1 − α0)

2

2(1− l0α1)
,(4.3)

αn+2 = αn+1 +
l(αn+1 − αn)2

2(1− l0αn+1)
for n = 1, 2, . . . ,(4.4)

φ0 = 0, φ1 = b, φn+2 = φn+1 +
l(φn+1 − φn)2

2(1− l0φn+1)
(4.5)

for n = 0, 1, 2, . . . ,

fn(t) =
l

2
btn + l0b(1 + t+ · · ·+ tn)t− t, f∞(t) = t

(
l0b

1− t
− 1

)
,(4.6)

εn(t) =
1

2
(2l0t

2 + lt− l)tnb, µn(t) =
1

2
b(2l0t

2 + lt− l)(tn+1 − tn),(4.7)

δn(t) =
l

2
(tn+1 − tn)2, δn(t) = l0tn,(4.8)

zn(t) = (1 + t+ · · ·+ tn−1 + θtn)b, wn(t) = (1 + t+ · · ·+ tn−1)b,(4.9)

α =
2l

l +
√
l2 + 8l0l

.(4.10)

Then the sequences {sn} and {tn} converge if the hypotheses of Theorem
2.5 are satisfied, that is, if the Kantorovich criterion [6]

(4.11) h1 = 2lη ≤ 1

is satisfied, and then we have

(4.12) s? = t? =
1−
√

1− 2lη

l
.
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The sequence {φn} converges if the hypotheses of Theorem 3.4 are satisfied
[9, 6], i.e. if

(4.13) h2 = lη ≤ 1,

where

(4.14) l =
1

4
(l + 4l0 +

√
l2 + 8l0l),

and then we have

(4.15) φ? ≤ φ? =
η

1− α
.

Finally, the sequence {αn} converges [9] if

(4.16) h3 = lη ≤ 1,

where

(4.17) l =
1

4

(
4l0 +

√
l0l +

√
l0l + 8l20

)
,

and we have

(4.18) α? ≤ α? =

(
1 +

l0η

2(1− α)(1− l0η)

)
η.

Note that

(4.19) l ≤ l ≤ l.

If l0 = l double equality holds in (4.19). Otherwise (i.e. if l0 < l) then
inequalities in (4.19) are strict. Consequently, it follows from (4.11), (4.13),
(4.16) and (4.19) that

(4.20) h1 ≤ 1 ⇒ h2 ≤ 1 ⇒ h3 ≤ 1

and

(4.21) h3/h1 → 0, h3/h2 → 0, h2/h1 → 1/4 as l/l0 →∞.

Next we present examples where l0 < l.

Example 4.1. Let X = Y = R, x0 = 1 and D = [ζ, 2−ζ] for ζ ∈ (0, 0.5).
Let us consider the nonlinear map

F(x) = x3 − ζ.

Then we get

η =
1− ζ

3
, l0 = 3− ζ, l = 2(2− ζ).

From the Kantorovich hypothesis (4.11), we get

h1 > 1 for all ζ ∈ (0, 0.5).
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Hence, there is no guarantee that the sequence {xn} converges to 3
√
ζ. But

from (4.13) and (4.16), we observe that

h2 ≤ 1 for all ζ ∈ [0.450339002, 0.5),

h3 ≤ 1 for all ζ ∈ [0.4271907643, 0.5).

Hence, our approach extends the applicability of (NM).

Example 4.2. Let x0 = 0. Define F (x) = d0x + d1 + d2 sin ed3x, where
di, i = 0, 1, 2, 3, are given parameters. It can be easily seen that for d3 large
and d2 sufficiently small, l0/l can be arbitrarily small.

Example 4.3. Let X = Y = C[0, 1] be equipped with the max-norm.
Consider the following nonlinear boundary value problem [6]{

u′′ = −u3 − Ψu2,
u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(4.22) u(s) = s+

1�

0

G(s, t)(u3(t) + Ψu2(t)) dt,

where G is the Green’s function

G(s, t) =

{
t(1− s), t ≤ s,
s(1− t), s < t.

We observe that

max
0≤s≤1

1�

0

|G(s, t)| dt =
1

8
.

Then problem (4.22) is in the form (1.1), where F : D → Y is defined by

[F(x)](s) = x(s)− s−
1�

0

G(s, t)(x3(t) + Ψx2(t)) dt.

