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SELECTION IN PARAMETRIC MODELS VIA SOME

STEPDOWN PROCEDURES

Abstract. The paper considers the problem of consistent variable selec-
tion in parametic models with the use of stepdown multiple hypothesis pro-
cedures. Our approach completes the results of Bunea et al. [J. Statist.
Plann. Inference 136 (2006)]. A simulation study supports the results ob-
tained.

1. Introduction. We consider the problem of variable selection via mul-
tiple hypothesis testing in parametric models. Bunea et al. [6] showed that
the false discovery rate (FDR) procedure and the Bonferroni method applied
to a linear regression and logistic regression selection problem lead to consis-
tent variable selection. The procedure that controls the false discovery rate
(FDR) (the expectation value of the proportion of false discoveries) has been
developed in the context of multiple hypothesis testing by Benjamini and
Hochberg [3]. This procedure belongs to the class of stepup procedures (for
more discussion see [4], [18]). We used this approach for stepdown multitest
procedures [4], [11]–[16], [18], [19] to obtain consistent variable selection in
parametric models, especially for linear regression, logistic regression and
for the Cox regression model.

We consider a class of modelsMβ indexed by a parameter β ∈ Rp, where
p is constant and independent of the sample size n. The true model, which
is unknown, is specified as

Mtrue
β : βi 6= 0 for i ∈ I0 and βi = 0 for i ∈ I1,

where I1 := {1, . . . , p} \ I0 (|I0| = p0), β = (β1, . . . , βp)
T . In particular, we

consider the following special cases:
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(a) The linear regression model, where the vector of observations Y =
(y1, . . . , yn)T is of the form

Y = Xβ + ε,

where X is a matrix with deterministic variables xij , 1 ≤ i ≤ n,
1 ≤ j ≤ p, and ε = (ε1, . . . , εn)T is a vector of iid random errors,
Eε1 = 0, Eε21 = σ2.

(b) The logistic regression model, where y1, . . . , yn are independent bi-
nomial observations, with yi denoting the success count in ni inde-
pendent trials, and xi = (xi1, . . . , xip)

T is a vector of deterministic
covariates related to yi. The probability of success is given by

pi(xi) =
exp(βTxi)

1 + exp(βTxi)
.

(c) The Cox regression model, where we observe the realization of in-
dependent continuously distributed positive random variables Ti,
i = 1, . . . , n, representing the times of death of n individuals. Each of
the individuals can only be observed on a fixed time interval [0, ci] for
certain censoring times ci, i = 1, . . . , n. Individual i has hazard rate

λi(t) = lim
h→0

1

h
P(Ti ≤ t+ h |Ti ≥ t)

of the special form

λi(t) = λ0(t) exp(βTxi),

where xi is a column vector of p covariates, and λ0 is a fixed unknown
baseline hazard rate for an individual with x = 0.

The problem of model selection or variable selection is equivalent to
the problem of estimating I0. In a typical situation the distribution of the
observed variables from those models depends on the model parameters βi,
i = 1, . . . , p. Based on the statistics Tni we test the multiple hypothesis:

(h0) Hi : βi = 0 versus H ′i : βi 6= 0, for i = 1, . . . , p.

A selection procedure for the parametric model Mβ may be described

by the set Î of all indices i ∈ I1 for which the null hypothesis Hi is rejected,
and it is called consistent if

(1.1) P(Î = I0)→ 1 as n→∞.
We will assume that each statistic Tni, whenever Hi is true, has asymp-

totic normal distribution. More formally, we assume that for some parameter
estimator β̂ there exists an invertible matrix Mn, dependent on the sample
size n, such that

(1.2) M1/2
n (β̂ − β)→d Np(0, I) as n→∞,

where I is the identity p× p matrix.
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Moreover we assume

(1.3) Mn/n→ V > 0.

The statistic Tni has the form

(1.4) Tni =
β̂i√
mii

for i = 1, . . . , p,

where M−1n = (mij)1≤i,i≤p.

