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ORTHOGONAL SERIES ESTIMATION
OF BAND-LIMITED REGRESSION FUNCTIONS

Abstract. The problem of nonparametric function fitting using the com-
plete orthogonal system of Whittaker cardinal functions sk, k = 0,±1, . . . ,
for the observation model yj = f(uj)+ ηj , j = 1, . . . , n, is considered, where
f ∈ L2(R) ∩ BL(Ω) for Ω > 0 is a band-limited function, uj are inde-
pendent random variables uniformly distributed in the observation interval
[−T, T ], ηj are uncorrelated or correlated random variables with zero mean
value and finite variance, independent of the observation points. Conditions
for convergence and convergence rates of the integrated mean-square error
E‖f−f̂n‖2 and the pointwise mean-square error E(f(x)−f̂n(x))2 of the esti-
mator f̂n(x) =

∑N(n)
k=−N(n) ĉksk(x) with coefficients ĉk, k = −N(n), . . . , N(n),

obtained by the Monte Carlo method are studied.

1. Introduction. Band-limited functions, i.e. functions whose Fourier
transform is zero outside a bounded interval [−Ω,Ω], where Ω > 0, occur
frequently in signal processing, communication and information theory [3],
[17]. The class of such functions will be denoted by BL(Ω). The problem of
recovering band-limited functions from their observations in the presence of
random errors was the subject of several recent works [4], [6], [8]–[13], [18] in
which a fixed design observation model was considered. In [7] quasi-random
sampling was applied for recovery of band-limited functions under noise.

Two of the above mentioned works [6], [7] deal with orthogonal series
estimators. The aim of the present article is to complete the results obtained
in these two publications with some results for the case of a random design
observation model, where the observation points are uniformly distributed
in the observation interval [−T, T ], T > 0.
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Hence, suppose the observations yj , j = 1, . . . , n, follow the model

yj = f(uj) + ηj ,

where f ∈ L2(R) ∩ BL(Ω) is an unknown real-valued function, uj , j =
1, . . . , n, are realizations of independent and identically distributed random
variables with uniform distribution (uj ∼ U([−T, T ])), and ηj , j = 1, . . . , n,
are realizations of uncorrelated random variables with zero mean Eηηj = 0
and finite variance Eηη2j = σ2η, which are independent of the observation
points. Observe that we can generate realizations of independent random
variables vj , j = 1, . . . , n, with uniform distribution in [−1, 1], i.e. vj ∼
U([−1, 1]), and then multiply them by T > 0 to obtain observation points
in our model with observation interval [−T, T ].

Our estimator will be constructed from cardinal functions used for re-
construction of square integrable band-limited functions as cardinal series in
the famous Whittaker–Shannon interpolation scheme [2], [3], [5]:

(1) f(t) =
∞∑

k=−∞
f(kτ)sk(t),

where Ω ≤ π/τ . The cardinal functions are given by the formula (see [2])

(2) sk(t) = sinc

(
π

τ
(t− kτ)

)
, k = 0,±1,±2, . . . ,

where sinc(t) = sin(t)/t for t 6= 0 and 1 for t = 0, and the series in (1)
converges in L2(R) as well as uniformly on any compact interval [2]. The
functions sk, k = 0,±1,±2, . . . , form a complete orthogonal system in the
space of square integrable and band-limited functions L2(R) ∩ BL(Ω) pro-
vided that Ω ≤ π/τ . This is a simple consequence of the fact that they
are inverse Fourier transforms of the functions τ exp(ilτω), ω ∈ [−π/τ, π/τ ],
l = 0,±1,±2, . . . , which form a complete orthogonal system in the space
L2([−π/τ, π/τ ]) in the spectral domain. Thus, using the inverse Fourier
transform formula, we also immediately have

(3) |sk(t)| ≤ 1 for t ∈ R, ‖sk‖2 = τ, k = 0,±1,±2, . . . .
Let F denote the Fourier transform of f . Then by the Plancherel identity we
obtain the following formula for the orthogonal series expansion coefficients
of the regression function:

(4) ck =
1

τ

�

R

f(t)sk(t) dt =
1

2π

Ω�

−Ω
F (ω) exp(ikτω) dω = f(kτ)

for k = 0,±1,±2, . . . .
We shall investigate conditions for convergence of the integrated mean-

square error E‖f̂n − f‖2 and pointwise mean-square error E(f̂n(t) − f(t))2
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of the projection estimator

(5) f̂n(t) =
∑
|k|≤N

ĉksk(t), where ĉk =
2T

nτ

n∑
j=1

yjsk(uj).

