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ON A FAMILY OF BAYESIAN ESTIMATORS
AND PREDICTORS FOR A GUMBEL MODEL BASED

ON THE kTH LOWER RECORDS

Abstract. Bayesian estimation for the two parameters of a Gumbel dis-
tribution are obtained based on kth lower record values. Prediction, either
point or interval, for future kth lower record values is also presented from
a Bayesian view point. Some of the results of [4] can be obtained as special
cases of our results (k = 1).

1. Introduction. Let {Xn, n ≥ 1} be a sequence of independent identi-
cally distributed (iid) random variables with a cumulative distribution func-
tion (cdf) F (x) and a probability density function (pdf) f(x). The jth order
statistic of a sample (X1, . . . ,Xn) is denoted by Xj:n. For a fixed k ≥ 1 we
define the sequence Lk(n), n ≥ 1, of kth lower record times of {Xn, n ≥ 1}
as follows:

Lk(1) = 1,

Lk(n+ 1) = min{j > Lk(n) : Xk:Lk(n)+k−1 > Xk:j+k−1}, n ≥ 1.

The sequence {Z(k)
n , n ≥ 1} with

Z(k)
n = Xk:Lk(n)+k−1, n ≥ 1,

is called the sequence of kth lower record values of {Xn, n ≥ 1}. Note that
Z

(k)
1 = max{X1, . . . ,Xk} and Z(1)

n = XL(n), n ≥ 1, are lower record values.
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It is known that

(1)

f
Z

(k)
n

(z) =
kn

(n− 1)!
[− lnF (z)]n−1(F (z))k−1f(z), z ∈ R,

f
Z

(k)
1 ,...,Z

(k)
n

(z1, . . . , zn) = kn(F (zn))k−1f(zn)
n−1∏

i=1

f(zi)
F (zi)

,

z1 > . . . > zn

(cf. [6]). A random variable X is said to have a Gumbel distribution, which
we shall denote by G(µ, σ), if its cdf is

(2) F (x;µ, σ) = exp
(
− exp

(
−x− µ

σ

))
, −∞ < x <∞

(−∞ < µ <∞, σ > 0).

The Gumbel pdf may be written in the form

(3) f(x;µ, σ) =
1
σ

exp
(
−x− µ

σ

)
F (x;µ, σ), −∞ < x <∞.

In [1], [2] the maximum likelihood (ML), best linear invariant (BLI) and
minimum variance unbiased (MVU) estimators of the Gumbel parameters
µ, σ were obtained. In those papers there are also given two types of predic-
tors of the sth record values based on the first m (m < s) record values. The
Bayesian estimators of the Gumbel parameters µ and σ based on record val-
ues were furnished in [4]. Bayesian prediction of the sth lower record, both
point or interval, was also presented.

In this note, the Bayesian estimators of the Gumbel parameters µ and
σ are obtained via the kth lower record values. Point and interval Bayesian
prediction of the sth one of the kth record values is also obtained. In fact,
families of the Bayesian estimators and predictors are given.

2. Bayesian estimation of the parameters. Suppose we observe m
kth lower record values Z(k)

1 = x
(k)
1 , Z(k)

2 = x
(k)
2 , . . . , Z

(k)
m = x

(k)
m from

the Gumbel distribution G(µ, σ), with cdf and pdf given by (2) and (3),
respectively. By (1) the likelihood function is as follows:

L(µ, σ |x(k)) = km
(m−1∏

i=1

f(x(k)
i )

F (x(k)
i )

)
[F (x(k)

m )]k−1f(x(k)
m )(4)

=
km

σm
exp
[
−m

(
x(k) − µ

σ

)
− k exp

(
−x

(k)
m − µ
σ

)]
,

x
(k)
1 > x

(k)
2 > . . . > x

(k)
m ,
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where

x(k) = (x(k)
1 , x

(k)
2 , . . . , x(k)

m ), x(k) =
m∑

i=1

x
(k)
i /m.