Remark 1. In special cases under some technical conditions we have
(1.2) for:

(i) linear regression

Mn :=
1

σ
XTX,

where β̂ is the least squares estimator of β [17, p. 109];
(ii) logistic regression

Mn := XT diag(nip̂i(1− p̂i))X,
where β̂ is the maximum likelihood estimator of β [1, pp. 193–194];

(iii) the Cox model

Mn :=

t�

0

(∑n
i=1 Yi(s)x

⊗2
i eβ̂

T
xi∑n

i=1 Yi(s)e
β̂
T
xi

−
(∑n

i=1 Yi(s)xie
β̂
T
xi∑n

i=1 Yi(s)e
β̂
T
xi

)⊗2)
dN̄(s),

where β̂ is the partial maximum likelihood estimator of β [8], [9],
Yi(t) is the at-risk process taking values 1 or 0 depending on whether
the individual is under observation or not, Ni is the counting process
which counts the observed events in the life of the ith individual over
the time interval [0, T ], N̄ =

∑n
i=1Ni and a⊗2 denotes the matrix

aaT [2].

Remark 2. The condition (1.3) holds for:

(i) linear regression if
1

n
XTX→W > 0;

(ii) logistic regression if

1

n
XT diag(nip̂i(1− p̂i))X→ V > 0;

(iii) the Cox model under regular conditions [2, p. 1106] for V = I(β),
where I(β) is the Fisher information matrix.

Due to (1.2), we assume that the p-values of the statistic Tni are

πi(tni) = 2(1− Φ(|tni|)),
where Φ is the cdf of the standard normal distribution.
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The problem of variable selection with parametric model can be viewed as
multiple testing (h0). In this testing, we use stepdown procedures [15], which
we describe as follows. Let π1, . . . , πp be the p-values for individual tests,
let π(1) ≤ · · · ≤ π(p) denote these p-values ordered, and let H(1), . . . ,H(p)

stand for the corresponding null hypotheses. Let in addition α1 ≤ · · · ≤ αp
be given thresholds dependent on n. We proceed according to the following
scheme. If π(1) > α1, we reject no null hypotheses. Otherwise, if

(h1) π(1) ≤ α1, . . . , π(r) ≤ αr,

we reject the hypotheses H(1), . . . ,H(r), where the largest r satisfying (h1)
is used. Suppose that R is the total number of rejections, and V denotes the
number of false rejections for the multitesting problem (h0), (h1). It is easy
to check (see [6]) that the selection procedure is consistent if

(1.5) P(R = p0, V = 0)→ 1 as n→∞.

The paper is organized as follows. In Section 2 we formulate our main re-
sult, Theorem 1, and some technical lemmas and conditions implying consis-
tency of some class of stepdown model selection procedures. The consistency
of those procedures for the linear model with independent and dependent
errors when p may depend on n has been presented in [10]. The results of
our simulation study are displayed in Section 3. All the necessary proofs are
contained in the Appendix.

2. Consistency of some stepdown procedures. Denote by q1, . . .
. . . , qp−p0 the p-values corresponding to the true null hypotheses (h0), and
by r1, . . . , rp0 the p-values corresponding to the false null hypotheses. Let
Fj be the distribution function of the random variable rj for j = 1, . . . , p.

Before we formulate our main result, we introduce the following assump-
tions:

(A1) αp → 0 as n→∞.

(A1a) log(2/αp)/n→ 0 as n→∞.

(A2) max
j∈I0

(1− Fj(αp))→ 0 as n→∞.

Theorem 1. The stepdown procedure satisfying (A1)–(A2) under con-
ditions (1.2)–(1.3) is consistent for the selection problem in the parametric
model.

By (1.5), it is clear that the model selection procedure is consistent if
the following conditions are fulfilled:

(i) P(V ≥ 1)→ 0 as n→∞,
(ii) P(R 6= p0)→ 0 as n→∞.



Selection in parametric models 85

We introduce the condition:

(iii)

p0∑
j=1

P(π(j) > αj) + P(π(p0+1) ≤ αp0+1)→ 0 as n→∞.

Theorem 1 follows from

Lemma 1. Under conditions (i) and (iii), any stepdown model selection
procedure is consistent.

Condition (i) is a consequence of Lemma 2. Condition (iii) follows from
Lemmas 2–3 and [7, Proposition 3].

Lemma 2. For any 0 ≤ x ≤ 1,

(2.1) P(qi ≤ x) = x+ o(1) as n→∞.

Our next lemma is very similar to Lemma 2.4 in Bunea et al. [6] where
consistency was shown for the Bonferroni and the FDR procedures [5]. We
consider some stepdown procedure satisfying (A1)–(A2).

