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REGULARITY OF SOLUTIONS IN PLASTICITY.
II: PLATES

Abstract. The aim of this paper is to study the problem of regularity
of displacement solutions in Hencky plasticity. We consider a plate made
of a non-homogeneous material whose elastic-plastic properties change dis-
continuously. We prove that the displacement solutions belong to the space
W 2,1(Ω) if the stress solution is continuous and belongs to the interior of the
set of admissible stresses, at each point. The part of the functional which
describes the work of boundary forces is relaxed.

1. Introduction. The principal aim of this contribution is to prove a
theorem on regularity of displacement solutions in Hencky plasticity (see
Theorem 24). We consider a plate made of a non-homogeneous Hencky ma-
terial whose elastic-plastic properties change discontinuously.

In [6] and [15] the existence of solutions, for elastic-plastic plates, is
proved in the space SBH(Ω) of Special Bounded Hessian. But the authors
of those papers assume that the plate considered has elastic potential, i.e.
the potential has nonlinear growth at infinity (cf. [6, (1) and (3)], [15, (2)
and (6)]).

Demengel [7] solved the existence problem for an elastic-perfectly plas-
tic plate made of a homogeneous and isotropic Hencky material. To prove
that the functional of the total potential energy is weak∗ lower semicontin-
uous (l.s.c.) in the space HB(Ω), she used the method of relaxation of the
kinematic boundary condition (see also [8], [14] and [3]).

In this contribution we show that the displacement solutions belong to
the space W 2,1(Ω) if the stress solution is continuous and belongs to the
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interior of the set of admissible stresses, at each point. The part of the func-
tional which describes the work of boundary forces is relaxed. We consider
a non-homogeneous plate whose elastic-plastic properties change discontin-
uously.

2. Some basic definitions and theorems. In this paper Ω is a
bounded, open, connected domain of class C2 in R2. We use the notation
from [4]. We define the following Banach space of functions with bounded
Hessian HB(Ω) (see [7], [14]):

(2.1) HB(Ω) ≡
{
u ∈W 1,1(Ω)

∣∣∣∣
∂2u

∂xi∂xj
∈Mb(Ω) for all i, j ∈ {1, 2}

}
,

with the natural norm

‖u‖HB(Ω) = ‖u‖W 1,1 + ‖∇∇u‖Mb(Ω,E2
s)(2.2)

= ‖u‖W 1,1 +
2∑

i,j=1

∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥
Mb(Ω,R)

.

If w ∈ D′(Ω) and∇∇w ∈Mb(Ω,E2
s), then w ∈ HB(Ω) (see [14]). Moreover,

we define Π2 ≡ ker∇∇(·) = {u ∈ HB(Ω) | ∇∇u = 0}.
Proposition 1 (see [14] and [3]). Let g ∈ D′(Ω,E2

s). Then the follow-
ing conditions are equivalent :

(i) there exists u ∈ D′(Ω) such that ∇∇u = g,
(ii) for all ϕ ∈ C∞c (Ω,E2

s) with div divϕ = 0,
∑2

i,j=1〈gij ;ϕij〉D′×D = 0.

Proposition 2 (see [14]). Let HB(Ω) and L1(FrΩ) be endowed with
the norm topologies. There exists a continuous surjective linear operator

(2.3) (γ0, γ1) : HB(Ω)→ γ0(W 2,1(Ω))× L1(FrΩ)

such that

(2.4) γ0(u) = u|FrΩ, γ1(u) =
∂u

∂ν |FrΩ

for all u ∈ C2(Ω), where ν is the exterior unit vector normal to FrΩ
and γ0(W 2,1(Ω)) is endowed with the norm topology of L1(FrΩ), since
γ0(W 2,1(Ω)) ⊂ L1(FrΩ).

We define spaces

(2.5) Z ≡ Cc(Ω,R)× Cc(Ω,E2
s), Z0 ≡ {(a,b) ∈ Z | div div b = −a},

endowed with the natural norm

‖(a,b)‖Z ≡ ‖a‖C + ‖b‖C(2.6)

= sup{|a(x)| | x ∈ Ω}+ sup
x∈Ω

sup
i,j
{|bij(x)| | x ∈ Ω}
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for a ∈ Cc(Ω,R) and b ∈ Cc(Ω,E2
s). Then HB(Ω) is isomorphic to the

dual of [Z/Z0, ‖ · ‖Z ] (see [3] and [14]). The topology σ((Z/Z0)∗;Z) ≡
σ(HB(Ω);Cc(Ω) × Cc(Ω,E2

s)) is called the weak∗ HB topology . A net
{uδ}δ∈D ⊂ HB(Ω) is convergent to u0 ∈ HB(Ω) in this topology if and
only if, for all (a,b) ∈ Z,
(2.7)

�

Ω

a(u0 − uδ) dx+
�

Ω

b : ∇∇(u0 − uδ)→ 0.

For every (v, w) ∈ γ0(W 2,1(Ω)) × L1(FrΩ), the set {u ∈ HB(Ω) |
γ0(u) = v and γ1(u) = w} is dense in the space HB(Ω) endowed with
the weak∗ topology (see [2, Proposition 2.5] and [3]). Then the trace oper-
ator γ0 : HB(Ω) → γ0(W 2,1(Ω)) (resp. γ1 : HB(Ω) → L1(FrΩ)) is not
continuous on [HB(Ω), weak∗ topology] if the space γ0(W 2,1(Ω)) (respec-
tively L1(FrΩ)) is endowed with a Hausdorff topology (or a T1-topology,
see [11]).

Definition 1 (see [14] and [11, Chap. 1, Sec. 6]). A net {uδ}δ∈D con-
verges to u0 in the topology (2.8)–(2.9) if

uδ → u0 in ‖ · ‖W 1,p(Ω), where 1 ≤ p < 2,(2.8)

∇∇uδ ⇀ ∇∇u0 weak∗ in Mb(Ω,E2
s).(2.9)

Proposition 3 (cf. [3]). The weak∗ HB topology and the (2.8)–(2.9)
topology are equivalent on bounded subsets of HB(Ω).

Proof. Indeed, every bounded net {uδ}δ∈D in HB contains a finer net,
convergent in the topology (2.8)–(2.9) (see [14]). Thus cl‖·‖HB B(0, r) is a
compact set in (2.8)–(2.9) and in the weak∗ HB topology. Note that the
weak∗ HB topology is weaker than the (2.8)–(2.9) topology. Moreover,
among all Hausdorff topologies, compact topologies are minimal (see [11,
Corollary 3.1.14]).

The weak∗ HB(Ω) topology and the topology (2.8)–(2.9) are not equiv-
alent, because the trace γ0, which is continuous in the topology (2.8)–(2.9),
is not continuous in the weak∗ HB topology. Let γ0(W 2,1(Ω)) be endowed
with the norm topology L1(FrΩ). Then (for all r > 0) γ0|cl‖·‖HB B(0,r) is a
continuous function in the weak∗ HB topology.

Proposition 4 (cf. [3, Theorem 5.13]). The injection of the space
[HB(Ω), weak ∗] into [Lp(Ω,R), ‖ · ‖Lp ] is continuous on bounded subsets
of HB(Ω), where 1 ≤ p < 2.

We define the Banach space W 2(Ω,div div) of measurable functions (cf.
[14] and [3]):

(2.10) W 2(Ω,div div) ≡ {M ∈ L∞(Ω,E2
s) | div div M ∈ L2(Ω,R)}
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with the natural norm

(2.11) ‖M‖W 2(Ω,div div) = ‖M‖L∞(Ω,E2
s) + ‖div div M‖L2(Ω).

Moreover, W 2
div(Ω,divdiv) denotes the following subspace of W 2(Ω,divdiv):

(2.12) W 2
div(Ω,div div) ≡ {M ∈W 2(Ω,div div) | div div M = 0 in Ω}.

The distribution M : ∇∇u, where M ∈W 2(Ω,div div), u ∈ HB(Ω), defined
by

(2.13) 〈M : ∇∇u;ϕ1〉D′×D = −
�

Ω

uM : ∇∇ϕ1 dx

−2
�

Ω

M : ((∇u)⊗ (∇ϕ1)) dx+
�

Ω

uϕ1(div div M) dx

for ϕ1 ∈ C∞c (Ω), is a bounded measure on Ω, absolutely continuous with
respect to |∇∇u| (see [14]).

Theorem 5 (cf. [14]). Let γ0(W 2,1(Ω)) be endowed with the norm

(2.14) γ0(W 2,1(Ω)) 3 v 7→
‖v‖0 = inf{‖w‖W 2,1 | w ∈W 2,1(Ω),where γ0(w) = v}.

Moreover , let (γ0(W 2,1(Ω)))∗ be endowed with the norm

(2.15) (γ0(W 2,1(Ω)))∗ 3 v∗ 7→ ‖v∗‖0∗ = sup{|v∗(v)| | ‖v‖0 ≤ 1}.
Then there exists a continuous, linear , surjective map (β0, β1) from [W 2(Ω,
div div), ‖ · ‖W 2(Ω,div div)] onto [(γ0(W 2,1(Ω)))∗, ‖ · ‖0∗]× [L∞(FrΩ), ‖ · ‖L∞ ]
such that

(2.16) β0(M) = (div M)ν +
∂

∂s
((Mν)τ ), β1(M) = (Mν)ν

for every M ∈ C2(Ω,E2
s), where ν is the exterior unit vector normal to FrΩ,

τ is a tangent unit vector and s the curvilinear abscissa on FrΩ measured
positively in the direction of τ . Furthermore, for all u ∈ HB(Ω) and M ∈
W 2(Ω,div div), the following Green formula holds:

(2.17)
�

Ω

M : ∇∇u−
�

Ω

u(div div M) dx

=
�

FrΩ

β1(M)γ1(u) ds− 〈β0(M); γ0(u)〉(γ0(W 2,1(Ω)))∗×γ0(W 2,1(Ω)).