Observe that the estimator (5) is itself a band-limited function, i.e. f̂n ∈
L2(R) ∩BL(π/τ).

Obviously we have the following formulae for the bias and variance of the
expansion coefficient estimators ĉk, k = 0,±1,±2, . . . :

(6)

EuEη ĉk =
1

τ

T�

−T
f(t)sk(t) dt,

B(ĉk) = ck − EuEη ĉk =
1

τ

�

|t|>T

f(t)sk(t) dt,

Var(ĉk) = EuEη(ĉk − EuEη ĉk)2

= Eu

(
2T

n

n∑
j=1

[
1

τ
f(uj)sk(uj)−

1

2T
EuEη ĉk

])2

+
(2T )2σ2η
(nτ)2

Eu

n∑
j=1

s2k(uj)

=
2T

n

(
1

τ2

T�

−T
f2(t)s2k(t) dt−

1

2T
(EuEη ĉk)

2

)

+
2Tσ2η
nτ2

T�

−T
s2k(t) dt,

which implies

(7) Var(ĉk) ≤
2T

nτ2

( T�

−T
f2(t)s2k(t) dt+ σ2η

T�

−T
s2k(t) dt

)
for k = 0,±1,±2, . . . .

In the following lemma also an upper bound for the bias term is derived.

Lemma 1.1. If f ∈ L2(R) and N < T/(2τ), then for k = 0,±1, . . . ,±N ,

B2(ĉk) =

∣∣∣∣1τ �

|t|>T

f(t)sk(t) dt

∣∣∣∣2 ≤ 5

π2T

�

|t|>T

f2(t) dt.

Proof. According to (2) the inequality

s2k(t) ≤
τ2

π2t2(1− kτ/t)2
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holds for t 6= 0, and we have kτ/T ≤ Nτ/T < 1/2 for k = 1, . . . , N , which
gives after integration

�

t>T

s2k(t) dt ≤
4τ2

π2

�

t>T

t−2 dt =
4τ2

π2T
,

and similarly for k = 0, 1, . . . , N,
�

t<−T
s2k(t) dt ≤

τ2

π2

�

t<−T
t−2 dt =

τ2

π2T
.

Analogously, for k = −N, . . . ,−1, 0,
�

t>T

s2k(t) dt ≤
τ2

π2

�

t>T

t−2 dt =
τ2

π2T
,

and since |k|τ/T ≤ Nτ/T < 1/2 for k = −N, . . . ,−2,−1,
�

t<−T
s2k(t) dt ≤

4τ2

π2

�

t<−T
t−2 dt =

4τ2

π2T
.

Applying the Cauchy–Schwarz inequality together with the above upper
bounds on integrals of s2k we obtain for k = 0,±1,±2, . . . ,∣∣∣∣1τ �

|t|>T

f(t)sk(t) dt

∣∣∣∣2 ≤ 1

τ2

�

|t|>T

f2(t) dt
�

|t|>T

s2k(t) dt ≤
5

π2T

�

|t|>T

f2(t) dt,

which completes the proof of the lemma.

Another property of the system of cardinal functions is given in the next
lemma.

Lemma 1.2. The complete system of orthogonal functions sk, k = 0,±1,
±2, . . . , satisfies the identity

∞∑
k=−∞

s2k(x) = 1 for x ∈ R.

Proof. For any x ∈ R the function u(t) = sinc
(
π
τ (t− x)

)
is a translation

of s0 so that u ∈ L2(R) ∩ BL(π/τ). Consequently, the Parseval identity
applied to u yields, according to (3) and (4),

τ = ‖s0‖2 = ‖u‖2 = τ

∞∑
k=−∞

sinc2
(
π

τ
(x− kτ)

)
= τ

∞∑
k=−∞

s2k(x),

which proves the assertion.

In Section 2 asymptotic properties of the integrated mean-square error
of the above estimator are examined, which is a global accuracy measure,
while in Section 3 we investigate local properties of our estimator using
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pointwise mean-square error. Section 4 is devoted to extension of the results
from the previous two sections to the case of an observation model with
short and long range dependent observation errors. Strong convergence of
the integrated error of the estimator is studied in Section 5.