Lemma 3. Suppose that (A1)–(A2) and (1.2)–(1.3) hold. Then

(2.2) P(r(p0) ≤ q(1))→ 1 as n→∞,
where

r(p0) = max{r1, . . . , rp0} and q(1) = min{q1, . . . , qp−p0}.

Since the most restrictive assumption among (A1)–(A2) is (A2), we will
establish some conditions implying (A2).

Lemma 4. Assume that (A1), (A1a), and (1.2)–(1.3) hold. Then (A2)
is fulfilled.

Now, we give some example when (A1a) holds.

Example 1. For an ∼ n−η for some η > 0 the following stepdown
procedures satisfy (A1a):

(a) the Holm procedure with

αj =
an

p+ 1− j
,

(b) a generalization of the Holm procedure [15] with

αj =
([γj] + 1)an

p+ [γj] + 1− j
for some 0 < γ < 1,

(c) the Bonferroni procedure with

αj =
an
p
, j = 1, . . . , p,
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(d) the Benjamini–Hochberg stepdown version with

αj =
jan
p
, j = 1, . . . , p,

(e) the Benjamini–Yekutieli stepdown version with

αj =
jan

p
∑p

i=1 1/i
, j = 1, . . . , p.

3. Simulation study

3.1. Models

(a) Linear models. We generate p independent vectors Xj from the
standard normal distribution, j = 1, . . . , p, the design matrix X consists
of the vectors X1, . . . , Xp as columns, and the true model has the form
Y =

∑p0
j=1Xj + ε, p0 ≤ p, where ε is a vector generated from the normal

distribution with mean zero and σ = 2. We consider three linear models: for
p0 = 3, p = 5; p0 = 10, p = 20; p0 = 50, p = 100, for n = 200 and n = 500.

(b) Logistic model. As above, we generate p independent vectors Xj

from the standard normal distribution, j = 1, . . . , p. Then we take ηi =∑p0
j=1 xij + εi, where ε is a vector generated from the normal distribution

with mean zero and σ = 2. Next, we compute

pi =
exp(ηi)

1 + exp(ηi)
, i = 1, . . . , n,

and draw a response yi from the Bernoulli distribution with probability of
success pi. The true model has coefficients β1 = · · · = βp0 = 1, βi = 0 for
i = p0 + 1, . . . , p.

We consider four models: for p0 = 3, p = 5; p0 = 10, p = 20; p0 = 20,
p = 30; p0 = 30, p = 50, for n = 200 and n = 500.

(c) Cox regression model. Based on the fact that the times of death
Ti in the Cox model have the form Ti = Λ−10 (− log(Ui) exp(βTxi)), where

Λ0(t) =
	t
0 λ0(s) ds, and Ui is a random variable with uniform distribution

U [0, 1], we generate p independent vectors xj from the standard normal
distribution, j = 1, . . . , p, and simulate the times of death

Ti = − log(Ui) exp
(
−
( p0∑
j=1

βjxij +

p∑
j=p0+1

βjxij

))
,

where Λ−10 (t) = t, Ui is generated from the uniform distribution U [0, 1] for
i = 1, . . . , n, for n = 200, 500. We consider nine Cox models for βj = 1 for
j = 1, . . . , p0 and βj = 0 for j = p0 + 1, . . . , p, where, respectively, p0 = 5,
p = 10; p0 = 10, p = 20; p0 = 30, p = 50 with 20%, 30% and 40% censored
observations.
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We simulated samples of sizes n = 200, 500 from the above models and
we recorded the numbers of true models selected from each of N = 1000
MC replications with the use of the following stepdown procedures: Holm’s,
a generalization of Holm’s (UHolm for γ = 0.01, 0.1, 0.5, 0.9) and Bon-
ferroni’s (Bonf), Benjamini–Hochberg (BH), Benjamini–Yekutieli (BY) for
an = 1/

√
n. The results of the simulations are presented in Tables 1–3.

