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SMOOTHING DICHOTOMY IN RANDOMIZED

FIXED-DESIGN REGRESSION WITH STRONGLY

DEPENDENT ERRORS BASED ON A MOVING AVERAGE

Abstract. We consider a fixed-design regression model with errors which
form a Borel measurable function of a long-range dependent moving average
process. We introduce an artificial randomization of grid points at which
observations are taken in order to diminish the impact of strong dependence.
We show that the Priestley–Chao kernel estimator of the regression fuction
exhibits a dichotomous asymptotic behaviour depending on the amount of
smoothing employed. Moreover, the resulting estimator is shown to exhibit
weak consistency (i.e. in probability). Simulation results indicate significant
improvement when randomization is employed.

1. Introduction. Consider a fixed-design regression model (FDR)

(1.1) Yi,n = g(i/n) + εi,n, i = 1, . . . , n,

where g : [0, 1] → R is some function with smoothness properties to be
described. For each n, we observe the random variables Y1,n, Y2,n, . . . , Yn,n
and the aim is to estimate the unknown function g based on this information.
Here (εi,n) is a triangular array such that for each n, the finite sequence
{εi,n}ni=1 is stationary, Eεi,n = 0, Eε2i,n < ∞, Cov(εi,n, εj,n) = rε(|i − j|),
where rε(·) is the covariance function which does not depend on n.

In a nonparametric setting, the regression function g at a given point
x is usually estimated by one of many methods involving local polynomi-
als, smoothing splines or kernel estimators. Any of these methods weighs
concomitants of grid points around x in such a way that those closer to x
contribute more to the value of the estimator. As the concomitants corre-
sponding to a small neighbourhood of x form a block of consecutive observa-
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tions which are strongly dependent, the resulting estimator is more variable
than in the weakly dependent case. In order to alleviate the effect of de-
pendence on variability of the regression estimator we consider a randomly
chosen permutation σ = σn of the set {1, . . . , n} from the set Σn of all such
permutations and assume that the observations are taken consecutively at
the points σ(1)/n, σ(2)/n, . . . , σ(n)/n instead of 1/n, 2/n, . . . , 1. As depen-
dence of the observations reflects solely the temporal order in which they
are taken, the appropriate model of this observational scheme is

(1.2) Yi,n = g(σn(i)/n) + εi,n, i = 1, . . . , n.

The random permutation σn is chosen independently of (εi,n). We will refer
to (1.2) as the Randomized Fixed-Design Regression model (RFDR). The
idea of considering (1.2) is based on the observation made in [9] that the
regression estimators in a random-design regression model with LRD errors
are less variable than in the fixed-design case and is in line with a general
discussion in [14]. For a thorough discussion of the effect of design type on
regression estimation with LRD errors see [7]. We stress that plausibility
of model (1.2) is based on the assumption that dependence between the
observations is due to their temporal and not spatial proximity. Thus, for
example, dependence of two consecutive observations (t = i, i + 1) will be
the same regardless of the grid points at which the experimenter takes the
observations. Another insight into advantages of a randomization scheme
can be found in [3].

The condition we impose on the process (εi,n) is

(1.3) εi,n = G(Zi,n), i = 1, . . . , n,

where G : R → R is a Borel measurable function such that
	
|G(z)| dz <∞

and EG2(Zi,n) < ∞. The last restriction is satisfied if we assume, for in-
stance, that G is square integrable or bounded. Here (Zi,n) is a one-sided
moving average process given by

(1.4) Zi,n =
∞∑
t=0

ctη
[n]
i−t, i = 1, . . . , n,

where (η
[n]
t )∞t=−∞ is a sequence of independent, identically distributed inno-

vations such that Eη = 0, E(η2) = σ2η <∞ and the ct satisfy
∑∞

t=0 c
2
t <∞.