2. Convergence of integrated mean-square error. The fact that
the functions sk, k = 0,±1,±2, . . . , form a complete orthogonal system in
L2(R) ∩BL(Ω) implies, in view of (3),

Q(f̂n) = EuEη
�

R

(f − f̂n)2 = τ
∑
|k|≤N

EuEη|ĉk − ck|2 + τ
∑
|k|>N

c2k

= τ
∑
|k|≤N

[Var(ĉk) +B2(ĉk)] + τ
∑
|k|>N

c2k.

The above equality together with bounds for variance (7) and squared bias
(Lemma 1.1) of the coefficient estimators ĉk allow us to estimate the inte-
grated mean-square error of the estimator f̂n. Namely, using Lemma 1.2 we
easily obtain

Q(f̂n) ≤
2T

nτ

(
‖f‖2 + 2Tσ2η

)
+ (2N + 1)

5τ

π2T

�

|t|>T

f2(t) dt+ τ
∑
|k|>N

c2k

for N < T/(2τ). Putting N = [T/(2τ)], where [a] denotes the integer part of
a ∈ R, makes the last term on the right hand side the smallest possible. In
view of the above upper bound on the IMSE, we can formulate the following
theorem.

Theorem 2.1. If the sequence of positive real numbers T (n), n = 1, 2, . . . ,
satisfies limn→∞ T (n) = ∞ and limn→∞ T (n)

2/n = 0, and if N(n) =

[T (n)/(2τ)], where τ ≤ π/Ω, then the projection estimator f̂n of the re-
gression function f ∈ L2(R)∩BL(Ω) is consistent in the sense of integrated
mean-square error, i.e. limn→∞EuEη‖f − f̂n‖2 = 0.

In order to obtain the convergence rate of integrated mean-square error
we need the following lemma.

Lemma 2.1. Letf ∈L2(R)∩BL(Ω)haveFourier transformF ∈L2([−Ω,Ω])
of bounded variation on [−Ω,Ω]. Then

�

|t|>T

f2(t) dt ≤ C2(F )

2π2T
for T > 0 and τ

∑
|k|>N

c2k ≤
C2(F )

2π2τN

for N = 1, 2, . . . , and C(F ) = V (F ) + 2 supω∈[−Ω,Ω] |F (ω)|, where V (F )
denotes the total variation of F on [−Ω,Ω].
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Proof. Since f ∈BL(Ω) we can write f(t)=(2π)−1
	Ω
−Ω F (ω) exp(itω) dω,

and applying integration by parts [16] gives

f(t) =
1

2πit
[F (Ω) exp(iΩt)− F (−Ω) exp(−iΩt)]− 1

2πit

Ω�

−Ω
exp(itω) dF (ω)

for t 6= 0, which yields |f(t)| ≤ C(F )/(2π|t|) for t 6= 0 [16], and consequently
implies the desired bound on the integral of |f(t)|2.

According to (4), we have ck = f(kτ), and therefore

τ
∑
|k|>N

c2k ≤ 2
C2(F )

(2π)2τ

∞∑
k=N+1

1

k2
≤ 2

C2(F )

(2π)2τ

∞∑
k=N+1

1

k(k − 1)
=
C2(F )

2π2τN

for N = 1, 2, . . . , and the proof is complete.

Under the assumptions of Lemma 2.1 concerning the regression function
our earlier upper bound for the IMSE takes the form

Q(f̂n) ≤
2T

nτ
(‖f‖2 + 2Tσ2η) +

2N + 1

T 2

5τC2(F )

2π4
+

1

N

C2(F )

2π2τ
,

where 0 < N < T/(2τ). Assuming that T ≥ 4τ and putting N = [T/(2τ)]
we further obtain

(8) Q(f̂n) ≤
2T

nτ
(‖f‖2 + 2Tσ2η) +

1

T

[
25C2(F )

8π4
+

2C2(F )

π2

]
.

Note also that to obtain the smallest bound in (8) we must use the largest
possible τ , i.e. τ = π/Ω. Moreover, the following corollary is immediate.