Lemma 6 (cf. [3] and [14]). For every M ∈ W 2(Ω,div div), there ex-
ists a sequence {Mn}n∈N ⊂ W 2(Ω,div div) ∩ C∞(Ω,E2

s) such that (for all
n ∈ N) β1(Mn) = β1(M), β0(Mn) = β0(M) and

Mn →M in the norm of Lp(Ω,E2
s), for all p, 1 ≤ p <∞,

and weak∗ L∞(Ω,E2
s),

(2.18)

div div Mn → div div M in the norm of L2(Ω).(2.19)
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Lemma 7 (see [3]). Let Ω1 be an open bounded set of class C2. Let Ω be
a bounded open connected set of class C2 and suppose that Ω ⊂⊂ Ω1 ⊂ R2.
For every M ∈W 2(Ω,div div), there exists M1 ∈W 2(Ω1,div div) such that
M1|Ω = M and β0(M1) = 0, β1(M1) = 0 on FrΩ1.

Proof. Let M ∈ W 2(Ω,div div). By Theorem 5, there exists M2 ∈
W 2(Ω1 − Ω,div div) such that β0(M) = −β0(M2) and β1(M) = β1(M2)
on FrΩ. Indeed, by [1] we can extend any function t ∈ W 2,1(Ω) to a func-
tion t̂ ∈ W 2,1(Ω1). Moreover, by Theorem 5, the trace (β0, β1) is a linear
operator onto [γ0(W 2,1(Ω))]∗ × L∞(FrΩ).

By Lemma 6 there exists M3 ∈W 2(Ω1 −Ω,div div) ∩ C∞(Ω1 −Ω,E2
s)

such that β0(M2) = β0(M3) and β1(M2) = β1(M3) on Fr(Ω1 −Ω). Due to
the Green formula (2.17), we find M4 ∈W 2(Ω1,div div) such that

(2.20) M4 ≡





M on Ω,

M3 on Ω1 −Ω,

β1(M)ν ⊗ ν on FrΩ,

where (p ⊗ ν)ij = piνj . If h ∈ C∞c (Ω1,R) and h(x) = 1 for all x ∈ Ω then
M1 ≡ hM4.

3. Auxiliary theorems and spaces. In this paper the Lebesgue and
Hausdorff measures on Ω and FrΩ are denoted by dx and ds, respectively.
Let Γ0 and Γ1 be Borel subsets of FrΩ such that Γ0∩Γ1 = ∅, Γ0∪Γ1 = FrΩ
and Γ1 = cl(intΓ1), where intΓ1 denotes the interior of Γ1 relative to the
boundary. Let Kp : Ω → 2E2

s be a multifunction (defined for every x ∈ Ω)
and suppose there exist r2 > r1 > 0 such that for every x ∈ Ω,

(3.1) BE2
s
(0, r1) ⊂ Kp(x) ⊂ BE2

s
(0, r2).

The set Kp(x) is the elasticity convex domain at the point x.

Assumption 1 (cf. [4]). Let Ω and Ω1 (Ω ⊂⊂ Ω1) be bounded open
connected sets of class C2 in R2 and suppose the inclusion (3.1) holds. For
every y ∈ Ω,

(3.2) Kp(y) = {z(y) | z ∈ C1(Ω,E2
s), z|intΩ ∈W 2(Ω,div div),

z(x) ∈ Kp(x) for dx-a.e. x ∈ Ω}.
Moreover, for all x ∈ Ω, Kp(x) is a convex and closed subset in E2

s.

Assumption 2. There exist a > 0, [qij ] ∈ L∞(Ω,E2
s) and aijkl ∈

L∞(Ω,R) for i, j, k, l ∈ {1, 2} such that

(3.3)
2∑

i,j,k,l=1

aijkl(x)w∗ijw
∗
kl > a‖[w∗ij ]‖2E2

s
,
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(3.4) j∗(x, [w∗ij ]) =
2∑

i,j,k,l=1

aijkl(x)(w∗ij − qij(x))(w∗kl − qkl(x)) + IK(x)([w
∗
ij])

for dx-a.e. x ∈ Ω and for every [w∗ij ] ∈ E2
s, where w∗ij and w∗kl are components

of the matrix [w∗ij].

Assumption 3. Let Γ1 = FrΩ ∩ C, where C = cl int C ⊂ Ω1 is a closed
Caccioppoli set and ds(FrΩ ∩ Fr C) = 0 (cf. [12] and [4]).

We define

(3.5) j(x,w) ≡ j∗∗(x,w) ≡ sup{w : w∗ − j∗(x,w∗) | w∗ ∈ E2
s}

for dx-a.e. x ∈ Ω and all w ∈ E2
s. The function j is a convex normal

integrand (cf. [10, Chap. VIII, Proposition 1.2]). By (3.1) and (3.4) there
exists k > 0 such that

(3.6) cr1‖w‖E2
s
− k ≤ j(x,w) for dx-a.e. x ∈ Ω

(cf. [4, (3.5)]). Define j∞ : Ω ×E2
s → R ∪ {+∞} by

(3.7) j∞(x,w) ≡ sup{w : w∗ − IKp(x)(w
∗) | w∗ ∈ E2

s}
for x ∈ Ω and w ∈ E2

s. Because of (3.1) we have, for all x ∈ Ω (see [4,
(3.7)]),

(3.8) c1r1‖w‖E2
s
≤ j∞(x,w) ≤ c2r2‖w‖E2

s
.

4. Regularity of displacement solutions. In this section we prove
that the displacement solutions of the relaxed functional belong to the space
W 2,1(Ω) if the stress solution is continuous and belongs to the interior of
the set of admissible stresses, at each point (see Theorem 24).

Let Z : HB(Ω)→Mb(Ω,E2
s)× L1(FrΩ,R)× C(FrΩ) be given by

(4.1) HB(Ω) 3 u 7→ Z(u) = ((∇∇u), γ1(u), γ0(u)).

We define spaces

(4.2) Z(HB(Ω)) ≡ {(∇∇u, γ1(u), γ0(u)) | u ∈ HB(Ω)}
and

(4.3) W 2(Ω,div div)× C(FrΩ),

put in duality by the bilinear pairing 〈·; ·〉Z , where

(4.4) 〈(∇∇u, γ1(u), γ0(u)); (ϕ∗, ψ∗)〉Z
=

�

Ω

ϕ∗ : ∇∇u−
�

FrΩ

β1(ϕ∗)γ1(u) ds+
�

FrΩ

γ0(u)ψ∗ ds,

for every ϕ∗ ∈W 2(Ω,div div) and

(4.5) ψ∗ ∈ C(FrΩ,R), (∇∇u, γ1(u), γ0(u)) ∈ Z(HB(Ω)).
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Moreover, we define a subspace C1
div div(Ω,E2

s) of W 2(Ω,div div) by

(4.6) C1
div div(Ω,E2

s) ≡ {ϕ∗ ∈ C1(Ω,E2
s) | ϕ∗|Ω ∈W 2(Ω,div div)}.

Remark 1. The definition of spaces in duality requires that for ev-
ery (ϕ∗, ψ∗) ∈ W 2(Ω,div div) × C(FrΩ), (ϕ∗, ψ∗) 6= (0, 0), there exists
(∇∇u, γ1(u), γ0(u)) ∈ Z(HB(Ω)) such that

(4.7) 〈(∇∇u, γ1(u), γ0(u)); (ϕ∗, ψ∗)〉Z 6= 0.

But for every ϕ∗s ∈W 2(Ω,div div) such that div divϕ∗s = 0 in Ω, β0(ϕ∗s) = 0
on FrΩ, and for every (∇∇u, γ1(u), γ0(u)) ∈ Z(HB(Ω)),

(4.8) 〈((∇∇u), γ1(u), γ0(u)); (ϕ∗s, 0)〉Z =
�

Ω

u(div divϕ∗s) dx = 0

(see (2.17) and [4]). We do not get a contradiction, since we do not use the
Hausdorff property of the topology σ(W 2(Ω,div div)×C(FrΩ);Z(HB(Ω)))
(cf. [4, Remark 3]).

Let the bilinear form 〈·; ·〉b between Z(HB(Ω)) and W 2(Ω,div div) be
given by

(4.9) 〈(∇∇u, γ1(u), γ0(u)); (ϕ∗, β0(ϕ∗))〉b =
�

Ω

ϕ∗ : (∇∇u)

−
�

FrΩ

β1(ϕ∗)γ1(u) ds+ 〈β0(ϕ∗); γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1)

for u ∈ HB(Ω) and ϕ∗ ∈ W 2(Ω,div div). A net {uδ}δ∈D ⊂ HB(Ω) is said
to converge to û ∈ HB(Ω) in the topology σ(Z(HB(Ω));W 2(Ω,div div)) if

(4.10) 〈(∇∇(uδ − û), γ1(uδ − û), γ0(uδ − û)); (ϕ∗, β0(ϕ∗))〉b → 0

for all ϕ∗ ∈W 2(Ω,div div).