Table 1. Frequencies of the true model being selected by multiple procedures in 1000
simulations for linear models

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500
p0 = 3 p0 = 3 p0 = 10 p0 = 10 p0 = 50 p0 = 50
p = 5 p = 5 p = 20 p = 20 p = 100 p = 100

Bonf 968 980 966 975 69 974

Holm 938 945 939 949 124 951

UHolm 0.01 938 945 939 949 124 951

UHolm 0.1 938 945 892 920 335 782

UHolm 0.5 903 919 767 832 237 472

UHolm 0.9 897 907 705 787 183 340

BH 905 930 669 755 165 330

BY 957 965 892 925 271 796

Table 2. Frequencies of the true model being selected by multiple procedures in 1000
simulations for logistic models

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500
p0 = 3 p0 = 3 p0 = 10 p0 = 10 p0 = 20 p0 = 20
p = 5 p = 5 p = 20 p = 20 p = 30 p = 30

Bonf 739 982 12 883 0 352

Holm 768 966 40 900 0 557

UHolm 0.01 768 966 40 900 0 557

UHolm 0.1 768 966 60 888 0 684

UHolm 0.5 800 939 148 833 9 673

UHolm 0.9 804 934 177 769 18 647

BH 772 933 177 767 14 640

BY 769 965 38 899 0 674

3.2. Conclusions. For large sample size all the procedures applied have
very good power. When the sample size is not very large, the Bonferroni
method is the best and the generalized Holm method for γ = 0.9 is the
worst. In logistic regression with p large, Holm and UHolm procedures work
better than other stepdown methods. In Cox models with greater percentage
of censored observations our procedures have weaker power than in models
with lower percentage of censored observations.



88 K. Furmańczyk

Table 3. Frequencies of the true model being selected by multiple procedures in 1000
simulations for Cox models

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500
p0 = 3 p0 = 3 p0 = 10 p0 = 10 p0 = 30 p0 = 30
p = 5 p = 5 p = 20 p = 20 p = 50 p = 50

Cen 20%/Bonf 953 971 928 963 867 973

Holm 927 945 877 933 770 918

UHolm 0.01 927 945 877 933 770 918

UHolm 0.1 927 945 816 891 519 791

UHolm 0.5 836 896 663 784 286 551

UHolm 0.9 804 881 593 741 198 468

BH 792 838 572 733 178 494

BY 923 948 840 920 573 831

Cen 30%/Bonf 941 973 940 969 870 968

Holm 885 955 884 948 757 937

UHolm 0.01 885 955 884 948 757 937

UHolm 0.1 885 955 819 914 482 777

UHolm 0.5 783 899 674 827 230 577

UHolm 0.9 746 881 605 776 160 476

BH 767 868 577 731 158 459

BY 907 956 856 905 562 829

Cen 40%/Bonf 961 980 950 974 831 968

Holm 921 955 902 953 724 915

UHolm 0.01 921 955 902 953 724 915

UHolm 0.1 921 955 833 910 479 775

UHolm 0.5 800 877 694 809 228 566

UHolm 0.9 771 859 613 763 163 470

BH 796 879 601 761 151 480

BY 908 955 844 925 538 796

4. Appendix

Proof of Lemma 1. Observe that

P(R < p0) = P(π(1) > α1) + P(π(1) ≤ α1, π(2) > α2) + · · ·
+P(π(1) ≤ α1, π(2) ≤ α2, . . . , π(p0−1) ≤ αp0−1, π(p0) > αp0)

≤
p0∑
j=1

P(π(j) > αj),

and

P(R > p0) ≤ P(π(p0+1) ≤ αp0+1),

as {R > p0} ⊆ {π(p0+1) ≤ αp0+1}.
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Hence P(R 6= p0) ≤
∑p0

j=1 P(π(j) > αj) + P(π(p0+1) ≤ αp0+1) and (ii)
follows directly from (iii). Then, by conditions (i), (ii) from Section 2, our
model selection procedure is consistent.

Proof of Lemma 2. If βi = 0, then

Tni =
β̂i√
mii

=
β̂i − βi√
mii

=: T̃ni.

Note that

P(qi ≤ x) = P
(
2(1− Φ(|Tni|)) ≤ x

)
= P

(
2(1− Φ(|T̃ni|)) ≤ x

)
= P(|T̃ni| ≥ ξx) = 1− (Φ(ξx)− Φ(−ξx)) + o(1),

where ξx := Φ−1(1 − x/2). Therefore, from the asymptotic distribution of
T̃ni (1.2), we have

P(qi ≤ x) = 1− (Φ(ξx)− Φ(−ξx)) + o(1)

= x+ o(1).

Proof of Lemma 3. It is clear that

P(r(p0) > q(1)) ≤ P(r(p0) > αp) + P(q(1) ≤ αp).
It follows from (A2) that

P(r(p0) > αp) ≤
p0∑
i=1

P(rj > αp) ≤ p0 max
j∈I0

(1− Fj(αp)) = o(1).