Corollary 2.1. If the regression function f ∈ L2(R) ∩BL(Ω) satisfies
the assumptions of Lemma 2.1 and T (n) = n1/3, N(n) = [T (n)/(2τ)], n =
1, 2, . . . , where τ ≤ π/Ω, then

EuEη‖f − f̂n‖2 = O(n−1/3).

3. Pointwise mean-square consistency of the estimator. In this
section we derive sufficient conditions for pointwise mean-square consistency
of the projection estimator considered and examine its pointwise mean-
square error convergence rate.

Since the cardinal series of the regression function f converges to f(x)
for x ∈ R [2], we immediately have

EuEη(f(x)− f̂n(x))2 = EuEη

( N∑
k=−N

(ck − ĉk)sk(x)
)2

+ r2N (x)

+ 2rN (x)

N∑
k=−N

(ck − EuEη ĉk)sk(x),



Estimation of band-limited functions 57

where rN (x) =
∑
|k|>N cksk(x). From the Cauchy–Schwarz inequality it fur-

ther follows that

EuEη(f(x)− f̂n(x))2 ≤
N∑

k=−N
[Var(ĉk) +B2(ĉk)]

N∑
k=−N

s2k(x) + r2N (x)

+ 2|rN (x)|
( N∑
k=−N

B2(ĉk)
)1/2( N∑

k=−N
s2k(x)

)1/2
,

and using again our bounds on variance (7) and squared bias (Lemma 1.1) of
the coefficient estimators ĉk, together with the inequality

∑N
k=−N s

2
k(x) ≤ 1

for x ∈ R (Lemma 1.2), we finally have

(9) EuEη(f(x)− f̂n(x))2 ≤
2T

nτ2
(‖f‖2 + 2Tσ2η) +

(2N + 1)5

Tπ2

�

|t|>T

f2(t) dt

+ |rN (x)|
(2N + 1)1/2201/2

T 1/2π

( �

|t|>T

f2(t) dt
)1/2

+ r2N (x)

for N < T/(2τ), x ∈ R. For the regression function f ∈ L2(R) ∩ BL(Ω) its
cardinal series converges uniformly on any compact interval I ⊂ R [3], so
that limn→∞ rN(n)(x) = 0 uniformly for x ∈ I, if only limn→∞N(n) = ∞.
Hence, the above bound on the pointwise mean-square error of our estimator
implies the following theorem.

Theorem 3.1. If the sequence of positive real numbers T (n), n = 1, 2, . . . ,
satisfies limn→∞ T (n) = ∞ and limn→∞ T (n)

2/n = 0, and if N(n) =

[T (n)/(2τ)], where τ ≤ π/Ω, then the projection estimator f̂n of the re-
gression function f ∈ L2(R)∩BL(Ω) is uniformly consistent in the sense of
pointwise mean-square error in any compact interval I ⊂ R, i.e.

lim
n→∞

EuEη(f(x)− f̂n(x))2 = 0 uniformly for x ∈ I.

The same assumptions on the regression function that were needed to
obtain the IMSE convergence rate are also sufficient to determine the conver-
gence rate of pointwise mean-square error. Indeed, we only have to estimate
|rN (x)|, which is the subject of the following lemma.

Lemma 3.1. Under the assumptions of Lemma 2.1 on f,

|rN (x)| =
∣∣∣ ∑
|k|>N

cksk(x)
∣∣∣ ≤ C(F )

61/2πτN1/2

for |x| ≤ Nτ , N = 1, 2, . . . .
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Proof. By the Cauchy–Schwarz inequality for square summable series,
the second assertion of Lemma 2.1, and definition (2),

|rN (x)| =
∣∣∣ ∑
|k|>N

cksk(x)
∣∣∣ ≤ ( ∑

|k|>N

c2k

)1/2( ∑
|k|>N

s2k(x)
)1/2

≤
(
C2(F )

2π2τ2N

)1/2( τ2
π2

∑
|k|>N

1

(kτ − x)2

)1/2

.

If N > 0 and |x| ≤ Nτ we also have (N + l)τ − x ≥ (N + l)τ − Nτ = lτ ,
l = 1, 2, . . . , and consequently

τ2

π2

∑
|k|>N

1

(kτ − x)2
≤ 2τ2

π2

∞∑
l=1

1

l2τ2
=

1

3
,

since
∑∞

l=1 1/l
2 = π2/6. Hence, the proof is complete in view of the earlier

inequality.