Theorem 8. Every closed ball cl‖·‖HB(B(0, r̂)) (in Z(HB(Ω))) is com-
pact in the topology σ(Z(HB(Ω));W 2(Ω,div div)).

Proof. Step 1. Let a net {uδ}δ∈D ⊂ HB(Ω) be included in BHB(0, r̂).
The injection HB(Ω) ⊂ H1(Ω) is continuous and injection H1(Ω) into
L2(Ω) is compact (see [14, Chap. 3, (2.77)], [14, Chap. 1, (1.21)] and [1,
Theorem 6.2]). Then there exists a finer net {uδα}α∈A ⊂ {uδ}δ∈D and a
function u1 ∈ L2(Ω) such that

(4.11) ‖uδα − u1‖L2(Ω,R) → 0

and

(4.12) 〈(∇∇uδα, γ1(uδα), γ0(uδα)); (ϕ∗, β0(ϕ∗))〉b
=

�

Ω

uδα(div divϕ∗) dx→
�

Ω

u1(div divϕ∗) dx
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for every ϕ∗ ∈W 2(Ω,div div), because div divϕ∗ ∈ L2(Ω) (cf. (2.17)). Since
Ω is bounded subset of R2 and (4.11) holds, we have ‖uδα−u1‖L1(Ω,R) → 0.

Step 2. By the compactness theorem for the space BD(Ω) (see [14,
Chap. 2, Theorem 2.4]) the injection {∇u ∈ L1(Ω,R2) | u ∈ HB(Ω)}
into L1(Ω,R2) is compact. Then there exists a finer net {uδαβ }β∈B and a

function ŵ ∈ L1(Ω,R2) such that ‖∇uδαβ − ŵ‖L1(Ω,R2) → 0. We obtain

− � Ω uδαβ div ξ dx = � Ω∇uδαβ ξ dx → � Ω ŵξ dx for every ξ ∈ C1
c (Ω,R2).

Then ∇u1 = ŵ in the sense of distributions on Ω. Therefore, by Step 1, we
obtain

(4.13) ‖uδαβ − u1‖W 1,1(Ω) → 0.

Step 3. The net {uδαβ }β∈B is bounded in HB(Ω), so there exists a finer

net {uδαβγ } and a measure µ1 ∈ Mb(Ω,E2
s) such that � Ω ϕ : (∇∇uδαβγ ) →

� Ω ϕ : µ1 for every ϕ ∈ C2
c (Ω,E2

s). Since we have � Ω(div divϕ)uδαβγ dx →
� Ω(div divϕ)u1 dx = � Ω ϕ : µ1 for such ϕ, we find that ∇∇u1 = µ1 in the
sense of distributions on Ω. Therefore, by [14, Chap. 3, (2.79)], u1 ∈ HB(Ω)
and {uδαβγ } converges to u1 in σ(Z(HB(Ω));W 2(Ω,div div)) (cf. (4.9) and

(4.10)).

Step 4. We show that ‖u1‖HB ≤ r̂. Indeed, lim ‖uδαβγ ‖W 1,1(Ω) =

‖u1‖W 1,1(Ω) by (4.13). Then for every ε > 0 there exists γε such that for
every γ > γε we obtain

(4.14) r̂ − lim ‖uδαβγ ‖W 1,1 + ε ≥ sup
γ>γε
‖∇∇uδαβγ ‖Mb(Ω,E2

s)

= sup
γ>γε

sup
w∈C0

{ �

Ω

w : ∇∇uδαβγ
∣∣∣w ∈ C0(Ω,E2

s), sup
i,j
{‖wij‖C(Ω)} ≤ 1

}

= sup
w∈C0

sup
γ>γε

{ �

Ω

w : ∇∇uδαβγ
∣∣∣w ∈ C0(Ω,E2

s), sup
i,j
{‖wij‖C(Ω)} ≤ 1

}

≥ sup
w∈C0

lim
γ>γε

{ �

Ω

w : ∇∇uδαβγ
∣∣∣w ∈ C0(Ω,E2

s), sup
i,j
{‖wij‖C(Ω)} ≤ 1

}

= sup
w∈C0

{ �

Ω

w : ∇∇u1

∣∣∣w ∈ C0(Ω,E2
s), sup

i,j
{‖wij‖C(Ω)} ≤ 1

}

= ‖∇∇u1‖Mb(Ω,E2
s),

where wij are the components of the matrix w (cf. definition of ‖·‖Mb(Ω,E2
s)).

Therefore [cl‖·‖HB(B(0, r̂)), σ(Z(HB(Ω));W 2(Ω,div div))] is compact.
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Theorem 9 (cf. [3]). The space [cl‖·‖HB B(0, r̂), weak∗ HB topology ] is
homeomorphic to the space Z(cl‖·‖HB B(0, r)) endowed with the topology

(4.15) σ(Z(HB(Ω));C1
div div(Ω,E2

s)× C(FrΩ,R)),

where the bilinear form 〈·; ·〉Z between Z(HB(Ω)) and C1
div div(Ω,E2

s) ×
C(FrΩ,R) is given by (4.4) and (4.5) (see also (4.6)).

Proof. Z is a one-to-one function. We will show that Z(cl‖·‖HB B(0, r̂))
is compact in the topology (4.15).

Step 1. Let a net {ut}t∈T be a subset of cl‖·‖HB B(0, r̂) (cf. [11, pp. 73–
81]). Due to Steps 1 and 2 of the proof of Theorem 8, there exists a finer net
{uδ}δ∈D (where D ⊂ T ) and u1 ∈ W 1,1(Ω) such that ‖uδ − u1‖W 1,1(Ω) → 0
and ‖uδ − u1‖L2(Ω,R) → 0.

Step 2. The net {∇∇uδ}δ∈D is bounded in ‖ · ‖Mb . Thus there exists a
finer net {∇∇uκ}κ∈K (where K ⊂ D) such that ∇∇uκ ⇀ M0 ∈Mb(Ω,E2

s)
(in the weak∗ Mb topology). By Proposition 1, there exists ug ∈ D′(Ω)
such that ∇∇ug = M0, and ∇∇uκ ⇀ ∇∇ug ∈ Mb(Ω,E2

s) in the weak∗

Mb(Ω,E2
s) topology. The net {uκ}κ∈K is finer than {uδ}δ∈D, so u1 = ug + c,

where c ∈ ker(∇∇(·)), because

(4.16)
�

Ω

ξ : ∇∇uκ =
�

Ω

(div div ξ)uκ dx→
�

Ω

(div div ξ)ug dx

∀ξ ∈ C2
c (Ω,E2

s).

Therefore, we can assume that u1 = ug and we conclude that ug ∈ HB(Ω).

Step 3. By Step 1 of the proof of Theorem 8 we get

(4.17) 〈(∇∇(uκ − ug), γ1(uκ − ug), γ0(uκ − ug)); (ϕ∗, β0(ϕ∗))〉b → 0

for every ϕ∗ ∈ C1
div div(Ω,E2

s), since C1
div div(Ω,E2

s) ⊂W 2(Ω,div div). More-
over, ‖γ0(uκ − ug)‖L1(FrΩ) → 0, because ‖uκ − ug‖W 1,1(Ω) → 0 (cf. Step 1).
Then

(4.18)
�

FrΩ

γ0(uκ − ug)ψ∗ ds→ 0

for every ψ∗ ∈ C(FrΩ,R), since the closed and bounded set FrΩ is compact
and C(FrΩ,R) ⊂ L∞(FrΩ,R).

Step 4. Because of Step 1, we can show (similarly to Step 4 of the proof
of Theorem 8) that ‖ug‖HB ≤ r̂.

Step 5. By (2.16), β0(ϕ∗) ∈ C(FrΩ,R) if ϕ∗ ∈ C1
div div(Ω,E2

s). Then

(4.19)
�

Ω

ϕ∗ : ∇∇(uκ − ug)−
�

FrΩ

β1(ϕ∗)γ1(uκ − ug) ds

+
�

FrΩ

γ0(uκ − ug)ψ∗ ds→ 0
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for every ϕ∗ ∈ C1
div div(Ω,E2

s) and ψ∗ ∈ C(FrΩ,R) (see (4.4), (4.9), (4.17)
and (4.18)). By Steps 1 and 2 we obtain

(4.20)
�

Ω

M : ∇∇(uκ − ug) +
�

Ω

h(uκ − ug) dx→ 0

for every M ∈ Cc(Ω,E2
s) and h ∈ Cc(Ω,R), because ∇∇uκ ⇀ ∇∇ug

(in the weak∗ Mb topology) and ‖uκ − ug‖L2(FrΩ) → 0. Therefore the set
cl‖·‖HB B(0, r̂) (endowed with the topology where convergence of nets is de-
fined by (4.19) and (4.20)) is compact. The Hausdorff topologies (4.15) and
weak∗ HB are weaker than the topology given by (4.19)–(4.20). By [11,
Corollary 3.1.14] the weak∗ HB topology and (4.15) are homeomorphic on
the set cl‖·‖HB B(0, r̂).