Set u0(s) = s and D = U(u0, R0). It is easy to verify that U(u0, R0) ⊂
U(0, R0 + 1), since ‖u0‖ = 1. If 2Ψ < 5, the operator F ′ satisfies the condi-
tions (4.13) and (3.16) with

η =
1 + Ψ

5− 2Ψ
, l =

Ψ + 6R0 + 3

4
, l0 =

2Ψ + 3R0 + 6

8
.

Note that l0 < l.

Example 4.4. Let X = Y = C[0, 1] with the max-norm ‖.‖. Let θ ∈
[0, 1] be a given parameter. Consider the “cubic” Chandrasekhar integral
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equation

(4.23) u(s) = u3(s) + λu(s)

1�

0

q(s, t)u(t) dt+ y(s)− θ

[1–10]. Here the kernel q(s, t) is a continuous function on [0, 1]× [0, 1]. The
parameter λ in (4.23) is a real number called the “albedo” for scattering,
y(s) is a given continuous function defined on [0, 1] and x(s) is the unknown
function sought in C[0, 1]. Equations of the form (4.23) arise in the kinetic
theory of gases [6]. For simplicity, we choose u0(s) = y(s) = 1 and q(s, t) =
s/(s+ t) for all s ∈ [0, 1] and t ∈ [0, 1], with s + t 6= 0. If we let D =
U(u0, 1− θ) and define the operator F on D by

(4.24) F(x)(s) = x3(s)− x(s) + λx(s)

1�

0

q(s, t)x(t) dt+ y(s)− θ

for all s ∈ [0, 1], then every zero of F satisfies equation (4.23). We have

max
0≤s≤1

∣∣∣ 1�
0

s

s+ t
dt
∣∣∣ = ln 2.

Therefore, if we set ξ = ‖F ′(u0)−1‖, we obtain

η = ξ(|λ| ln 2 + 1− θ),
l = 2ξ(|λ| ln 2 + 3(2− θ)), l0 = ξ(2|λ| ln 2 + 3(3− θ)).

It follows that if conditions (4.13) and (4.16) hold, then problem (4.23) has
a unique solution near u0. These assumptions are weaker than the one given
before using the Newton–Kantorovich hypothesis (4.11), since we notice that
l = l0 + 3ξ(1− θ), thus l0 ≤ l for all θ ∈ [0, 1].

Example 4.5. In this example, we examine influence of the nonzero
residual vectors on the convergence of (INM) (1.4) when solving the Ham-
merstein type nonlinear integral equation

(4.25) x(s) = 1 +

1�

0

G(s, t)x(t)2 dt, t, s ∈ [0, 1],

where x ∈ C[0, 1] and the kernel is given as

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

Here, we approximate the integral with the Gauss–Legendre quadrature. It
will result in the nonlinear equation

x(s) = 1 +
m∑
i=1

wiG(s, ti)x(ti)
2.
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If we denote the approximation of x(s) at the nodes tj by xj , then the above
is equivalent to the following system of nonlinear equations:

(4.26) F(x) := x(sj)− I −
m∑
i=1

bi,jx(ti)
2 = 0, i, j = 1, . . . ,m,

where

bi,j =

{
wi(1− sj)ti, i ≤ j,
wi(1− ti)sj , j ≤ i.

Now we employ (INM), given by (1.4), to solve the system (4.26). The
integral in (4.25) is discretized by 8-point Gauss–Legendre quadrature. We
consider two cases. In the first case the residual is fixed, ‖rn‖ = 10−10, while
in the second case the residual depends upon the nonlinear iteration as
follows: ‖rn‖ = 10−n. To solve the linear system, we use the Gauss–Seidel
method. The iterations of the Gauss–Seidel method terminate when the
residual stop criterion is satisfied, which in the first case is ‖rn‖ ≤ 10−10,
and in the second case it is ‖rn‖ ≤ 10−n, where n is the number of (INM)
iteration. For the first ten nonlinear iterations the results are reported in
Figure 1. We observe that when the residual is ‖rn‖ = 10−n, we obtain
‖F(x10)‖ = 6.5 · 10−11 after 54 Gauss–Seidel iterations; on the other hand,
if the residual is ‖rn‖ = 10−10, we obtain ‖F(x10)‖ = 4.8 · 10−11 after 71
Gauss–Seidel iterations. For computations, we use MATLAB 7.12.0, on a
64-bit Linux operating system, with double-precision floating point data
type.
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Fig. 1. Total number of iterations of linear solver: 71 if ‖rn‖ = 10−10, and 54 if ‖rn‖ =
10−n.
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