Now, taking into account (9) it is easy to see that for regression functions
satisfying the assumptions of Lemma 2.1 we have the following bound for
pointwise mean-square error:

EuEη(f(x)− f̂n(x))2 ≤
2T

nτ2
(‖f‖2 + 2Tσ2η) +

(2N + 1)5C2(F )

T 22π4

+
(2N + 1)1/251/2C2(F )

TN1/231/2π3τ
+

C2(F )

6π2τ2N
,

which is valid for T ≥ 2τ , N = [T/(2τ)], and |x| ≤ Nτ . It is again visible
that to obtain the smallest bound we must use τ = π/Ω. Inserting in the
last inequality N = [T/(2τ)] with T ≥ 4τ yields

EuEη(f(x)− f̂n(x))2 ≤ A
T 2

n
+D

T

n
+G

1

T

for |x| ≤ Nτ , where A,D,G > 0 are suitably chosen constants. In order to
ensure convergence to zero of the first term on the right hand side we must
put T (n) = nα, where 0 < α < 1/2. Thus, the following corollary is valid.

Corollary 3.1. If f ∈ L2(R) ∩ BL(Ω) satisfies the assumptions of
Lemma 2.1 and T (n) = n1/3, N(n) = [T (n)/(2τ)], n = 1, 2, . . . , where
τ ≤ π/Ω, then

sup
|x|≤N(n)τ

EuEη(f(x)− f̂n(x))2 = O(n−1/3).

4. Estimation under dependent observation errors. The results of
the previous two sections can be readily extended to the case of stationary
dependent observation errors ηj , j = 1, . . . , n, with short and long range
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dependence. In that case we assume that Eηηj = 0, Eηη2j = σ2η, j = 1, 2, . . . ,
and Eηηjηj+l = r(l), l = 1, 2, . . . .

Non-zero covariances of the observation errors influence only the vari-
ances of the expansion coefficient estimators ĉk, k = 0,±1,±2, . . . , and
derivation analogous to the one of (7) shows that

Var(ĉk) ≤
2T

nτ2

( T�

−T
f2(t)s2k(t) dt+ σ2η

T�

−T
s2k(t) dt

)

+
(2T )2

n2τ2

(
1

2T

T�

−T
sk(t) dt

)2 n∑
i,j=1
i 6=j

|Eηηiηj |.

Further, the Cauchy–Schwarz inequality gives us finally

Var(ĉk) ≤
2T

nτ2

( T�

−T
f2(t)s2k(t) dt+ σ2η

T�

−T
s2k(t) dt

)
(10)

+
2T

n2τ2

T�

−T
s2k(t) dt

n∑
i,j=1
i 6=j

|Eηηiηj |.

Now (10) and Lemma 1.2 yield

(11)
∑
|k|≤N

Var(ĉk) ≤
2T

nτ2
(‖f‖2 + 2Tσ2η) +

8T 2

n2τ2

n−1∑
l=1

(n− l)|r(l)|.

For short range dependent (SRD) observation errors,
∑∞

l=1 |r(l)| < ∞, and
then ∑

|k|≤N

V ar(ĉk) ≤
2T

nτ2
(‖f‖2 + 2Tσ2η) +

8T 2

nτ2

∞∑
l=1

|r(l)|.

This implies that Theorems 2.1 and 3.1 also hold in the case of SRD obser-
vation errors. Also Corollaries 2.1 and 3.1 concerning convergence rates are
valid for such errors.

The class of long range dependent (LRD) observation errors is charac-
terized by the requirement

∑∞
l=1 |r(l)| = ∞. Assume that r(l) = H/lγ ,

l = 1, 2, . . . , where H 6= 0 and 0 < γ < 1. Then the sum on the right hand
side in (11), which is due to dependence of these errors, satisfies (see [15,
Lemma 2.1])

n−1∑
l=1

(n− l)|r(l)| ≤ |H|n2−γ

(1− γ)(2− γ)
,
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so that ∑
|k|≤N

Var(ĉk) ≤
2T

nτ2
(‖f‖2 + 2Tσ2η) +

8T 2|H|
nγτ2(1− γ)(2− γ)

.