Theorem 10. Every closed ball cl‖·‖HB B(0, r̂) endowed with the topol-
ogy σ(Z(HB(Ω));W 2(Ω,div div)) is homeomorphic to [cl‖·‖BHB(0, r̂));
weak∗ HB topology].

Proof. Similarly to Step 5 of the proof of Theorem 9, we define a compact
topology on cl‖·‖HB B(0, r̂), which is stronger than the weak∗ HB topology
and σ(Z(HB(Ω));W 2(Ω, div div)). Next we use Corollary 3.1.14 of [11] to
deduce the equivalence of the three topologies on cl‖·‖HB B(0, r̂).

We study a thin plate occupying a given surface Ω. This plate is sub-
jected to a force, of surface density f ∈ L2(Ω,R), acting in a direction at
right angles to the surface. We shall suppose the plate to be subject to
force g0 ∈ L∞(FrΩ) ⊂ (γ0(W 2,1(Ω)))∗ on Γ1 and bending moment of lin-
ear density g1 ∈ L∞(Γ1,R). Let λ (where ∞ > λ ≥ 0) stand for the load
multiplier.

Define

(4.21) W 2(Ω,div div) 3M 7→ dP ∗λ,re(M) = −
�

Γ1

IBR(0,r)(λg1 − β1(M)) ds

− IB(γ0(W2,1))∗(0,r)(β0(M)|intΓ1 − λg0)−
�

Ω

j∗(x,M) dx

if div div M = +λf in Ω and dP ∗λ,re(M) = −∞ otherwise. Here β0(M)|intΓ1

denotes the functional ψ̃∗ ∈ (γ0(W 2,1(Ω)))∗ with ψ̃∗ = β0(M) on intΓ1

and ψ̃∗ = 0 on clΓ0 (see [3, Proposition 5.16]). Moreover, IA(·) denotes the
indicator function of a set A. The dual relaxed problem, for r ≥ 0, is given
by the formula

(4.22) (P ∗λ,r) find sup{dP ∗λ,re(M) |M ∈W 2(Ω,div div),

div div M = λf in Ω}.
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Assumption 4. There exist ML ∈ C1
div div(Ω,E2

s) such that dP ∗λ,re(ML)
= sup(P ∗λ,r) > −∞, β1(ML) = λg1 on Γ1, β0(ML) = λg0 on Γ1 and
ML(x) ∈ Kp(x) for all x ∈ Ω. Moreover, there exist δ0 > 0 such that
dist(ML(x),FrKp(x)) = inf{‖ML(x)− z‖E2

s
| z ∈ FrKp (x)} > δ0 for every

x ∈ Ω.

Define Hr : Z(HB)→ R ∪ {+∞} by

(4.23) Hr(∇∇u, γ1(u), γ0(u))

≡ −
�

Ω

ML : ∇∇u dx+ r
�

Γ1

|γ1(u)| ds+ r‖γ0(u)‖γ0(W 2,1)

+
�

Γ0

I{γ1(u)=0}(γ1(u)) ds+
�

Γ0

I{γ0(u)=0}(γ0(u)) ds+
�

Ω

j(x,∇∇u) dx

if u ∈ W 2,1(Ω), and Hr(∇∇u, γ1(u), γ0(u)) = +∞ otherwise (where
‖ · ‖γ0(W 2,1) = ‖ · ‖0, see (2.14)). Because of the equalities

λ
�

Ω

fu dx =
�

Ω

ML : ∇∇u dx−
�

FrΩ

β1(ML)γ1(u) ds(4.24)

+ 〈β0(ML); γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1),

λ
�

Γ1

g1γ1(u) ds =
�

Γ1

β1(ML)γ1(u)ds,(4.25)

λ
�

Γ1

g0γ0(u) ds =
�

Γ1

β0(ML)γ0(u) ds(4.26)

we obtain

(4.27) Hr(∇∇u, γ1(u), γ0(u)) = −λ
�

Ω

fu dx− λ
�

Γ1

g1γ1(u) ds

+ r
�

Γ1

|γ1(u)| ds+ λ
�

Γ1

g0γ0(u) ds+ r‖γ0(u)‖γ0(W 2,1) +
�

Ω

j(x,∇∇u) dx

if u ∈ W 2,1(Ω), γ1(u) = 0 on Γ0, γ0(u) = 0 on Γ0, and Hr(∇∇u, γ1(u),
γ0(u)) = +∞ otherwise (cf. (2.17), (4.21), Assumption 4 and [14, Chap. 3,
(2.33)]). The functional Hr describe the primal displacement problem for
plates, with relaxed boundary conditions on Γ1.

We define a linear space by

(4.28) A(Ω) ≡ {(ϕ∗, ψ∗) ∈W 2(Ω,div div)× (γ0(W 2,1(Ω)))∗ |
∃ψ∗1 ∈ C(FrΩ), ∃ϕ∗1 ∈ C1

div div(Ω,E2
s), ∃ϕ∗s ∈W 2

div(Ω,div div),

ϕ∗ = ϕ∗1 + ϕ∗s and ψ∗ = ψ∗1 + β0(ϕ∗s)}
(see (2.12)). Moreover, a net {uδ}δ∈D ⊂ HB(Ω) converges to û ∈ HB(Ω)
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in the topology σ(Z(HB(Ω));A(Ω)) if and only if

(4.29)
�

Ω

ϕ∗ : ∇∇(uδ − û)−
�

FrΩ

β1(ϕ∗)γ1(uδ − û) ds

+ 〈ψ∗; γ0(uδ − û)〉(γ0(W 2,1))∗×γ0(W 2,1) → 0

for every (ϕ∗, ψ∗) ∈ A(Ω). Because of the duality between Z(HB(Ω)) and
A(Ω) we obtain the dual functional H∗r : A(Ω)→ R ∪ {+∞} by setting

(4.30) H∗r (ϕ∗, ψ∗) = sup
{ �

Ω

ϕ∗ : ∇∇u dx−
�

FrΩ

β1(ϕ∗)γ1(u) ds

+ 〈ψ∗; γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1) −Hr(∇∇u, γ1(u), γ0(u))
∣∣∣u ∈W 2,1(Ω)

}

for (ϕ∗, ψ∗) ∈ A(Ω). The bidual functional H∗∗r : Z(HB(Ω))→ R ∪ {+∞}
is defined by

(4.31) H∗∗r (∇∇u, γ1(u), γ0(u)) = sup
{ �

Ω

ϕ∗ : ∇∇u−
�

FrΩ

β1(ϕ∗)γ1(u) ds

+ 〈ψ∗; γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1) −H∗r (ϕ∗, ψ∗)
∣∣∣ (ϕ∗, ψ∗) ∈ A(Ω)

}

for u ∈ HB(Ω). The extension Z̃(HB(Ω)) of Z(HB(Ω)) is given by

(4.32) Z̃(HB(Ω)) = {(z, γ1(u), w) ∈ span[∇∇(HB(Ω)), L1(Ω,E2
s)]

× L1(FrΩ)× γ0(W 2,1(Ω)) |
∃ẑ ∈ L1(Ω,E2

s), ∃ŵ ∈ γ0(W 2,1(Ω)), ∃ũ ∈ HB(Ω),

z = ẑ dx+∇∇ũ, γ1(u) = γ1(ũ) and w = ŵ + γ0(ũ)}.

The bilinear pairing between Z̃(HB(Ω)) and A(Ω) is given by

〈(z, γ1(u), w); (ϕ∗, ψ∗)〉1 ≡
�

Ω

ϕ∗ : z−
�

FrΩ

β1(ϕ∗)γ1(u) ds(4.33)

+ 〈ψ∗; w〉(γ0(W 2,1))∗×γ0(W 2,1)

for (z, γ1(u), w) ∈ Z̃(HB(Ω)) and (ϕ∗, ψ∗) ∈ A(Ω). The extension H̃r of
Hr onto the space Z̃(HB(Ω)) is given by

(4.34) H̃r(z, γ1(u), w)

=−
�

Ω

ML : z dx+
�

FrΩ

β1(ML)γ1(u) ds

− 〈β0(ML); w〉(γ0(W 2,1))∗×γ0(W 2,1) −
�

Γ1

β1(ML)γ1(u) ds
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+
�

Γ1

β0(ML)w ds+ r
�

Γ1

|γ1(u)| ds+ r‖w‖γ0(W 2,1)

+
�

Γ0

I{γ1(u)=0}(γ1(u)) ds+
�

Γ0

I{w=0}(w) ds+
�

Ω

j(x, z) dx

if z = ẑ dx +∇∇ũ, γ1(u) = γ1(ũ) and w = ŵ + γ0(ũ), with ẑ ∈ L1(Ω,E2
s),

ŵ ∈ γ0(W 2,1(Ω)), ũ ∈ W 2,1(Ω), and H̃r(z, γ1(u), w) = +∞ otherwise. By
the duality between Z̃(HB(Ω)) and A(Ω) we define a functional H̃∗r on the
linear space A(Ω) by

(4.35) H̃∗r (ϕ∗, ψ∗) = sup{〈(z, γ1(u), w); (ϕ∗, ψ∗)〉1 − H̃r(z, γ1(u), w) |
(z, γ1(u), w) ∈ Z̃(HB(Ω))}

for (ϕ∗, ψ∗) ∈ A(Ω). The bidual functional H̃∗∗r : Z̃(HB(Ω))→ R ∪ {+∞}
is defined by

(4.36) H̃∗∗r (z, γ1(u), w) = sup{〈(z, γ1(u), w); (ϕ∗, ψ∗)〉1 − H̃∗rϕ∗, ψ∗) |
(ϕ∗, ψ∗) ∈ A(Ω)}

for (z, γ1(u), w) ∈ Z̃(HB(Ω)).