Let

(1.5) ct = L(t)t−β (c0 = 1),

where 1/2 < β < 1 and L(·) is a function defined on [0,∞), slowly varying
at infinity and positive in some neighbourhood of infinity. A routine cal-
culation based on the Karamata theorem (see [11, p. 281]) implies that
r(k) = Cov(Z1,n, Z1+k,n) ∼ σ2ηC(β)L2(k)k−α, k = 1, . . . , n − 1, where
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C(β) =
	∞
0 (x + x2)−β dx and α = 2β − 1. Thus, in this case, the array

(Zi,n) is long-range dependent (LRD) in the sense that
∑∞

k=1 |r(k)| = ∞.
Note that if

∑∞
t=0 |ct| <∞, or β > 1 in the hyperbolic decay condition given

above, then (Zi,n) is short-range dependent.
Set ct = 0 for t < 0. Then (1.4) can be written as

Zi,n =
∞∑

j=−∞
ci−j η

[n]
j , i = 1, . . . , n.

It is easily seen that

γ2n = Var
( n∑
i=1

Zi,n

)
= σ2η

n∑
k=−∞

( n∑
t=1

ct−k

)2
∼ σ2ηD(β)n2−αL2(n),

where D(β) = [(2 − 2β)(3/2 − β)]−1C(β). Then noting that γ2n → ∞ as
n→∞, it follows from [13, Theorem 18.6.5] that

(1.6)
1

γn

n∑
i=1

Zi,n
D→ N ,

where
D→ denotes convergence in distribution and N is a standard normal

random variable. Note that γ−1n = o(n−1/2).

In the following we suppress the dependence of Yi,n, Zi,n, (η
[n]
t ) and εi,n

on n.
We return now to the models (1.1) and (1.2). We will use the Priestley–

Chao kernel estimator (see [16]) to estimate g in both models. In the FDR
model it is defined as follows:

ḡn(x) =
1

nbn

n∑
i=1

K

(
x− i/n
bn

)
Yi, 0 ≤ x ≤ 1,

where the kernel K is a not necessarily positive function such that
	
K(s) ds

= 1 and the bandwidths (smoothing parameters) satisfy natural conditions:
bn → 0 and nbn →∞. The modified Priestley–Chao estimator in the RFDR
model is

(1.7) ĝn(x) =
1

nbn

n∑
i=1

K

(
x− σ(i)/n

bn

)
Yi, 0 ≤ x ≤ 1.

We estimate g at fixed distinct points x1, . . . , xk ∈ (0, 1) for some k ∈ N
and show that depending on the size of the bandwidths, two different norm-
ing factors are required to get a nondegenerate asymptotic distribution.
A small bandwidth case reflects the ‘whitening by windowing’ principle, i.e.
for such bandwidths the asymptotic behaviour of the regression estimator
is the same as for independent errors. The same dichotomous asymptotic
behaviour of the Priestley–Chao estimator was shown in [3] and [4], but to
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prove it in the case of model (1.2) with errors (1.3) we will need a new tech-
nique. In [3], LRD errors form a moving average process with coefficients
given in (1.5). In [4], the case of positively correlated LRD Gaussian errors
is considered. A borderline of the dichotomy is established and turns out
to be the same as in the random-design regression model with LRD errors
(cf. [10]). More importantly, for both parts of the dichotomy, asymptotic
variances are of a lower order than in the fixed-design case, indicating su-
periority of this design. Actually, the different behaviour of ĝn in the FDR
and RFDR models can be conjectured from [10] and [8], as the artificial ran-
domized variables σn(·)/n mimic the behaviour of independent explanatory
random variables uniformy distributed on [0, 1].

The paper concludes with a simulation example showing the effect of
randomization in practice. It indicates that randomization has a nonnegli-
gible impact on the integrated square error even if we consider sample size
n = 1000.

2. Results. The following notation will be used throughout the paper.
Let x ∈ (0, 1),

Kbn(x) :=
1

bn
K

(
x

bn

)
, Jn,i(x) := Kbn

(
x− σ(i)

n

)
G(Zi),

Zi;s :=

∞∑
j=i−s

cjηi−j .