Inspection of the bounds on the IMSE in Section 2 and the pointwise MSE in
Section 3, which gave Theorems 2.1 and 3.1, shows that analogous theorems
are also valid in the case of LRD observation errors if we replace the condi-
tion limn→∞ T (n)

2/n = 0 by limn→∞ T (n)
2/nγ = 0. Similarly for the same

observation errors and T (n) = nγ/3, n = 1, 2, . . . , corollaries on convergence
rates analogous to Corollaries 2.1 and 3.1 are true with convergence rate
replaced by n−γ/3.

It is worth remarking that for f ∈ L2(R) we can calculate the estimators
ĉk according to (5), which estimate the coefficients ck defined in (4), and
since sk ∈ L2(R) ∩BL(π/τ),

ck =
1

τ

�

R

f(t)sk(t) dt =
1

2π

π/τ�

−π/τ

F (ω) exp(ikτω) dω.

The orthogonal projection of f ∈ L2(R) on L2(R) ∩ BL(π/τ) has Fourier
transform Fτ (ω) = F (ω) for ω ∈ [−π/τ, π/τ ] and Fτ (ω) = 0 for ω 6∈
[−π/τ, π/τ ]. Hence, we see immediately that the coefficients ck are then
the expansion coefficients of this projection fτ with respect to the orthogo-
nal system sk, k = 0,±1,±2, . . . . Accordingly, for f ∈ L2(R) the estimator
f̂n estimates the regression function projection fτ and we also have

EuEη‖f − f̂n‖2 = ‖f − fτ‖2 + EuEη‖fτ − f̂n‖2.

5. Strong convergence. In this section we assume that the obser-
vation errors in our observation model are zero mean independent identi-
cally distributed random variables which are almost surely bounded, i.e.
|ηj | ≤ Mη < ∞, j = 1, . . . , n. In the following lemma we show that the
regression function in this model is also bounded.

Lemma 5.1. Let f ∈ L2(R) ∩BL(Ω). Then

Mf = sup
t∈R
|f(t)| ≤

√
Ω/π ‖f‖.

Proof. Since f ∈BL(Ω) we can write f(t)=(2π)−1
	Ω
−Ω F (ω) exp(itω) dω

for t ∈ R, and the Schwarz inequality gives the bound

|f(t)| ≤
(
2Ω

2π

)1/2( 1

2π

Ω�

−Ω
|F (ω)|2 dω

)1/2

=

(
Ω

π

)1/2

‖f‖,

which proves the assertion.
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In view of the above lemma the observations of the regression function
in our model satisfy |yj | = |f(uj) + ηj | ≤ Mf +Mη, j = 1, . . . , n, so if we
define the random variables zkj = yjsk(uj), j = 1, . . . , n, k = 0,±1,±2, . . . ,
then (3) implies that they are also bounded and |zkj | ≤Mz =Mf +Mη.

According to (5) and (6),

(12) ĉk − EuEη ĉk =
2T

nτ

n∑
j=1

zkj −
1

τ

T�

−T
f(t)sk(t) dt =

2T

nτ

n∑
j=1

(zkj − Ezkj).

By the orthogonality of the cardinal functions sk and the inequality (a+b)2 ≤
2(a2 + b2) for a, b ∈ R, we obtain

I(f̂n) =
�

R

(f − f̂n)2 = τ
∑
|k|≤N

(ĉk − EuEη ĉk + EuEη ĉk − ck)2 + τ
∑
|k|>N

c2k

≤ 2τ
∑
|k|≤N

(ĉk − EuEη ĉk)2 + 2τ
∑
|k|≤N

B2(ĉk) + τ
∑
|k|>N

c2k,

so Lemma 1.1 further yields

(13) I(f̂n) ≤ 2τ
∑
|k|≤N

(ĉk−EuEη ĉk)2+(2N+1)
10τ

π2T

�

|t|>T

f2(t)dt+τ
∑
|k|>N

c2k

for N < T/(2τ). Now, we can prove the following theorem on strong conver-
gence of the integrated error I(f̂n).

Theorem 5.1. If f ∈L2(R)∩BL(Ω) and T (n) = nβ, N(n) = [T (n)/(2τ)],
n = 1, 2, . . . , where 0 < β < 1/3, τ ≤ π/Ω, then the projection estimator f̂n
is strongly consistent in the sense of integrated square error, i.e.

lim
n→∞

�

R

(f − f̂n)2 = 0 a.s.