On the other hand, by Lemma 2,

P(q(1) ≤ αp) ≤
p−p0∑
i=1

P(qi ≤ αp) ≤ pαp + o(1).

Hence from (A1) we get (2.2), as claimed.

Proof of Theorem 1. By Lemma 1, in order to prove Theorem 1, it is
enough to show that conditions (i) and (iii) hold.

First, we will prove (i). Let j be the smallest (random) index such that
π(j) = q(1). Then

P(V ≥ 1) ≤ P(π(1) ≤ α1, . . . , π(j) ≤ αj) ≤ P(q(1) ≤ αj)

≤ P(q(1) ≤ αp) ≤
∑
j∈I1

P(qj ≤ αp).

By Lemma 2 (see (2.1)), we have

P(V ≥ 1) ≤ pαp + o(1).

Therefore, (i) holds.
It remains to prove (iii). It is obvious that for 1 ≤ j ≤ p0,

P({π(j) > αj}) ≤ P({π(j) > αj} ∩An) + P(Acn) ≤ P(r(j) > αj) + P(Acn),
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where An = {r(p0) ≤ q(1)}. Similarly

P(π(p0+1) ≤ αp0+1) ≤ P(q(1) ≤ αp0+1) + P(Acn).

Therefore, the l.h.s. of (iii) is not greater than

(4.1)

p0∑
j=1

P(r(j) > αj) + P(q(1) ≤ αp0+1) + (p0 + 1)P(Acn).

It follows from [7, Proposition 3] that

P(r(j) > αj) ≤
∑

i∈I0(1− Fi(αj))
p0 − j + 1

,

and

(4.2) P(q(1) ≤ αp0+1) ≤
∑
i∈I1

P(qi ≤ αp0+1) ≤
∑
i∈I1

P(qi ≤ αp).

Reasoning as previously, we have
∑

i∈I1 P(qi ≤ αp)→ 0 as n→∞. Hence

(4.3)

p0∑
j=1

P(r(j) > αj) ≤
p0∑
j=1

∑
i∈I0(1− Fi(αj))
p0 − j + 1

= O
(

max
j∈I0

(1− Fj(αj))
)
.

By Lemma 3 and (4.2)–(4.3), the r.h.s. of (4.1) tends to zero as n → ∞.
Consequently, (iii) holds.

Proof of Lemma 4. Observe that

1− Fj(αp) = 1− P(πj(Tnj) ≤ αp) = P(|Tnj | ≤ ξαp),

where ξαp = Φ−1(1− αp/2). Hence

1− Fj(αp) = G̃nj(ξαp)− G̃nj(−ξαp)

= Gnj

(
ξαp −

βj√
mjj

)
−Gnj

(
−ξαp −

βj√
mjj

)
,

where G̃nj is the distribution function of the statistic Tnj = β̂j/
√
mjj , and

Gnj is the distribution function of (β̂j − βj)/
√
mjj . From (1.2) we obtain

1− Fj(αp) = Φ

(
ξαp −

βj√
mjj

)
− Φ

(
−ξαp −

βj√
mjj

)
+ o(1).

It remains to prove

(4.4) Φ

(
ξαp −

βj√
mjj

)
− Φ

(
−ξαp −

βj√
mjj

)
= o(1) for all j ∈ I0.

Since Φ−1(1− αp/2) <
√

2 log(2/αp) for large n, from (A1a) we have

Φ−1(1− αp/2)√
n

=
ξαp√
n
→ 0.



Selection in parametric models 91

From (1.3) we have
√
n
√
mjj = O(1) as n→∞, so

ξαp

√
mjj

|βj |
=
ξαp

√
n
√
mjj√

n |βj |
→ 0 as n→∞,

and

ξαp −
βj√
mjj

=
βj√
mjj

(
ξαp

√
mjj

|βj |
− βj
|βj |

)
=

βj√
mjj

(
o(1)− βj

|βj |

)
and

−ξαp −
βj√
mjj

=
βj√
mjj

(
o(1)− βj

|βj |

)
.

Since j ∈ I0, ξαp − βj/
√
mjj and −ξαp − βj/

√
mjj each tend to −∞ or ∞.

Hence

Φ

(
ξαp −

βj√
mjj

)
− Φ

(
−ξαp −

βj√
mjj

)
→ 0 as n→∞.
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