Let Wi = σ(. . . , ηi−1, ηi) be the σ-field generated by all innovations up to
time i, and let hi be the density of Zi − Zi;0 =

∑i−1
j=0 cjηi−j . In particular,

h1 stands for the density of η1, and h = h∞ is the marginal density of the
linear process (Zi). Let ‖ξ‖ = (E(ξ2))1/2 be the L2-norm of the random
variable ξ and let

Pkξ = E(ξ |Wk)− E(ξ |Wk−1), k ∈ N,

be the projection differences.

The Priestley–Chao estimator given by (1.7) has the following represen-
tation in the RFDR model:

ĝn(x) =
1

n

n∑
i=1

Kbn

(
x− i

n

)
g

(
i

n

)
+

1

n

n∑
i=1

[Jn,i(x)− E(Jn,i(x) |Wi−1)]

+
1

n

n∑
i=1

E(Jn,i(x) |Wi−1)

=: g̃n(x) +Mn(x) +Nn(x).

Note that Mn(x) has a martingale structure and Eĝn(x) = g̃n(x).
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Consider distinct points x1, . . . , xk ∈ (0, 1). First we state crucial auxil-
iary lemmas which provide the asymptotic law for Mn(x) and an asymptotic
representation for Nn(x).

Lemma 1. Assume that

EKbn(x− σ(i)/n) = O(1), bnEK2
bn(x− σ(i)/n) = O(1)

for any x = xl, l = 1, . . . , k. Let the density h1 and the kernel K be bounded.
Then √

nbn
(
Mn(x1), . . . ,Mn(xk)

) D→ (
ρ(x1)N1, . . . , ρ(xk)Nk

)
where

ρ2(x) = bnEK2
bn(x− σ(i)/n) · EG2(Zi)

and N1, . . . ,Nk are independent standard normal random variables.

Remark 1. If K is compactly supported, satisfies the Lipschitz con-
dition and

	
K2(s) ds < ∞ then the first two conditions in Lemma 1 are

satisfied in view of

EKbn

(
x− σ(i)

n

)
→

�
K(s) ds = 1 and bnEK2

bn

(
x− σ(i)

n

)
→

�
K2(s) ds.

Then ρ2(x) =
	
K2(s) ds · EG2(Zi).

Note that

Nn(x) =
1

n

n∑
i=1

EKbn

(
x− σ(i)

n

)
·
�
G(z + Zi;i−1)h1(z) dz

=
1

n
EKbn

(
x− σ(i)

n

)
·
n∑
i=1

�
G(z)h1(z − Zi;i−1) dz.

Let

Ñn(x) := − 1

n
EKbn

(
x− σ(i)

n

)
·
�
G(z)h′(z) dz ·

n∑
i=1

Zi;i−1.

Lemma 2. Assume that EKbn(x− σ(i)/n) = O(1) and h1 is twice con-
tinuously differentiable with bounded derivatives. Suppose that there exists
C > 0 such that

(2.1)
∥∥∥ �G(z)[h′i−1(z − ξ)− h′i−1(z)] dz

∥∥∥ ≤ C‖ξ‖
for ξ = Zi;0 and ξ = Zi;1, and

(2.2)
∥∥∥ �G(z)R2,i(z) dz

∥∥∥ ≤ C|ci−1|2
where R2,i(z) = hi−1(z −Zi;1)− hi−1(z −Zi;0) + h′i−1(z −Zi;0)ci−1η1. Then

(2.3) ‖Nn(x)− Ñn(x)‖ = O
(
Ξn
n

)
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where

Ξ2
n := nΘ2

n +
∞∑
i=1

(Θn+i −Θi)2, Θn =
n∑
i=1

θi,

θi = |ci−1|
√
Ai−1, Ai =

∞∑
j=i

c2j .

Let

a2n := Var
(
n−1

n∑
i=1

Zi

)
∼ 2((1− α)(2− α))−1L2(n)n−α.

One part of the smoothing dichotomy, for large bandwidths satisfying
a−2n = o(nbn) that allow the long memory of the errors to prevail, is expressed
by our first result. Note that as bn = o(1), the last condition can be satisfied
only in the LRD case when a−1n = o(n1/2).