Proof. Set T (n) = nβ , where 0 < β < 1/3. We see easily that for ε > 0
there is an n0 such that for n ≥ n0 we have T (n) ≥ 2τ and the sum of the
second and third term on the right hand side of (13) is less than 2ε/3. Hence,
using (12) we obtain, for n ≥ n0,

P{I(f̂n)>ε} ≤ P
{
2τ

∑
|k|≤N(n)

(ĉk − EuEη ĉk)2 > ε/3
}

≤
∑

|k|≤N(n)

P

{
|ĉk − EuEη ĉk| >

√
ε

6τ(2N(n) + 1)

}

=
∑

|k|≤N(n)

P

{∣∣∣∣ 1n
n∑
j=1

(zkj − Ezkj)
∣∣∣∣> 1

2T (n)

√
ετ

6(2N(n) + 1)

}
.
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Since the random variables zkj , j = 1, . . . , n, k = 0,±1,±2, . . . , are al-
most surely bounded by the same constant Mz, we can use the well-known
Hoeffding inequality to estimate the last probability:

P{I(f̂n) > ε} ≤ 2(2N(n) + 1) exp

(
− nτε

4T (n)26(2N(n) + 1)2M2
z

)
,

and further since N(n) = [T (n)/(2τ)], where T (n) ≥ 2τ ,

P{I(f̂n) > ε} ≤ 6N(n) exp

(
− nτε

4T (n)218N(n)2M2
z

)
≤ 3T (n)

τ
exp

(
− nτ2ε

4T (n)318M2
z

)
≤ 3

τ
exp

(
−n
[

τ2ε

72T (n)3M2
z

− ln(T (n))

n

])
.

Now, since T (n) = nβ , where 0 < β < 1/3, the above bound takes the form

P{I(f̂n) > ε} ≤ 3

τ
exp

(
−n1−3β

[
τ2ε

72M2
z

− β ln(n)

n1−3β

])
,

and the series
∑∞

n=1 P{I(f̂n) > ε} is summable. Invocation of the Borel–
Cantelli lemma shows that I(f̂n)→ 0 a.s.

In the next theorem the convergence rate of the integrated error I(f̂n)
is given. We say that a sequence of random variables ψn converges to zero
a.s. with rate rn, n = 1, 2, . . . , if anψn/rn → 0 a.s. for any sequence of real
numbers an → 0 as n→∞; we then write ψn = O(rn) a.s.

Theorem 5.2. If f ∈ L2(R) ∩BL(Ω) satisfies the assumptions of Lem-
ma 2.1, and T (n) = n1/4, N(n) = [T (n)/(2τ)], n = 1, 2, . . . , where τ ≤ π/Ω,
then the integrated error I(f̂n) converges to zero strongly with rate n−δ, where
0 < δ < 1/4, i.e.

lim
n→∞

�

R

(f − f̂n)2 = O(n−δ) a.s.

Proof. Taking into account (13) and Lemma 2.1 we see (analogously
to (8)) that for T ≥ 4τ and N = [T/(2τ)],

(14) I(f̂n) ≤ 2τ
∑
|k|≤N

(ĉk − EuEη ĉk)2 +
1

T

[
50C2(F )

8π4
+

2C2(F )

π2

]
.

Assume that an → 0 as n → ∞, 0 < δ < 1/4, and set T (n) = n1/4. We
see immediately that for ε > 0 there is an n0 such that for n ≥ n0 we have
T (n) ≥ 4τ and Aann

δ/T (n) < ε/2, where A = (25π−2/8 + 1)2C2(F )/π2.
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Hence, using (14) and (12) we obtain, for n ≥ n0,

P{annδI(f̂n) > ε} ≤ P
{
2ann

δτ
∑

|k|≤N(n)

(ĉk − EuEη ĉk)2 > ε/2
}

≤
∑

|k|≤N(n)

P

{
|ĉk − EuEη ĉk| >

√
ε

4τannδ(2N(n) + 1)

}

=
∑

|k|≤N(n)

P

{∣∣∣∣ 1n
n∑
j=1

(zkj − Ezkj)
∣∣∣∣ > 1

2T (n)

√
ετ

4annδ(2N(n) + 1)

}
.