Proposition 11. The explicit form of H̃∗r is

H̃∗r (ϕ∗, ψ∗) =
�

Γ1

IBR(0,r)(−β1(ϕ∗)) ds+ IB(γ0(W2,1))∗ (0,r)(ψ
∗
|intΓ1

)(4.37)

+
�

Ω

j∗(x, (ϕ∗ + ML)) dx

for (ϕ∗, ψ∗)∈A(Ω). Here ψ∗|intΓ1
denotes the functional ψ̃∗∈(γ0(W 2,1(Ω)))∗

such that ψ̃∗ = ψ∗ on intΓ1 and ψ̃∗ = 0 on clΓ0 (see (4.21)). If we extend
H̃∗r onto the space W 2(Ω,div div)× (γ0(W 2,1))∗ by (4.35), then H̃∗r is given
by (4.37) for every (ϕ∗, ψ∗) ∈W 2(Ω,div div)× (γ0(W 2,1))∗.

Proof. By Theorem 3A of [13] we obtain

(4.38) H̃∗r (ϕ∗, ψ∗) = sup
{ �

Ω

ϕ∗ : z dx−
�

FrΩ

β1(ϕ∗)γ1(u) ds

+ 〈ψ∗;w〉(γ0(W 2,1))∗×γ0(W 2,1) +
�

Ω

ML : z dx− r
�

Γ1

|γ1(u)| ds

− r‖w‖γ0(W 2,1) −
�

Γ0

I{γ1(u)=0}(γ1(u)) ds−
�

Γ0

I{w=0}(w) ds−
�

Ω

j(x, z) dx
∣∣∣

z ∈ L1(Ω,E2
s), u ∈W 2,1(Ω), w ∈ γ0(W 2,1(Ω))

}
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= sup
{ �

Ω

(ϕ∗ + ML) : z dx−
�

Ω

j(x, z) dx
∣∣∣ z ∈ L1(Ω,E2

s)
}

+ sup
{
−

�

FrΩ

β1(ϕ∗)γ1(u) ds− r
�

Γ1

|γ1(u)| ds

−
�

Γ0

I{γ1(u)=0}(γ1(u)) ds
∣∣∣u ∈W 2,1(Ω)

}

+ sup{〈ψ∗;w〉(γ0(W 2,1))∗×γ0(W 2,1) − r‖w‖γ0(W 2,1) |

w ∈ γ0(W 2,1(Ω)) and w = 0 on clΓ0}
for every (ϕ∗, ψ∗) ∈ A(Ω), since γ1 is a surjection on L1(FrΩ) (cf. [8]). Then
we obtain (4.37).

Define H̃∗#r : Z̃(HB)→ R ∪ {+∞} by

(4.39) H̃∗#r (z, γ1(u), w) = sup{〈(z, γ1(u), w); (ϕ∗, ψ∗)〉1 − H̃∗r (ϕ∗, ψ∗) |

(ϕ∗, ψ∗) ∈ C1
div div(Ω,E2

s)× C(FrΩ)}

for (z, γ1(u), w) ∈ Z̃(HB(Ω)).

Proposition 12. The explicit form of H̃∗#r is

(4.40) H̃∗#r (∇∇u, γ1(u), γ0(u)) = −λ
�

Ω

fu dx− λ
�

Γ1

g1γ1(u) ds

+ r
�

Γ1

|γ1(u)| ds+ λ
�

Γ1

g0γ0(u) ds+ r‖γ0(u)‖γ0(W 2,1)

+
�

Γ0

j∞(x,−ν ⊗ νγ1(u)) ds+
�

Γ0

I{γ0(u)=0}(γ0(u)) ds

+
�

Ω

j(x, (∇∇u)a) dx+
�

Ω

j∞

(
x,

d(∇∇u)s
d|(∇∇u)s|

)
d|(∇∇u)s|

for every u ∈ HB(Ω).

Proof. The field ML is a solution of (P ∗λ,r), i.e. dP ∗λ,re(ML) = sup(P ∗λ,r)

(cf. (4.21)). Thus H̃∗r (0, 0) <∞. Moreover, C1
div div(Ω,E2

s) and C(FrΩ) are
PCU-stable, so by [5] and by Theorem 3A of [13] we get

(4.41) H̃∗#r (∇∇u, γ1(u), γ0(u)) = sup
{ �

Ω

ϕ∗ : ∇∇u−
�

FrΩ

β1(ϕ∗)γ1(u) ds
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+ 〈ψ∗; γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1)

−
�

Γ1

IBR(0,r)(−β1(ϕ∗)) ds− IB(γ0(W2,1))∗(0,r)(ψ
∗
|intΓ1

)

−
�

Ω

j∗(x, (ϕ∗ + ML)) dx
∣∣∣ (ϕ∗, ψ∗) ∈ C1

div div(Ω,E2
s)× C(FrΩ)

}

= sup
{ �

Ω

[(ϕ∗ + ML) : (∇∇u)a − j∗(x, (ϕ∗ + ML))] dx

+
�

Ω

[
(ϕ∗ + ML) :

d(∇∇u)s
d|(∇∇u)s|

− j∗∞(x, (ϕ∗ + ML))
]
d|(∇∇u)s|

+
�

Γ1

[(−β1(ϕ∗))γ1(u)− IBR(0,r)(−β1(ϕ∗))] ds

+
�

Γ0

[(ϕ∗ + ML) : (−ν ⊗ νγ1(u))− j∗∞(x, (ϕ∗ + ML))] ds

∣∣∣∣

ϕ∗ ∈ C1
div div(Ω,E2

s)
}

−
�

Ω

ML : (∇∇u) +
�

Γ0

β1(ML)γ1(u) ds

+ sup{〈ψ∗; γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1) − IB(γ0(W2,1))∗(0,r)(ψ
∗
|intΓ1

) |

ψ∗ ∈ C(FrΩ)}
for every u ∈ HB(Ω), which is (4.40) (cf. (4.24), (4.25) and (4.26)). Here
∇∇u = (∇∇u)a + (∇∇u)s is the Lebesgue decomposition of ∇∇u into
absolutely continuous and singular parts with respect to dx. In the above
calculations we have used the equality j∗∞(x,ϕ∗) = IKp(x)(ϕ∗), which holds
for every ϕ∗ ∈ E2

s and x ∈ Ω.

Definition 2. We say that Hr is coercive if

(4.42) Hr(∇∇um, γ1(um), γ0(um))→ +∞
for every sequence {um}m∈N ⊂ HB(Ω) such that ‖um‖HB(Ω) →∞.

Assumption 5. Let Hr be a coercive function. Moreover, let H̃∗#r be the
largest minorant that is less than Hr and l.s.c. in the weak∗ HB topology.

Definition 3. We say that a net {uδ}δ∈D ⊂ HB(Ω) converges to u0 ∈
HB(Ω) in the topology (4.43)–(4.44) if

(4.43) 〈(∇∇(uδ − u0), γ1(uδ − u0), γ0(uδ − u0)); (ϕ∗, β0(ϕ∗))〉1 → 0
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for every ϕ∗ ∈W 2(Ω,div div) and

(4.44) 〈(∇∇(uδ − u0), γ1(uδ − u0), γ0(uδ − u0)); (ϕ̃∗, ψ∗)〉1 → 0

for every (ϕ̃∗, ψ∗) ∈ C1
div div(Ω,E2

s)× C(FrΩ).

Lemma 13. Every closed ball cl‖·‖HB(B(0, r̂)) (in Z(HB(Ω))) is com-
pact in the topology (4.43)–(4.44).

Proof. Let {uδ}δ∈D ⊂ HB(Ω) be a net in BHB(0, r̂). Then, by Theorem
8, there exists a finer net {uδβ}β∈B ⊂ HB(Ω) and ũ ∈ cl‖·‖BHB(0, r̂) such
that {uδβ} converges to ũ in the sense of (4.43). Moreover, by Theorem 9,
there exists a net {uδβγ } (finer than {uδβ}β∈B) and û ∈ cl‖·‖BHB(0, r̂) such
that {uδβγ } converges to û in the sense of (4.44). Therefore {uδβγ } converges
to û ∈ cl‖·‖BHB(0, r̂) in the topology (4.43)–(4.44).

Corollary 14. Every closed ball cl‖·‖HB(B(0, r̂)) (in Z(HB(Ω))) is
compact in the topology σ(Z(HB(Ω));A(Ω)) (cf. (4.29)). Moreover , the
topologies (4.43)–(4.44) and σ(Z(HB(Ω));A(Ω)) are equivalent on each
such ball.

Proof. The Hausdorff topology σ(Z(HB(Ω));A(Ω)) is weaker than the
topology (4.43)–(4.44). Then, by [11, Corollary 3.1.14] and Lemma 13, we
obtain the equivalence of the two topologies on cl‖·‖HB(B(0, r̂)).