Theorem 1. Assume that the conditions of Lemmas 1 and 2 hold and
a−2n = o(nbn). Then in the RFDR model

(2.4) a−1n
(
ĝn(x1)− g̃n(x1), . . . , ĝn(xk)− g̃n(xk)

) D→ ρ̄(N , . . . ,N ),

where

ρ̄ = −EKbn(x− σ(i)/n) ·
�
G(z)h′(z) dz

and N is a standard normal random variable.

Remark 2. (a) If g ∈ C2(Ux) for some neigbourhood Ux of x ∈ (0, 1) and
K is compactly supported, satisfies the Lipschitz condition and is symmetric,
then it is easily seen that

g̃n(x)− g(x) = O(b2n + (nbn)−1).

(b) Assuming additionally nb5n → 0, we have a−1n (g̃n(x)− g(x))→ 0 and
in that case g̃n(x) may be replaced by g(x) in (2.4).

The opposite part of the dichotomy for small bandwidths in the given
sense is stated below. Both the norming sequence and the limiting process
are the same if the errors were independent.

Theorem 2. Assume that the conditions of Lemmas 1 and 2 hold and
nbn = o(a−2n ). Then in the RFDR model

(2.5)√
nbn
(
ĝn(x1)− g̃n(x1), . . . , ĝn(xk)− g̃n(xk)

) D→ (
ρ(x1)N1, . . . , ρ(xk)Nk

)
,

where ρ2(x) = bnEK2
bn

(x−σ(i)/n)·EG2(Zi) and N1, . . . ,Nk are independent
standard normal random variables.
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In Theorem 3 below we investigate conditions under which weak consis-
tency of ĝn holds. In this case no decay rate of the coefficients ci is needed.
The proof of Theorem 3 proceeds through the following lemma.

Lemma 3. Assume that EKbn(x−σ(i)/n) = O(1), bnEK2
bn

(x−σ(i)/n) =
O(1) for any x ∈ (0, 1) and the density h1 of η1 is Lipschitz continuous with
Lipschitz constant A. Then

(2.6) Var ĝn(x) ≤ 8C2
1‖η1‖2

n2

n∑
k=−∞

( n∑
t=1

|ct−k|
)2

+
2

nbn
EG2(Zi),

where C1 = A
	
|G(z)| dz.

Theorem 3. Assume that the conditions of Lemma 3 and Remark 2(a)
hold. Then ĝn(x)→ g(x) in probability for every x ∈ (0, 1).

A sequence (ξn)∞n=1 of random variables converges to 0 completely if∑∞
n=1 P (|ξn| > ε) <∞ for any ε > 0.

Proposition 1. Let K and G be bounded functions, bnEK2
bn

(x−σ(i)/n)
= O(1) for any x ∈ (0, 1) and nbn/log n→∞. Then Mn(x)→ 0 completely.

3. Proofs. In all proofs, C denotes a generic constant whose value may
change, and x ∈ (0, 1).

Proof of Lemma 1. We prove the lemma for k = 1; the extension to the
case k > 1 is obtained using a similar reasoning based on the Cramér–Wald
device.

Recall that Jn,i(x) := Kbn(x − σ(i)/n)G(Zi). Let Tn,i(x) := Jn,i(x) −
E(Jn,i(x) |Wi−1). By the martingale central limit theorem, it suffices to show
that

(3.1) E
∣∣∣∣bnn

n∑
i=1

E(T 2
n,i(x) |Wi−1)− ρ2(x)

∣∣∣∣→ 0

and that the Lindeberg condition

bnE[T 2
n,i(x) · I√

bn/n |Tn,i(x)|>ε
] = o(1)

holds for any ε > 0. In order to prove (3.1), observe that since h1 is bounded,∣∣∣∣E(
√
bn
n
Jn,i(x)

∣∣∣∣Wi−1

)∣∣∣∣ =

√
bn
n

∣∣∣∣EKbn

(
x−σ(i)

n

)∣∣∣∣·∣∣∣ �G(z)h1(z−Zi;i−1) dz
∣∣∣

≤ C
√
bn
n
,
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where C = suph1(z) ·
	
|G(z)| dz · |EKbn(x− σ(i)/n)| <∞. Thus we have∣∣∣∣ n∑

i=1

E
(
bn
n
J2
n,i(x)

∣∣∣∣Wi−1

)
−

n∑
i=1

E
(
bn
n
T 2
n,i(x)

∣∣∣∣Wi−1

)∣∣∣∣
≤

n∑
i=1

(
E
[√

bn
n
Jn,i(x)

∣∣∣∣Wi−1

])2

= O(bn).