Using the Hoeffding inequality gives

P{annδI(f̂n) > ε} ≤ 2(2N(n) + 1) exp

(
− nτε

4T (n)24annδ(2N(n) + 1)2M2
z

)
,

and further since N(n) = [T (n)/(2τ)], where T (n) ≥ 2τ ,

P{annδI(f̂n) > ε} ≤ 6N(n) exp

(
− n1−δτε

4T (n)2an12N(n)2M2
z

)
≤ 3T (n)

τ
exp

(
− n1−δτ2ε

4T (n)312anM2
z

)
≤ 3

τ
exp

(
−n1−δ

[
τ2ε

48T (n)3anM2
z

− ln(T (n))

n1−δ

])
.

Now, since T (n) = n1/4, the above bound takes the form

P{annδI(f̂n) > ε} ≤ 3

τ
exp

(
−n1−3/4−δ

[
τ2ε

48anM2
z

− ln(n)

4n1−3/4−δ

])
,

and one can see that for 0 < δ < 1/4 the series
∑∞

n=1 P{annδI(f̂n) > ε} is
summable. By the Borel–Cantelli lemma, annδI(f̂n)→ 0 a.s., and the proof
is complete.

6. Conclusions. This work is a continuation and extension of the au-
thor’s previous article on asymptotic properties of orthogonal series regres-
sion estimation for a random uniform observation point design [14]. This time
band-limited regression functions from the space L2(R) are considered and
a more complex observation model is used, in which the observation inter-
val expands as the number of observations grows. The projection estimator
of band-limited regression functions, analogous to the one considered in this
work, was earlier investigated by Pawlak and Rafajłowicz [6] in the case of the
fixed design observation model yj = f(jh)+δj , j = 0,±1,±2, . . . ,±n, where
h > 0 is the sampling rate and δj are uncorrelated stationary errors with
zero mean and finite variance. They obtained the same IMSE convergence
rate n−1/3 for h(n) = an−2/3 and N(n) = bn1/3, where a, b > 0, a > bτ , in
the regression function class considered in Corollary 2.1.
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Conditions for consistency in the sense of pointwise mean-square error
of our projection estimator and its convergence rates were not examined
earlier, but the rate n−1/3 obtained by the author does not seem to be favor-
able in comparison to other estimators for band-limited regression functions.
Pawlak and Stadtmüller [10], [11] examined asymptotic properties of estima-
tors based on modifications of the Shannon–Whittaker interpolation scheme
(1), which are appropriate for the above mentioned fixed design observation
model. They showed that their estimators attain pointwise mean-square er-
ror convergence rate n−2/3 under the assumption that the Fourier transform
F of the regression function f ∈ L2(R) ∩ BL(Ω) is Lipschitz continuous at
±Ω, which is significantly different from the assumption considered here.

In a later work Pawlak and Stadtmüller [13] investigated properties of
one of their estimators for the fixed design observation model assuming short
range and long range dependence of observation errors. They obtained con-
vergence rates of the pointwise MSE respectively n−2/3 and n−2γ/(2+γ) for
SRD and LRD observation errors, in a class of regression functions which is
wider than the one considered in Corollary 3.1. Namely, they assumed that
the regression function satisfies |f(t)| ≤ c|t|−1 for |t| > 0, where c > 0. Con-
vergence rates of our projection estimator for such errors are slower, n−1/3

and n−γ/3, respectively. This means that estimators based on modifications
of the interpolation scheme may be more appropriate for estimating point
values of the regression function, than those based on orthogonal series. Nev-
ertheless, we obtained IMSE convergence rates of the projection estimator
in the case of SRD and LRD observation errors in a class of regression func-
tions that is different from the one in [13], where band-limited regression
functions satisfying |f(t)| ≤ c|t|−(s+1) for |t| > 0 were considered, with c > 0
and s > 0.

Strong convergence and convergence rates of the integrated square error
of estimators appropriate for a fixed design observation model with band-
limited regression functions and bounded observation errors were analysed
in [4] and [9]. However, the strong convergence rates were obtained under
significantly different conditions on regression functions, and under other
conditions which are not comparable to the ones in the present work.

Another approach to regression function estimation which is appropriate
for random uniform design is presented in [1], where the concept of wavelet
transform and wavelet shrinkage is applied to the problem of recovering a
function observed on a compact interval.
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