Proposition 15. The space [cl‖·‖HB(B(0, r̂)), weak∗ topology ] is hom-
eomorphic to the space [Z(cl‖·‖HB(B(0, r̂))), σ(Z(HB(Ω));A(Ω))].

Proof. The Hausdorff topology σ(Z(HB);W 2(Ω,divdiv)) is weaker than
(4.43)–(4.44). Then (by [11, Corollary 3.1.14], Corollary 14 and Theorem 10)
we obtain the equivalence of these topologies on cl‖·‖HB(B(0,r̂)).

Lemma 16. For every (ϕ∗,ψ∗)∈A(Ω) we have H̃∗r (ϕ∗,ψ∗)≥H∗r (ϕ∗,ψ∗).
Moreover , H̃∗∗r (ẑ)≤H∗∗r (ẑ) for every ẑ∈Z(HB(Ω)).

Proposition 17. Under Assumption 5, H̃∗#r (ẑ) = H̃∗∗r (ẑ) = H∗∗r (ẑ) for
every ẑ ∈ Z(HB(Ω)).

Proof. In the definition of H̃∗∗r we take the supremum over a larger
domain, so H̃∗#r ≤ H̃∗∗r . By Lemma 16, H̃∗#r ≤ H̃∗∗r ≤ H∗∗r . Because of (4.30)
and (4.31), H∗∗r is the l.s.c. regularization of Hr in σ(Z(HB(Ω));A(Ω)). By
Assumption 5 and Proposition 15 we get H̃∗#r = H∗∗r .

Lemma 18. Let Assumption 5 hold. For every u ∈ W 2,1(Ω) such that
γ1(u)|Γ0 = 0, we have H̃∗∗r (∇∇u, γ1(u), γ0(u)) = Hr(∇∇u, γ1(u), γ0(u)).

Proof. By Lemma 16, H̃∗∗r ≤ H∗∗r ≤ Hr. Then, by (4.40) and Proposition
17, we obtain the conclusion of the lemma.
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Lemma 19. Let ϕ∗s ∈W 2
div(Ω,div div). Then

(4.45) H∗r (ϕ∗, ψ∗) = H∗r (ϕ∗ + ϕ∗s, ψ
∗ + β0(ϕ∗s)),

for every ϕ∗ ∈ C1
div div(Ω,E2

s) and ψ∗ ∈ C(FrΩ,R) (cf. (2.12)).

Proof. By (4.30) and (2.17) we obtain

(4.46) H∗r (ϕ∗, ψ∗)

= sup
{ �

Ω

u(div divϕ∗) dx

− 〈(β0(ϕ∗)− ψ∗); γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1)

−Hr(∇∇u, γ1(u), γ0(u))
∣∣∣ u ∈W 2,1(Ω)

}

= sup
{ �

Ω

u(div div(ϕ∗ + ϕ∗s)) dx

+ 〈(ψ∗ + β0(ϕ∗s)− β0(ϕ∗ + ϕ∗s)); γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1)

−Hr(∇∇u, γ1(u), γ0(u))
∣∣∣ u ∈W 2,1(Ω)

}

= H∗r (ϕ∗ + ϕ∗s, ψ
∗ + β0(ϕ∗s))

for every (ϕ∗, ψ∗) ∈ C1
div div(Ω,E2

s)× C(FrΩ).

Let ker∇∇(·) ≡ {u ∈ HB | ∇∇u = 0}. Then

(4.47) ker∇∇(·) = {u ∈W 2,1 | u(z, y) = az + by + c and a, b, c ∈ R}.
There exist continuous projections of the space W 2,1(Ω) on

P̃I = {u ∈W 2,1(Ω) | u(z, y) = c and c ∈ R},(4.48)

P̃II = {u ∈W 2,1(Ω) | u(z, y) = az and a ∈ R},(4.49)

P̃III = {u ∈W 2,1(Ω) | u(z, y) = by and b ∈ R},(4.50)

given by

W 2,1(Ω) 3 u 7→ PI(u) =
1

measΩ

�

Ω

u(z, y) dz dy,(4.51)

W 2,1(Ω) 3 u 7→ PII(u) =
z

measΩ

( �

Ω

∂u(z, y)
∂z

dz dy

)
.(4.52)

The projection PIII of W 2,1(Ω) on P̃III is defined similarly to (4.52). Hence
there exists a decomposition W 2,1(Ω) = ker∇∇(·)⊕ [W 2,1(Ω)/ker∇∇(·)],
given by

(4.53) u = (PI(u) + PII(u) + PIII(u)) + {u− (PI(u) + PII(u) + PIII(u))}.
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Lemma 20. The trace (β0, β1) : W 2
div(Ω,div div) → {(γ0(u), γ1(u)) ∈

γ0(W 2,1(Ω))× L1(FrΩ) | u ∈ [W 2,1(Ω)/ker∇∇(·)]}∗ is a surjection.

Proof. The proof is similar to Step 2 of the proof of [14, Chap. 3, Propo-
sition 2.11]. Let (L0, L1) ∈ (γ0(W 2,1(Ω)))∗ × L∞(FrΩ), L0|γ0(ker∇∇(·)) = 0
and L1|γ1(ker∇∇(·)) = 0. Then

(4.54) W 2,1(Ω) 3 u 7→ l(u)

=
�

FrΩ

L1γ1(u) ds− 〈L0; γ0(u)〉(γ0(W 2,1))∗×γ0(W 2,1)

is a continuous, linear functional on W 2,1(Ω) such that l(u) = 0 if u ∈
ker∇∇(·). Because of [14, Chap. 3, (2.82)] the operator u 7→ ∇∇u is an
isomorphism of W 2,1(Ω)/ker∇∇(·) into L1(Ω,E2

s). By the Hahn–Banach
theorem, there exists an extension of the form l, with the same norm, on
the space L1(Ω,E2

s). Then there exists M ∈ L∞(Ω,E2
s) such that l(u) =

� Ω M : ∇∇u dx for all u ∈W 2,1(Ω)/ker∇∇(·). If ũ ∈ C∞c (Ω) then l(ũ) = 0.
Since l(u) = � Ω M : ∇∇u dx − � Ω 0u dx for all u ∈ W 2,1(Ω)/ker∇∇(·), we
have div(div M) = 0 in Ω. Due to Step 1 of the proof of [14, Chap. 3,
Proposition 2.11] we see that L0 = β0(M) and L1 = β1(M). Finally since l
is extended to a linear mapping with the same norm,

‖l‖ = {‖L0‖(γ0(W 2,1))∗ + ‖L1‖L∞} = ‖M‖L∞(Ω,E2
s)(4.55)

= ‖M‖W 2(Ω,div div),

and this completes the proof of surjectivity.

We say that a net {(ϕ∗k, ψ∗k)}k∈K ⊂ A(Ω) converges to (ϕ̂∗, ψ̂∗) ∈ A(Ω)
in the topology

(4.56) σ(A(Ω);L∞(Ω,E2
s)× L∞(Γ1,R)× γ0(W 2,1(Ω))|Γ1)

if

(4.57)
�

Ω

(ϕ∗k − ϕ̂∗k) : z dx−
�

Γ1

β1(ϕ∗k − ϕ̂∗k)h ds

+ 〈(ψ∗k − ψ̂∗k);w〉(γ0(W 2,1))∗×γ0(W 2,1) → 0

for every z ∈ L∞(Ω,E2
s), h ∈ L∞(Γ1) and w ∈ γ0(W 2,1) with w|Γ0 = 0.

Lemma 21. Let f̂ : A(Ω)→ R be a linear functional , continuous in the
topology (4.56), such that f̂(ϕ∗s,β0(ϕ∗s)) = 0 for every ϕ∗s ∈W 2

div(Ω,div div)
(cf. (2.12)). Then there exists ũ ∈ W 2,1(Ω) such that γ1(ũ) = 0 = γ0(ũ) on
Γ0, ∇∇ũ ∈ L∞(Ω,E2

s), γ1(ũ) ∈ L∞(FrΩ) and

f̂(ϕ∗, ψ∗) =
�

Ω

ϕ∗ : (∇∇ũ) dx−
�

FrΩ

β1(ϕ∗)γ1(ũ) ds(4.58)

+ 〈ψ∗; γ0(ũ)〉(γ0(W 2,1))∗×γ0(W 2,1)

for (ϕ∗, ψ∗) ∈ A(Ω).
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Proof. Step 1. The functional f̂ is continuous in the topology (4.56). So,
by Theorem V.3.9 of [9], there exist κ̃ ∈ L∞(Ω,E2

s) and û ∈ W 2,1(Ω) such
that γ1(û) = 0 = γ0(û) on Γ0, γ1(û) ∈ L∞(FrΩ) and

f̂(ϕ∗, ψ∗) =
�

Ω

ϕ∗ : κ̃ dx−
�

FrΩ

β1(ϕ∗)γ1(û) ds(4.59)

+ 〈ψ∗; γ0(û)〉(γ0(W 2,1))∗×γ0(W 2,1)

for all (ϕ∗, ψ∗) ∈ A(Ω). Indeed, the trace (γ1, γ0) : W 2,1(Ω) → L1(FrΩ) ×
γ0(W 2,1(Ω)) is a surjection and L∞(FrΩ) ⊂ L1(FrΩ), because Ω is a
bounded domain of class C2 (see [8] and [14, Chap. 3, Section 2, proof
of Proposition 2.11]). Let f : C∞c (Ω1,E2

s) → R be given by f(ϕ∗2) ≡
f̂(ϕ∗

2|Ω , β0(ϕ∗
2|Ω)) for ϕ∗2 ∈ C∞c (Ω1,E2

s), where Ω ⊂⊂ Ω1. Then, by (4.59),

for every ϕ∗1 ∈ C∞c (Ω1,E2
s) such that div divϕ∗1 = 0 on Ω1, we get

f(ϕ∗1) =
�

Ω

ϕ∗1 : κ̃ dx−
�

FrΩ

ϕ∗1 : (ν ⊗ νγ1(û)) ds(4.60)

+ 〈β0(ϕ∗1|Ω); γ0(û)〉(γ0(W 2,1))∗×γ0(W 2,1)

= 〈(κ̃, (ν ⊗ νγ1(û)), γ0(û));ϕ∗1〉D′(Ω1)×D(Ω1) = 0.