Hence we only need to check (3.1) with Tn,i(x) replaced by Jn,i(x). Thus we
show that E|n−1

∑n
i=1 pi(x)− ρ2(x)| → 0, where

pi(x) := bnE(J2
n,i(x) |Wi−1)

= bnEK2
bn(x− σ(i)/n) ·

�
G2(z)h1(z − Zi;i−1) dz.

Let Si :=
	
G2(z)h1(z − Zi;i−1) dz. Note that ESi = EG2(Zi) in view of

the fact that Eh1(z − Zi;i−1) = h(z) and (Si) is ergodic as instantaneous
transformation of a linear process which is ergodic (cf. [20, Theorem 1.3.3]).
By the Ergodic Theorem, E|n−1

∑n
i=1 pi(x)− ρ2(x)| tends to 0.

The Lindeberg condition results from [5, Corollary 9.5.2], which implies
that

bnE
[
T 2
n,i(x) · I{

√
bn/n |Tn,i(x)|>ε}

]
≤ 4bnE

[
J2
n,i(x) · I{|Jn,i(x)|>ε/(2

√
n/bn)}

]
≤ CE

[
G2(Zi) · I{|G(Zi)|>ε/(C

√
nbn)}

]
.

The right-hand side is o(1) since nbn →∞.

Proof of Lemma 2. Let

Vi :=
�
G(z)h1(z − Zi;i−1) dz +

�
G(z)h′(z) dz · Zi;i−1.

Then

‖Nn(x)− Ñn(x)‖ =
1

n

∣∣∣∣EKbn

(
x− σ(i)

n

)∣∣∣∣ · ∥∥∥ n∑
i=1

Vi

∥∥∥.
Thus (2.3) follows from application of the projection method (cf. [2]), more
precisely from∥∥∥ n∑

i=1

Vi

∥∥∥2 ≤ n∑
k=−∞

( n∑
i=1

‖P1Vi−k+1‖
)2
≤ C

n∑
k=−∞

( n∑
i=1

θi−k+1

)2
= O(Ξ2

n)

provided

(3.2) ‖P1Vi‖ ≤ Cθi
for i ≥ 1. Note that

(3.3) P1Vi =
�
G(z)[P1h1(z − Zi;i−1) + ci−1η1h

′(z)] dz.

Let R1,i(z) = h′i−1(z − Zi;1) − h′i−1(z). By [15, Lemma 1], we have h′(z) =
Eh′i−1(z − Zi;1). Hence ER1,i(z) = h′(z) − h′i−1(z). Using |Eξ| ≤ ‖ξ‖ and
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(2.1) we get ∣∣∣ �G(z)[h′(z)− h′i−1(z)] dz
∣∣∣ ≤ C‖Zi;1‖ = C

√
Ai−1.

Using the last equality and (2.1) again we deduce via the triangle inequality
that∥∥∥ �G(z)[h′i−1(z − Zi;0)− h′(z)] dz

∥∥∥ ≤ C‖Zi;0‖+ C‖Zi;1‖ ≤ 2C
√
Ai−1.

The last inequality implies

(3.4)
∥∥∥ �G(z)[h′i−1(z − Zi;0)− h′(z)]ci−1η1 dz

∥∥∥ ≤ 2C|ci−1|
√
Ai−1 = 2Cθi.

Let (η∗i )
∞
i=−∞ be an iid copy of (ηi)

∞
i=−∞. Let R∗2,i(z) be R2,i(z) with η1

replaced by η∗1. Hence condition (2.2) entails ‖
	
G(z)R∗2,i(z) dz‖ ≤ C|ci−1|2

and

(3.5)
∥∥∥ �G(z)[R2,i(z)−R∗2,i(z)] dz

∥∥∥ ≤ 2C|ci−1|2.