Assume that a bivariate prior distribution of the parameters µ and σ has
the form

(5) g(µ, σ) = g1(µ |σ)g2(σ),

where

(6) g1(µ |σ) ∝ 1/σ, −∞ < µ <∞,
which is the Jeffreys non-informative prior distribution (cf. [5]) of µ for a
fixed value of σ, i.e. the distribution with pdf proportional to the square
root of the Fisher information function (I(σ) = 1/σ2), and

(7) g2(σ) =
βα

Γ (α)σα+1 e
−β/σ, σ > 0; α > 0, β > 0,

which is the conjugate prior distribution of σ for a fixed value of µ. Substi-
tuting (6) and (7) in (5), we get

(8) g(µ, σ) ∝ βα

Γ (α)σα+2 e
−β/σ, −∞ < µ <∞; σ > 0.

By the Bayes theorem, the posterior distribution of µ and σ is

(9) h(µ, σ |x(k)) = AL(µ, σ |x(k))g(µ, σ), −∞ < µ <∞, σ > 0,

where L(µ, σ |x(k)) is the likelihood function given by (4), g(µ, σ) is the joint
prior density given by (8) and A is the normalizing constant. If we apply
(4) and (8) in (9), then the joint posterior density is

(10) h(µ, σ |x(k))

=
Akm

σm+α+2 exp
[
−m
σ

(
(x(k) − µ) +

β

m

)
− k exp

(
−x

(k)
m − µ
σ

)]
,

−∞ < µ <∞, σ > 0,

where

A =
(η(x(k)))m+α

Γ (m)Γ (m+ α)

with

(11) η(x(k)) = m(x(k) − x(k)
m ) + β.

Assuming a squared error loss function, the Bayes estimate of a parameter
is its posterior mean. Therefore, the Bayes estimate of the parameter σ is
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given by

(12) σ̂
(k)
B =

∞�

0

σh1(σ |x(k)) dσ,

where h1(σ |x(k)) is the marginal posterior density of σ obtained from (10)
by integrating out the parameter µ. Thus

σ̂
(k)
B =

∞�

0

∞�

−∞
σh(µ, σ |x(k)) dµ dσ(13)

= Akm
∞�

0

∞�

−∞

1
σα+m+1 exp

(
−
(
m

σ
(x(k) − µ) +

β

σ

))

× exp
(
−k exp

(
−x

(k)
m − µ
σ

))
dµ dσ

=
η(x(k))

m+ α− 1
,

where η(x(k)) is given by (11). Similarly, the Bayes estimate of µ is given by

µ̂
(k)
B =

∞�

0

∞�

−∞
µh(µ, σ |x(k)) dµ dσ

= Akm
∞�

0

∞�

−∞
µ

1
σα+m+2 exp

(
−
(
m

σ
(x(k) − µ) +

β

σ

))

× exp
(
−k exp

(
−x

(k)
m − µ
σ

))
dµ dσ.

Hence after standard evaluations we get

(14) µ̂
(k)
B = x(k)

m − (ν(m) + ln k)σ̂(k)
B ,

where

ν(m) = ν(m− 1)− 1
m− 1

, m ≥ 2,

and ν(1) = γ, which is Euler’s constant (γ = 0.57722). Note that σ̂(1)
B and

µ̂
(1)
B are the estimators given in [4], i.e.

σ̂
(1)
B =

η(x(1))
m+ α− 1

, µ̂
(1)
B = x(1)

m − ν(m)σ̂(1)
B .

When m = 1,

σ̂
(1)
B =

η(x(1))
α

=
β

α
, µ̂

(1)
B = X1 − γ

β

α
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are the estimators based on a sample of size 1. Our approach allows us to
give the Bayesian estimators of µ and σ using a sample of size k. Namely,
for m = 1 we have

σ̂
(k)
B =

β

α
,

µ̂
(k)
B = x

(k)
1 − (γ + ln k)σ̂(k)

B = max{X1, . . . ,Xk} − (γ + ln k)
β

α
.

Note that as α and β tend to zero, the estimators (13), (14) tend to the
estimators

σ̂
(k)
B =

m(x(k) − x(k)
m )

m− 1
= (m− 1)−1

m−1∑

i=1

x
(k)
i − x(k)

m ,

µ̂
(k)
B = x(k)

m − (ν(m) + ln k)
m(x(k) − x(k)

m )
m− 1

,

respectively, which are for k = 1 the minimum variance unbiased estimators
(MVUE) of the two parameters σ and µ, given in [2], [3], i.e.