Therefore, by Proposition 1, there exists ũ1 ∈ D′(Ω1) such that ∇∇ũ1 =
(κ̃, (ν ⊗ νγ1(û)), γ0(û)) ∈ D′(Ω1).

Step 2. By (4.60) we can assume that supp ũ1 ⊂ Ω. For every ϕ∗3 ∈
C∞c (Ω,E2

s) we have 〈∇∇ũ1;ϕ∗3〉D′(Ω1)×D(Ω1) = � Ω ϕ∗3 : κ̃ dx, since C∞c (Ω,E2
s)

⊂ C∞c (Ω1,E2
s). Then ∇∇ũ1(x) = κ̃(x) for dx-a.e. x ∈ Ω. By [14, Chap. 3,

(2.79)], ũ1|Ω ∈W 2,1(Ω), because κ̃ ∈ L∞(Ω,E2
s).

Step 3. Let ũ2 be the projection of ũ1|Ω onto W 2,1(Ω)/ker∇∇(·), given
by ũ2 = ũ1|Ω − (PI(ũ1|Ω) + PII(ũ1|Ω) + PIII(ũ1|Ω)) (cf. (4.51)–(4.53)). By
Lemma 20 and Green’s formula (2.17) we obtain

0 =
�

Ω

M : ∇∇ũ2 dx(4.61)

−
�

FrΩ

β1(M)γ1(û) ds+ 〈β0(M); γ0(û)〉(γ0(W 2,1))∗×γ0(W 2,1)

= −
�

FrΩ

β1(M)(γ1(û)− γ1(ũ2)) ds

+ 〈β0(M); (γ0(û)− γ0(ũ2))〉(γ0(W 2,1))∗×γ0(W 2,1)

for every M ∈W 2
div(Ω,div div). Then there exists ũ3 ∈ ker∇∇(·) such that

γ1(ũ2 + ũ3) = γ1(û) and γ0(ũ2 + ũ3) = γ0(û). Therefore ũ = ũ2 + ũ3 satisfies
(4.58).



50 J. L. Bojarski

Proposition 22. Let r > 0 (in the definition of Hr, cf. (4.23)) and let
the space W 2

div(Ω,div div) be defined by (2.12). Then

(4.62) H∗r (0, 0) = inf{H̃∗r (ϕ∗s, β0(ϕ∗s)) | ϕ∗s ∈W 2
div(Ω,div div)}.

Proof. Step 1 . Suppose there exists δ1 > 0 such that

(4.63) H∗r (0, 0) + δ1 < inf{H̃∗r (ϕ∗s, β0(ϕ∗s)) | ϕ∗s ∈W 2
div(Ω,div div)}.

In view of Lemmas 16 and 19, it suffices to show that this assumption leads
to a contradiction.

Let H̃r|L∞ : L∞(Ω,E2
s)×L∞(Γ1)× γ0(W 2,1(Ω))|Γ1 → R∪ {+∞} be the

restriction of H̃r, given by H̃r|L∞(z, h, w) = H̃r(z, h, w) for z ∈ L∞(Ω,E2
s),

h ∈ L∞(Γ1,R) and w ∈ γ0(W 2,1(Ω)) such that w|Γ0 = 0 (cf. (4.45)). Define
the dual functional to H̃r|L∞ by

(4.64) H̃∗r|L∞(ϕ∗, ψ∗) = sup
{ �

Ω

ϕ∗ : z dx−
�

FrΩ

β1(ϕ∗)h ds

+ 〈ψ∗;w〉(γ0(W 2,1))∗×γ0(W 2,1) − H̃r|L∞(z, h, w)
∣∣∣

z ∈ L∞(Ω,E2
s), h ∈ L∞(Γ1), w ∈ γ0(W 2,1) and w|Γ0 = 0

}

for (ϕ∗, ψ∗) ∈ A(Ω). By (4.34) and (4.38) we obtain H̃∗r|L∞(ϕ∗, ψ∗) =

H̃∗r (ϕ∗, ψ∗) for every (ϕ∗, ψ∗) ∈ A(Ω). Therefore H∗r is l.s.c. on A(Ω) in
the topology (4.56).

Step 2. The linear space W 2
div(Ω,div div) is closed in L∞(Ω,E2

s) en-
dowed with the topology σ(L∞(Ω,E2

s);L
∞(Ω,E2

s)). Indeed, let {Mk}k∈K
⊂W 2

div(Ω,div div) be a net convergent to M0 in σ(L∞(Ω,E2
s);L

∞(Ω,E2
s)),

i.e. � Ω(Mk −M0) : p dx → 0 for every p ∈ L∞(Ω,E2
s). Then for every

u ∈ C2
c (Ω,R),

(4.65) 0 =
�

Ω

(div div Mk)u dx =
�

Ω

Mk : (∇∇u) dx→
�

Ω

M0 : (∇∇u) dx.

Therefore div div M0 = 0 in the sense of distributions on Ω.

Step 3. The set W 2
div(Ω,div div) ∩ BL∞(Ω,E2

s)(0, r̂) endowed with the
topology (4.56) is compact.

Indeed, let {Mk}k∈K ⊂W 2
div(Ω, div div)∩BL∞(Ω,E2

s)(0, r̂) be a net. Then
there exists a finer net {Mkt}t∈T and M0∈W 2

div(Ω,div div)∩BL∞(Ω,E2
s)(0, r̂)

such that {Mkt}t∈T converges to M0 in σ(L∞(Ω,E2
s);L

∞(Ω,E2
s)), be-

cause the Hausdorff topology σ(L∞;L∞) is weaker than σ(L∞;L1) (cf.
[11, Corollary 3.1.14]). The trace (β0, β1) is a continuous linear map from
[W 2(Ω,div div), ‖ · ‖W 2(Ω,div div)] into [(γ0(W 2,1(Ω)))∗, ‖ · ‖0∗ ]× [L∞(FrΩ),
‖·‖L∞ ]. Hence the net {(β0(Mkt),β1(Mkt))}t∈T is bounded in (γ0(W 2,1(Ω)))∗
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×L∞(FrΩ). Therefore there exists a finer net {Mktp}p∈P and (%̃0, %̃1) ∈
(γ0(W 2,1(Ω)))∗ × L∞(FrΩ) such that

(4.66)
�

FrΩ

(β1(Mktp )−%̃1)h ds−〈(β0(Mktp )−%̃0); w〉(γ0(W 2,1))∗×γ0(W 2,1) → 0

for every (h,w) ∈ L1(FrΩ) × γ0(W 2,1(Ω)). Moreover, by (2.17), similarly
to Step 4 of the proof of [4, Proposition 19] we obtain β0(M0) = %̃0 and
β1(M0) = %̃1.

Step 4. By the Hahn–Banach theorem, for every m ∈ N, there exists an
affine functional A(Ω) 3 (ϕ∗, ψ∗) 7→ f̃m(ϕ∗, ψ∗) + ãm ∈ R such that

(4.67) f̃m(ϕ∗, ψ∗) + ãm < H̃∗r (ϕ∗, ψ∗)

for (ϕ∗, ψ∗) ∈ A(Ω),

(4.68) f̃m(M̃s, β0(M̃s)) + ãm > inf
ϕ∗s
{H̃∗r (ϕ∗s, β0(ϕ∗s)) |

ϕ∗s ∈W 2
div(Ω,div div)} − δ1/2m

for M̃s ∈W 2
div(Ω,div div) ∩BL∞(Ω,E2

s)(0, r̂ 2m) and f̃m is continuous in the

topology (4.56). Indeed, H̃∗r is l.s.c. andW 2
div(Ω,div div)∩BL∞(Ω,E2

s)(0, r̂ 2m)

is compact in this topology. By (4.37) and Assumption 4, H̃∗r (0, 0) < ∞.
Because of (4.21), (4.22) and Assumption 4,

H̃∗r (0, 0) = inf{H̃∗r (ϕ∗s, β0(ϕ∗s)) | ϕ∗s ∈W 2
div(Ω,div div)}.