Observe that

P1h1(z − Zi;i−1) + h′i−1(z − Zi;0)ci−1η1 = E[R2,i(z)−R∗2,i(z) |W1],

which implies (3.2) by (3.3)–(3.5) and |ci−1|2 = O(θi).

Proof of Theorem 1. Let k = 1 and x = x1. Note that the left-hand side
of (2.4) for k = 1 can be written as

a−1n
(
Mn(x) +Nn(x)− Ñn(x)

)
+ a−1n Ñn(x) =: T1,n(x) + T2,n(x).

It follows from (1.6) that

T2,n(x) = ρ̄(nan)−1
n∑
i=1

Zi;i−1
D→ ρ̄N .

From [2, Theorem 2] we know that Ξn/n = o(an). Thus T1,n(x) = op(1)
in view of a−2n = o(nbn) and Lemmas 1 and 2. For the general case k ∈ N
note that it easily follows that a−1n

(
ĝn(x1)− g̃n(x1), . . . , ĝn(xk)− g̃n(xk)

)
is

equivalent to (T2,n(x1), . . . , T2,n(xk)), and thus the proof proceeds along the
same lines.

Proof of Theorem 2. Note that (2.5) is a direct consequence of
√
nbn

= o(a−1n ), Lemmas 1 and 2, convergence (1.6) and Ξn/n = o(an).

Proof of Lemma 3. Let

Ui = Kbn

(
x− σ(i)

n

)
g

(
σ(i)

n

)
− E

[
Kbn

(
x− σ(i)

n

)
g

(
σ(i)

n

)]
+Kbn

(
x− σ(i)

n

)
G(Zi).
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Note that n2 Var ĝn(x) = ‖
∑n

i=1 Ui‖2 and PkUt = 0 for t < k. Observe that
for i > 1 we have

P1Ui = EKbn

(
x− σ(i)

n

)
·
[ �
G(z)hi−1(z − Zi;1) dz −

�
G(z)hi(z − Zi;0) dz

]
= EKbn

(
x− σ(i)

n

)
·
[ �
G(z){hi−1(z − Zi;1)− hi(z − Zi;1)} dz

+
�
G(z){hi(z − Zi;1)− hi(z − Zi;0)} dz

]
=: I + II.

Thus, reasoning analogously to [2, proof of Lemma 1], we get |I| ≤
C1E|ci−1η1|, ‖P1Ui‖ ≤ 2C1|ci−1| ‖η1‖, ‖P1U1‖2 ≤ EK2

bn
(x−σ(i)/n)EG2(Zi)

and finally (2.6).

Proof of Theorem 3. The second term on the right-hand side of (2.6)
tends to 0 as nbn →∞. Moreover,

1

n2

n∑
k=−∞

( n∑
t=1

|ct−k|
)2

=
1

n2

n∑
k=−∞

∑
1≤t,t′≤n

|ct−kct′−k|

≤ 2

n

n∑
i=0

∞∑
j=0

|cjcj+i| ≤
( ∞∑
j=0

c2j

)1/2 2

n

n∑
i=0

( ∞∑
j=0

c2j+i

)1/2
→ 0

as
∑∞

j=0 c
2
j <∞. Thus in view of (2.6), Var ĝn(x)→ 0 and weak consistency

of ĝn(x) follows from Remark 2(a).