σ̂
(1)
B =

m(x(1) − x(1)
m )

m− 1
,

µ̂
(1)
B = x(1)

m − ν(m)
m(x(1) − x(1)

m )
m− 1

.

3. Bayesian prediction of future records. Assume that we have
m kth lower records Z(k)

1 = x
(k)
1 , Z

(k)
2 = x

(k)
2 , . . . , Z

(k)
m = x

(k)
m from the

Gumbel distribution G(µ, σ). Based on such a sample, prediction, either
point or interval, is needed for the sth one of the kth lower record values,
1 < m < s. Now let Y (k) = Z

(k)
s be the sth lower record value, 1 < m < s.

The conditional pdf of Y (k) given the parameters µ and σ and the observed
value x(k)

m of Z(k)
m is

(15) f∗(y(k)
s |µ, σ)

=
ks−m

Γ (s−m)
[H(y(k)

s )−H(x(k)
m )]s−m−1

(
F (y(k)

s )

F (x(k)
m )

)k−1
f(y(k)

s )

F (x(k)
m )

=
ks−m

σΓ (s−m)

[
exp
(
−y

(k)
s − µ
σ

)
− exp

(
−x

(k)
m − µ
σ

)]s−m−1

× exp
(
−y

(k)
s − µ
σ

)
exp
[
−k exp

(
−y

(k)
s − µ
σ

)]

× exp
[
k exp

(
−x

(k)
m − µ
σ

)]
, −∞ < y(k)

s < x(k)
m <∞,
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where f(·), F (·) are the pdf and cdf, respectively, and H(·) = − lnF (·).
Combining the posterior density, given by (10), and the conditional density,
given by (15), and integrating out the parameters µ and σ, one may get the
Bayesian predictive density function of Y (k) = Z

(k)
s given the past m kth

lower record values, in the form

q(y(k)
s |x(k)) =

∞�

0

∞�

−∞
f∗(y(k)

s |µ, σ)h(µ, σ |x(k)) dµ dσ

=
Aks

Γ (s−m)

∞�

0

∞�

−∞

1
σm+α+3

×
[
exp
(
−y

(k)
s − µ
σ

)
− exp

(
−x

(k)
m − µ
σ

)]s−m−1

× exp
(
−y

(k)
s − µ
σ

)
exp
[
−k exp

(
−y

(k)
s − µ
σ

)]

× exp
[
k exp

(
−x

(k)
m − µ
σ

)]

× exp
[
−m
σ

(
(x(k) − µ) +

β

m

)
− k exp

(
−x

(k)
m − µ
σ

)]
dµ dσ.

We obtain

q(y(k)
s |x(k)) =

α+m

B(m, s−m)

s−m−1∑

i=0

(
s−m− 1

i

)
(−1)i(16)

× (η(x(k)))α+m

[m(x(k) − y(k)
s ) + i(x(k)

m − y(k)
s ) + β]α+m+1

,

where η(x(k)) is given by (11), and B(a, b) is the beta function, i.e.

B(a, b) =
1�

0

ta−1(1− t)b−1 dt, a > 0, b > 0.

The Bayes point predictor of the sth one of the kth lower record values is
given by

E(y(k)
s |x(k)) =

x(k)
m�

−∞
y(k)
s q(y(k)

s |x(k)) dy(k)
s

=
α+m

B(m, s−m)

x(k)
m�

−∞
y(k)
s

{ s−m−1∑

i=0

(
s−m− 1

i

)
(−1)i

× (η(x(k)))α+m

[m(x(k) − y(k)
s ) + i(x(k)

m − y(k)
s ) + β]α+m+1

}
dy(k)
s .
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Thus

E(y(k)
s |x(k)) =

1
B(m, s−m)

s−m−1∑

i=0

(
s−m− 1

i

)
(−1)i(17)

×
[
x

(k)
m

i+m
− η(x(k))

(α+m− 1)(m+ i)2

]
.