Step 5. Due to Steps 5, 6 and 7 of the proof of [4, Proposition 19] we
obtain the existence of ũ ∈ W 2,1(Ω) such that γ1(ũ) = 0 = γ0(ũ) on Γ0,
∇∇ũ ∈ L∞(Ω,E2

s), γ1(ũ) ∈ L∞(FrΩ) and

(4.69) A(Ω) 3 (ϕ∗, ψ∗) 7→ f̃0(ϕ∗, ψ∗) =
�

Ω

ϕ∗ : (∇∇ũ) dx

−
�

FrΩ

β1(ϕ∗)γ1(ũ) ds+ 〈ψ∗; γ0(ũ)〉(γ0(W 2,1))∗×γ0(W 2,1)

satisfies the inequalities

(4.70) f̃0(ϕ∗, ψ∗) + H̃∗r (0, 0)− δ1/2 < H̃∗r (ϕ∗, ψ∗), f̃0(M̃s, β0(M̃s)) ≥ 0

for every (ϕ∗, ψ∗) ∈ A(Ω) and every M̃s ∈W 2
div(Ω,div div) (cf. Lemma 21).

Step 6. We say that a net {(ϕ∗k, ψ∗k)}k∈K ⊂ C1
div div(Ω,E2

s) × C(FrΩ)
converges to (ϕ̂∗, ψ̂∗) in the topology σ(C1

div div(Ω,E2
s)×C(FrΩ);W 2,1(Ω))

if

(4.71) 〈(∇∇u, γ1(u), γ0(u)); ((ϕ∗k − ϕ̂∗), (ψ∗k − ψ̂∗))〉1 → 0

for every u ∈ W 2,1(Ω) such that γ1(u)|Γ0 = 0 on Γ0 (see (4.33)). The l.s.c.

regularization of H̃∗r in the topology σ(C1
div div(Ω,E2

s) × C(FrΩ);W 2,1(Ω))



52 J. L. Bojarski

(denoted by cl(4.71) H̃
∗
r ) is given by

(4.72) cl(4.71) H̃
∗
r (ϕ∗, ψ∗) = sup{〈(∇∇u, γ1(u), γ0(u)); (ϕ∗, ψ∗)〉1
− H̃∗#r (∇∇u, γ1(u), γ0(u)) | u ∈W 2,1(Ω),γ1(u)|Γ0 = 0}

= sup{〈(∇∇u, γ1(u), γ0(u)); (ϕ∗, ψ∗)〉1
−Hr(∇∇u, γ1(u), γ0(u)) | u ∈W 2,1(Ω),γ1(u)|Γ0 = 0}

= H∗r (ϕ∗, ψ∗),

for every (ϕ∗, ψ∗) ∈ C1
div div(Ω,E2

s)×C(FrΩ) (cf. Proposition 17 and Lemma
18). From (4.63), (4.69), (4.70) and (4.72) we obtain a contradiction.

Proposition 23. For every r > 0,

(4.73) inf{Hr(z) | z ∈ Z(HB(Ω))} = inf{H̃r(z) | z ∈ Z̃(HB(Ω))}.
Proof. By (4.35), (4.37), (4.21), (4.22), Assumption 4, (4.37), Proposi-

tion 22, and (4.30), we get

(4.74) sup{−H̃r(z) | z ∈ Z(HB(Ω))} = H̃∗r (0, 0)

= −dP ∗λ,re(ML) = inf{−dP ∗λ,re(M) |M ∈W 2(Ω,div div)}

= inf{H̃∗r (Ms, β0(Ms)) |Ms ∈W 2
div(Ω,div div)}

= H∗r (0, 0) = sup{−Hr(∇∇u, γ1(u), γ0(u)) | u ∈ HB(Ω)}.
Let

(4.75) clσ(Z(HB);[C∩W 2]×C)Hr (resp. clσ(Z̃(HB);[C∩W 2]×C) H̃r)

denote the largest l.s.c. minorant of Hr in the topology σ(Z(HB(Ω));
C1

div div(Ω,E2
s) × C(FrΩ)) (respectively, the largest l.s.c. minorant of H̃r

in σ(Z̃(HB(Ω));C1
div div(Ω,E2

s)× C(FrΩ))), i.e. (4.75) stands for the l.s.c.
regularizations of Hr and H̃r in the above mentioned topologies.

Because (0, 0) ∈ C1
div div(Ω,E2

s) × C(FrΩ) and from Proposition 23 we
get

(4.76) inf{clσ(Z(HB);[C∩W 2]×C)Hr(z) | z ∈ Z(HB(Ω))}
= inf{clσ(Z̃(HB);[C∩W 2]×C) H̃r(z) | z ∈ Z̃(HB(Ω))}.

The main result of this paper is the following.

Theorem 24. Let r > 0 and suppose Assumptions 2, 4 and 5 hold. If Hr

is a coercive function, then by Proposition 17 the functional H∗∗r is given by
(4.39), since H∗∗r = H̃∗#r . Moreover , every minimum point ẑ ∈ Z(HB(Ω))
of H∗∗r is given by a function û ∈ W 2,1(Ω) such that γ1(û) = 0 on Γ0 and
ẑ = (∇∇û, γ1(û), γ0(û)).
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Proof. Step 1. Let ẑ = (∇∇û, γ1(û), γ0(û)) ∈ Z(HB(Ω)) be a minimum
point of H∗∗r . By (4.30), (4.31), Theorem 9 and Proposition 15 the func-
tional H∗∗r is the l.s.c. regularization of Hr in σ(Z̃(HB(Ω));C1

div div(Ω,E2
s)×

C(FrΩ)). Then, by (4.76), we obtain

H∗∗r (ẑ) = clσ(Z(HB);[C∩W 2]×C)Hr(ẑ)(4.77)

= inf{clσ(Z̃(HB);[C∩W 2]×C) H̃r(z) | z ∈ Z̃(HB(Ω))}.

For every z ∈ Z(HB(Ω)) we have Hr(z) = H̃r(z), hence

clσ(Z(HB);[C∩W 2]×C)Hr(z) ≥ clσ(Z(HB);[C∩W 2]×C) H̃r(z).

Because of (4.77) and (4.76), ẑ ∈ Z(HB(Ω)) is a minimum point of
clσ(Z(HB);[C∩W 2]×C) H̃r on Z̃(HB(Ω)). By [10, Chap. 1, (5.2)], (0, 0) ∈
∂(clσ(Z̃(HB);[C∩W 2]×C) H̃r)(ẑ), where ∂ is a subgradient and (0, 0) ∈
C1

div div(Ω,E2
s) × C(FrΩ). Then ẑ ∈ ∂(clσ(Z̃(HB);[C∩W 2]×C) H̃r)∗(0, 0) (see

[10, Chap. 1, Corollary 5.2]). By [10, Chap. 1, Corollary 4.1] we have ẑ ∈
∂(H̃∗r )(0, 0). Then by [10, Chap. 1, (5.2)] we get

(4.78) 〈(∇∇û, γ1(û), γ0(û)); ((ϕ∗, ψ∗)− (0, 0))〉1 + H̃∗r (0, 0) ≤ H̃∗r (ϕ∗, ψ∗)

for every (ϕ∗, ψ∗) ∈ C1
div div(Ω,E2

s)×C(FrΩ), since ẑ = (∇∇û, γ1(û), γ0(û)).

Step 2. Because of Assumption 3, Γ1 = FrΩ ∩ C, where C = cl int C ⊂
Ω1 is a closed Caccioppoli set, ds(FrΩ ∩ Fr C) = 0 and Ω ⊂⊂ Ω1. Let
OΓ0 ≡ Ω1 − C. Then FrΩ ∩ OΓ0 = Γ0. Therefore for every k ∈ N there
exists an open set Ω′k such that Ω′k ⊂ OΓ0 , Ω′k ⊂⊂ Ω1, dx(Ω′k) < 1/(2k)
and {x ∈ Γ0 | γ1(û)(x) 6= 0} ⊂ Ω′k.

Step 3. Suppose the singular part (∇∇û)s is not 0 or ds({x ∈ Γ0 |
γ1(û)(x) 6= 0}) > 0. Then there exists ζ > 0 such that ‖(∇∇û)s‖Mb +

� Γ0
|γ1(û)(x)| ds > ζ. Therefore, for every k ∈ N, there exist open sets

Ω′′k ⊂⊂ Ω with Ω0
k ≡ Ω′′k ∪ Ω′k ⊂⊂ Ω1 such that dx(Ω0

k) < 1/k and
‖(∇∇û)s‖Mb(Ω′′k ,E2

s) + � Γ0
|γ1(û)(x)| ds > 1

2ζ. The existence of the sequence
{Ω′′k}k∈N follows from the regularity of the measure ∇∇û. By Assumption 4,
BE2

s
(ML(x), δ0) ⊂ Kp(x) for every x ∈ Ω. Then for every k ∈ N there exists

ϕ∗k ∈ C2
c (Ω1,E2

s) such that ϕ∗
k|Ω1−Ω0

k
= 0,

‖ϕ∗k(x)‖E2
s
< 1

2δ0 ∀x ∈ Ω0
k ,(4.79)

〈(∇∇û, γ1(û), γ0(û)); (ϕ∗k, 0)〉1 > 1
8ζδ0(4.80)

(cf. Step 3 of the proof of [4, Theorem 21]). Due to Step 4 of the proof of
[4, Theorem 21] we obtain the conclusion of Theorem 24.
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