Proof of Proposition 1. Recall that Jn,i(x) := Kbn(x − σ(i)/n)G(Zi).
Let Ti := Tn,i(x) := Jn,i(x) − E(Jn,i(x) |Wi−1). We use a special case of
Freedman’s exponential inequality (see [12]) stating that for the sum Sn =
nMn(x) of bounded martingale differences Ti with |Ti| ≤ B, we have, for
λ > 0,

E exp(λSn) ≤ exp(βB−2e(Bλ)),

where e(λ) = eλ − λ− 1 and β is a bound of the conditional variances of Ti
such that P (

∑n
i=1 E(T 2

i |Wi−1) ≤ β) = 1. In our case

E(T 2
i |Wi−1) ≤ E(J2

n,i(x) |Wi−1) = EK2
bn

(
x− σ(i)

n

) �
G2(z+Zi,i−1)h1(z) dz

≤ C supG2

bn

and B = 2 supK supG/bn. Thus
∑n

i=1 E(T 2
i | Fi−1) ≤ nC/bn for some posi-

tive C, and for λ > 0 we have

P (Mn ≥ ε) ≤ E exp(λSn)/exp(nλε) ≤ exp{CB−2ne(Bλ)/bn − nλε}.
Let λn = εnbn/C, where εn = (8C log n/(nbn))1/2. Note that as e(λ) ∼ 2−1λ2

for λ → 0 we have e(Bλn) < (3/4)(Bλn)2 for sufficiently large n. Thus for
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such n the last bound is smaller than

exp(6 log n− 8 log n) = exp(−2 log n).

Now, the Borel–Cantelli lemma implies that Mn(x) ≥ (8C log n/(nbn))1/2

finitely often almost surely. Analogously we show that∑
n

P (Mn(x) ≤ −εn) <∞

and hence Mn(x)→ 0 completely.

Remark 3. The proof of Proposition 1 indicates that

Mn(x) = O
((

log n

nbn

)1/2)
a.s.

4. Simulation results. We conducted a simulation study to investigate
the effect of randomization of the fixed-design regression in practice. We
generated a series (Yi) of length n = 1000 with trend functions

g1(x) = 2 sin(4πx), g2(x) = 2− 5x+ 5 exp{−100(x− 0.5)2}.
These are the two regression functions used in [17]. The corresponding errors
follow the functions

G1(x) =
1

1 + x2
, G2(x) = exp{−x2}

of a FARIMA(0, d, 0) (fractional autoregressive integrated moving average
process) with d = 0, 0.1, 0.2, 0.3, 0.4. It is known that for this process a one-
sided moving average representation exists and the slowly varying function
L(·) is equivalent to a constant τ , L(n) ∼ τ . For the FARIMA(0, d, 0) process
Zt = (1−B)−dηt, where (ηt) is a Gaussian white noise with marginal variance
σ2η and Bηt = ηt−1, we have τ = σ2ηΓ (1 − 2d)/(Γ (d)Γ (1 − d)). We refer to
[1] for more information on this process.

Besides RFDR and FDR models investigated in this paper we also con-
sidered a random-design regression (RDR) model in which the explanatory
random variables form an independent sequence which is uniformly dis-
tributed on [0, 1] and independent of the errors.

The number of replications of each experiment was 1000. The kernel
employed was either the normal kernel K(x) = (2π)−1/2 exp{−x2/2}, x ∈ R,
or the Epanechnikov kernel K(x) = 0.75(1 − x2), |x| ≤ 1. We now discus
the choice of bandwidths in both cases.

RFDR model. As it can be conjectured from the results of [3, Sec-
tion 3] that the asymptotic form AMISE of MISE in the RFDR model differs
from AMISE for the FDR model with independent errors by a term which
does not depend on bn, asymptotically optimal theoretical bandwidths in
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both cases should coincide. In view of this we used Ruppert, Sheather and
Wand’s [19] data-based bandwidth commonly used for independent data,

brfn =

(
σ2ε

	
K2(s) ds

D2

)1/5

n−1/5,

where D2 = (
	
s2K(s) ds)2

	
g′′2(s) ds and σ2ε is the variance of the errors.

The procedure dpill from the KernSmooth package was employed for cal-
culating it. The same bandwidths choice method was employed for the RDR
model.