The Bayesian prediction bounds for Y (k) = Z
(k)
s are obtained by evaluating

Pr(Y (k) ≥ Θ |x(k)) for some given value of Θ. It follows from (16) that

Pr(Y (k) ≥ Θ |x(k)) =
x(k)
m�

Θ

q(y(k)
s |x(k))dy(k)

s

=
α+m

B(m, s−m)

x(k)
m�

Θ

s−m−1∑

i=0

(
s−m− 1

i

)
(−1)i

× (η(x(k)))α+m

[m(x(k) − y(k)
s ) + i(x(k)

m − y(k)
s ) + β]α+m+1

dy(k)
s .

Thus

(18) Pr(Y (k) ≥ Θ |x(k)) =
1

B(m, s−m)

s−m−1∑

i=0

(
s−m− 1

i

)
(−1)i

× 1
m+ i

[
1−

(
η(x(k))

η(x(k)) + (m+ i)(x(k)
m −Θ)

)α+m]
,

−∞ < θ < x(k)
m .

The (1−τ)100% predictive interval for Y (k) = Z
(k)
s is obtained by evaluating

both the lower, L(x(k)), and upper, U(x(k)), limits which satisfy

(19) Pr(Y (k) > L(x(k)) |x(k)) = 1− τ

2
, Pr(Y (k) > U(x(k)) |x(k)) =

τ

2
.

Thus, one may obtain L(x(k)) and U(x(k)) by equating (18) to 1− τ/2 and
τ/2, respectively, and solving, numerically, the resulting equations. For the
special case when s = m + 1, which is of special practical interest, (16)
simplifies to

(20) q(y(k)
m+1 |x(k)) = m(m+ α)

(η(x(k)))α+m

[m(x(k) − y(k)
m+1) + β]α+m+1

,

−∞ < y
(k)
m+1 < x(k)

m <∞.
This gives the Bayes point predictor of the next kth lower record value
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Y
(k)
m+1 = Z

(k)
m+1 in the form

(21) E(y(k)
m+1 |x(k)) = x(k)

m −
η(x(k))

m(α+m− 1)
,

and the (1 − τ)100% Bayesian predictive bounds L(x(k)) and U(x(k)) for
Y

(k)
m+1 are given by

L(x(k)) = x(k)
m +

η(x(k))
m

[
1−

(
τ

2

)−1/(m+α)]
,

U(x(k)) = x(k)
m +

η(x(k))
m

[
1−

(
1− τ

2

)−1/(m+α)]
.

Note that for m = 1 and k = 1, E(y(1)
2 |x(1)) = X1 − β/α is the Bayesian

point predictor based on one observation. From (21) the point predictor
based on a sample of size k is

E(y(k)
2 |x(k)) = max{X1, . . . ,Xk} − β/α.

Note that as α and β tend to zero, the predictor (21) tends to the Bayesian
point predictor

E(y(k)
m+1 |x(k)) = x(k)

m −
x(k) − x(k)

m

m− 1
,

which is for k = 1 the best linear unbiased predictor (BLUP), given in [2].

4. Characterization result. In this section we use a recurrence rela-
tion for conditional moments of nonadjacent kth record values to character-
ize the Gumbel distribution, G(µ, σ). By (1) we see that the conditional pdf
of Z(k)

m = x(k) for given Z(k)
s = t(k), 1 < m < s, is

f(x(k) | t(k)) = Dm,s(t(k))Hm−1(x(k))[H(t(k))−H(x(k))]s−m−1r(x(k)),

−∞ < t(k) < x(k) <∞,
where

r(x(k)) = −dH(x(k))
dx(k)

, Dm,s(t(k)) =
Γ (s)

Γ (m)Γ (s−m)Hs−1(t(k))
.

Following the argument of Section 4 in [4] we have immediately a more
general characterization of G(µ, σ).

Theorem. The random variable X has the G(µ, σ) distribution if and
only if , for t(k) < x(k) and j = 1, 2, 3, . . . , the recurrence relation

(m− 1)E[exp(−(j/σ)(Z(k)
m − µ)) |Z(k)

s = t(k)]

= (j +m− 1)E[exp(−(j/σ)(Z(k)
m−1 − µ)) |Z(k)

s = t(k)]

is satisfied for some k ≥ 1.
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