FDR model. The bandwidth minimizing AMISE of ĝn is of the form

(4.1) bfn =

(
αD1

D2

)1/(4+α)

n−α/(4+α),

where D1 = τ
	 	
|x−y|−αK(x)K(y) dx dy and α ∈ (0, 1]. In order to develop

a version of bfn, a local Whittle method proposed by Robinson [18] was used
to estimate α. Specifically, a pair (d,Q) is estimated, where α = 1− 2d and
the spectral density f of the FARIMA(0, d, 0) process satisfies f(λ) ∼ Qλ−2d
for λ → 0. It can be checked that for the FARIMA process, σ2η = 2πQ.
Thus we have τ = 2πQΓ (1− 2d)/(Γ (d)Γ (1− d)). The bandwidth sequence
employed is quasi data-dependent in the sense that it assumes that certain
quantities in the model are known. Namely, we assume that the true errors
(εi) are known together with the value of

	
g′′2(s) ds and the previous relation

linking τ with α and Q. Thus α̂ and Q̂ are local Whittle estimators based
on (εi), τ̂ is obtained from them under the FARIMA model, and α̂ and τ̂
are plugged in (4.1). In this way we give this method an advantage over the
bandwidth choice method for the RFDR model.

The results of the simulation study are summarized in Tables 1–4.
The medians of the distribution of the Integrated Square Error ISE =

n−1
∑n

i=1(ĝn(xi) − g(xi))
2 are used as the measure of performance. It fol-

lows that despite the fact that some quantities were assumed known for the
FDR model, the performance of Priestley–Chao estimator is inferior to its
performance when prior randomization is used. What is also remarkable is
a much better performance of the regression estimator under a randomized
discrete uniform grid than for the case when the explanatory variables were
uniformly distributed on [0, 1]. This may be caused by the fact that the
explanatory variables are more evenly distributed across the interval [0, 1]
when the equispaced grid is used. For all designs the accuracy of estimation
is better when the G2 function is used, and estimation of g2 is more difficult
than that of g1. Moreover, there is no significant difference in the medians
of ISE for the FDR and RFDR models when the normal or Epanechnikov
kernel is used.
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Table 1. Medians of ISE for g1(x) and normal kernel

G1(x) G2(x)

d FDR RDR RFDR FDR RDR RFDR

0 0.4256 0.4910 0.4239 0.3321 0.3837 0.3309

0.1 0.4208 0.4830 0.4189 0.3275 0.3780 0.3259

0.2 0.4060 0.4730 0.4047 0.3109 0.3634 0.3095

0.3 0.3729 0.4306 0.3708 0.2758 0.3223 0.2735

0.4 0.3059 0.3489 0.3012 0.2120 0.2420 0.2052

Table 2. Medians of ISE for g2(x) and normal kernel

G1(x) G2(x)

d FDR RDR RFDR FDR RDR RFDR

0 0.4458 0.5932 0.4484 0.3538 0.4790 0.3565

0.1 0.4424 0.5953 0.4444 0.3491 0.4737 0.3526

0.2 0.4280 0.5754 0.4296 0.3336 0.4500 0.3357

0.3 0.3964 0.5270 0.3955 0.2997 0.4154 0.2979

0.4 0.3386 0.4493 0.3296 0.2426 0.3317 0.2319

Table 3. Medians of ISE for g1(x) and Epanechnikov kernel

G1(x) G2(x)

d FDR RDR RFDR FDR RDR RFDR

0 0.4297 0.5811 0.4243 0.3345 0.4589 0.3300

0.1 0.4263 0.5784 0.4208 0.3313 0.4537 0.3260

0.2 0.4102 0.5554 0.4052 0.3133 0.4309 0.3095

0.3 0.3766 0.5172 0.3718 0.2770 0.3874 0.2742

0.4 0.3100 0.4238 0.3079 0.2130 0.3052 0.2109

Table 4. Medians of ISE for g2(x) and Epanechnikov kernel

G1(x) G2(x)

d FDR RDR RFDR FDR RDR RFDR

0 0.4489 0.7721 0.4409 0.3574 0.6316 0.3485

0.1 0.4457 0.7675 0.4377 0.3528 0.6203 0.3440

0.2 0.4312 0.7551 0.4223 0.3383 0.5972 0.3278

0.3 0.3998 0.7051 0.3878 0.3048 0.5540 0.2910

0.4 0.3397 0.6122 0.3209 0.2477 0.4675 0.2243
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